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Abstract

The authors consider the Cauchy problem with a kind of non-smooth initial data
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§ 1 . Introduction and Main Result

Consider the following first order quasilinear hyperbolic system

∂u

∂t
+ A(u)

∂u

∂x
= 0, (1.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x) and A(u) is an n×n matrix
with suitably smooth elements aij(u) (i, j = 1, · · · , n).

By the definition of hyperbolicity, for any given u on the domain under consideration,
A(u) has n real eigenvalues λ1(u), · · · , λn(u) and a complete set of left (resp. right) eigen-
vectors. For i = 1, · · · , n, let li(u) = (li1(u), · · · , lin(u)) (resp. ri(u) = (ri1(u), · · · , rin(u))T )
be a left (resp. right) eigenvector corresponding to λi(u):

li(u)A(u) = λi(u)li(u) (1.2)

and
A(u)ri(u) = λi(u)ri(u), (1.3)

we have
det |lij(u)| 6= 0 (resp. det |rij(u)| 6= 0). (1.4)

Without loss of generality, we assume that on the domain under consideration

li(u)rj(u) ≡ δij (i, j = 1, · · · , n), (1.5)
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where δij stands for the Kronecker’s symbol.
In particular, if, for any given u on the domain under consideration, A(u) has n distinct

real eigenvalues
λ1(u) < λ2(u) < · · · < λn(u), (1.6)

system (1.1) is called to be strictly hyperbolic.
For the Cauchy problem of system (1.1) with the initial data

t = 0 : u = φ(x) (−∞ < x < ∞), (1.7)

where φ(x) is a C1 vector function with bounded C1 norm, it was proved in [3–6] and
[12, 13] that if system (1.1) is strictly hyperbolic, then, for any given initial data satisfying
the following small and decaying property:

θ , sup
x∈R

{(1 + |x|)1+µ(|φ(x)|+ |φ′(x)|)} ¿ 1, (1.8)

where µ > 0 is a constant, Cauchy problem (1.1) and (1.7) admits a unique global C1 solution
u = u(t, x) with small C1 norm for all t ∈ R, if and only if system (1.1) is weakly linearly
degenerate, i.e., all the characteristics are weakly linearly degenerate (see also [9, 10] and [15–
18] for some related results). Here, we call λi(u) (i ∈ {1, · · · , n}) a weakly linearly degenerate
characteristic if, along the i-th characteristic trajectory u = u(i)(s) passing through u = 0,
defined by 




du

ds
= ri(u),

s = 0 : u = 0,
(1.9)

we have
∇λi(u)ri(u) ≡ 0, ∀ |u| small, (1.10)

namely
λi(u(i)(s)) ≡ λi(0), ∀ |s| small. (1.11)

In the previous result, the initial data are supposed to be in the C1 class. However, in
some practical problems, we are required to deal with the Cauchy problem for system (1.1)
with the following kind of non-smooth initial data

t = 0 : u =

{
ul(x), x ≤ 0,

ur(x), x ≥ 0,
(1.12)

where ul(x) and ur(x) are C1 vector functions on x ≤ 0 and x ≥ 0 respectively and satisfy
the following small and decaying property

θ , sup
x≤0

{(1 + |x|)1+µ(|ul(x)|+ |u′l(x)|)}+ sup
x≥0

{(1 + x)1+µ(|ur(x)|+ |u′r(x)|)} < +∞, (1.13)

where µ > 0 is a constant; moreover,

ul(0) = ur(0) and u′l(0) 6= u′r(0). (1.14)

In this paper, we will generalize the previous result to Cauchy problem (1.1) and (1.12).
In the meantime, the method used in [6] and [13] will be simplified and improved. In order
to state the main result of this paper, we first give the following
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Definition 1.1. A continuous and piecewise C1 vector function

u = u(t, x) =

{
u−(t, x), x ≤ xk(t),
u+(t, x), x ≥ xk(t)

(1.15)

is called a weakly discontinuous solution containing a k-th weak discontinuity x = xk(t)
for system (1.1), if u = u(t, x) satisfies system (1.1) in the classical sense on both sides of
x = xk(t),

u−(t, xk(t)) = u+(t, xk(t)) (1.16)
and x = xk(t) is the corresponding k-th characteristic:

dxk(t)
dt

= λk(u−(t, xk(t))) = λk(u+(t, xk(t))), (1.17)

moreover, the first order derivatives of u(t, x) have the first kind discontinuity on x = xk(t).

Our main result is the following

Theorem 1.1. Suppose that in a neighbourhood of u = 0, A(u) ∈ C2 and system (1.1)
is strictly hyperbolic. Suppose furthermore that ul(x) and ur(x) are C1 vector functions
on x ≤ 0 and x ≥ 0 respectively. Then there exists θ0 > 0 so small that for any given
initial data satisfying (1.13)–(1.14) with θ ∈ (0, θ0], Cauchy problem (1.1) and (1.12) admits
a unique global weakly discontinuous solution u = u(t, x) containing n weak discontinuities
x = xk(t) (k = 1, · · · , n), where x = xk(t) with xk(0) = 0 denotes a k-th weak discontinuity
passing through the origin (0, 0), if and only if system (1.1) is weakly linearly degenerate.
Precisely speaking, the solution u = u(t, x) should have the following structure:

u = u(t, x) =





u(0)(t, x), (t, x) ∈ R0,

u(l)(t, x), (t, x) ∈ Rl (l = 1, · · · , n− 1),
u(n)(t, x), (t, x) ∈ Rn,

(1.18)

in which u(l)(t, x) ∈ C1 satisfies system (1.1) in the classical sense on Rl (l = 0, 1, · · · , n)
with

Rl =





{(t, x) | t ≥ 0, x ≤ x1(t)} (l = 0),
{(t, x) | t ≥ 0, xl(t) ≤ x ≤ xl+1(t)} (l = 1, · · · , n− 1),
{(t, x) | t ≥ 0, x ≥ xn(t)} (l = n).

(1.19)

Moreover, for k = 1, · · · , n,

u(k−1)(t, xk(t)) = u(k)(t, xk(t)), (1.20)
dxk(t)

dt
= λk(u(k−1)(t, xk(t))) = λk(u(k)(t, xk(t))). (1.21)

Remark 1.1. In Theorem 1.1, some weak discontinuities may degenerate.

Remark 1.2. Suppose that (1.1) is a non-strictly hyperbolic system with character-
istics with constant multiplicity, say,

λ1(u)< · · ·<λk(u)<λk+1(u)≡· · ·≡λk+p(u)<λk+p+1(u)< · · ·<λn(u) (p > 1). (1.22)

Then, if there exist normalized coordinates, similar conclusion holds as in Theorem 1.1 (some
related results can be found in [7, 14]).

The paper is organized as follows. In Section 2 we give some preliminaries. Then, the
main result is proved in Section 3. Finally, an application is given in Section 4.
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§ 2 . Preliminaries

By Lemma 2.5 in [12], when system (1.1) is strictly hyperbolic, there exists a suitably
smooth invertible transformation u = u(ũ) (u(0) = 0) such that in the ũ-space, for each
i = 1, · · · , n, the i-th characteristic trajectory passing through ũ = 0 coincides with the
ũi-axis at least for |ũi| small, namely,

r̃i(ũiei)//ei, ∀ |ũi| small (i = 1, · · · , n), (2.1)

where r̃i(ũ) denotes the i-th right eigenvector corresponding to ri(u) and

ei = (0, · · · , 0,
(i)

1 , 0, · · · , 0)T . (2.2)

This transformation is called a normalized transformation, and the unknown variables ũ =
(ũ1, · · · , ũn)T are called normalized variables or normalized coordinates.

Let
wi = li(u)ux (i = 1, · · · , n). (2.3)

By (1.5), it is easy to see that

ux =
n∑

k=1

wkrk(u). (2.4)

Let
d

dit
=

∂

∂t
+ λi(u)

∂

∂x
(2.5)

denote the directional derivative with respect to t along the i-th characteristic. We have

du

dit
=

n∑

k=1
k 6=i

(λi(u)− λk(u))wkrk(u) (i = 1, · · · , n). (2.6)

Then, in normalized coordinates, it is easy to see that

dui

dit
=

n∑

j,k=1

ρijk(u)ujwk (i = 1, · · · , n), (2.7)

where
ρijj(u) ≡ 0, ∀ i, j (2.8)

and

ρijk(u)=(λi(u)−λk(u))
∫ 1

0

∂rki

∂uj
(τu1, · · · , τuk−1, uk, τuk+1, · · · , τun)dτ, ∀ j 6= k. (2.9)

Obviously
ρiji(u) ≡ 0, ∀ i, j. (2.10)

Moreover, noting (2.4) and (2.7), we have

d[ui(dx− λi(u)dt)] =
[dui

dit
+

n∑

k=1

∇λi(u)rk(u)uiwk

]
dt ∧ dx

=
n∑

j,k=1

Fijk(u)ujwkdt ∧ dx, (2.11)
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where
Fijk(u) = ρijk(u) +∇λj(u)rk(u)δij . (2.12)

Noting (2.8) and (2.10), it is easy to see that

Fijj(u) ≡ 0, ∀ j 6= i, (2.13)

Fiji(u) ≡ 0, ∀ j 6= i, (2.14)

Fiii(u) = ∇λi(u)ri(u), ∀ i. (2.15)

On the other hand, we have (see [1–3] or [12])

dwi

dit
=

n∑

j,k=1

γijk(u)wjwk (i = 1, · · · , n), (2.16)

where

γijk(u) =
1
2
{(λj(u)− λk(u))li(u)∇rk(u)rj(u)−∇λk(u)rj(u)δik + (j|k)}, (2.17)

in which (j|k) stands for all terms obtained by changing j and k in the previous terms.
Hence

γijj(u) ≡ 0, ∀ j 6= i, (2.18)
γiii(u) = −∇λi(u)ri(u), ∀ i. (2.19)

Noting (2.4), by (2.16) we have (see [1])

d[wi(dx− λi(u)dt)] =
n∑

j,k=1

Γijk(u)wjwkdt ∧ dx, (2.20)

where
Γijk(u) =

1
2
(λj(u)− λk(u))li(u)[∇rk(u)rj(u)−∇rj(u)rk(u)]. (2.21)

Hence
Γijj(u) ≡ 0, ∀ i, j. (2.22)

§ 3 . Proof of Theorem 1.1

In order to prove the sufficiency in Theorem 1.1, in what follows we always assume
that θ > 0 is suitably small.

By the existence and uniqueness of local weakly discontinuous solution to the Cauchy
problem (see [11]), there exists T0 > 0 so small that Cauchy problem (1.1) and (1.12) admits
a unique weakly discontinuous solution u = u(t, x) containing at most n weak discontinuities
x = xk(t) (k = 1, · · · , n) on the domain R(T0) = {(t, x) | 0 ≤ t ≤ T0,−∞ < x < +∞} =
n⋃

l=0

Rl(T0):

u = u(t, x) =





u(0)(t, x), (t, x) ∈ R0(T0),
u(l) (t, x), (t, x) ∈ Rl (T0) (l = 1, · · · , n− 1),
u(n)(t, x), (t, x) ∈ Rn(T0),

(3.1)
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where

Rl(T0) =





{(t, x) | 0 ≤ t ≤ T0, x ≤ x1(t)} (l = 0),
{(t, x) | 0 ≤ t ≤ T0, xl(t) ≤ x ≤ xl+1(t)} (l = 1, · · · , n− 1),
{(t, x) | 0 ≤ t ≤ T0, x ≥ xn(t)} (l = n).

(3.2)

In what follows, we establish a uniform a priori estimate on the C0 norm of u and
the piecewise C0 norm of ux on any given existence domain of the weakly discontinuous
solution u = u(t, x) to Cauchy problem (1.1) and (1.12). Noting (2.3), we only need to
establish a uniform a priori estimate on the C0 norm of u and the piecewise C0 norm
of w = (w1, · · · , wn) on any given existence domain of the weakly discontinuous solution
u = u(t, x).

Noting (1.6), we have

λ1(0) < λ2(0) < · · · < λn(0). (3.3)

Then, there exist positive constants δ and δ0 so small that

λi+1(u)− λi(u′) ≥ 2δ0, ∀ |u|, |u′| ≤ δ (i = 1, · · · , n− 1), (3.4)

|λi(u)− λi(u′)| ≤ δ0

2
, ∀ |u|, |u′| ≤ δ (i = 1, · · · , n). (3.5)

Without loss of generality, we may assume that

λi(0) > δ0 (i = 1, · · · , n). (3.6)

For the time being we assume that on any given existence domain R(T ) = {(t, x) | 0 ≤
t ≤ T,−∞ < x < +∞} =

n⋃

l=0

Rl(T ) of the weakly discontinuous solution

u = u(t, x) =





u(0)(t, x), (t, x) ∈ R0(T ),
u(l) (t, x), (t, x) ∈ Rl (T ) (l = 1, · · · , n− 1),
u(n)(t, x), (t, x) ∈ Rn(T )

(3.7)

to Cauchy problem (1.1) and (1.12), where

Rl(T ) =





{(t, x) | 0 ≤ t ≤ T, x ≤ x1(t)} (l = 0),
{(t, x) | 0 ≤ t ≤ T, xl(t) ≤ x ≤ xl+1(t)} (l = 1, · · · , n− 1),
{(t, x) | 0 ≤ t ≤ T, x ≥ xn(t)} (l = n),

(3.8)

we have
|u(t, x)| ≤ δ, ∀ (t, x) ∈ R(T ). (3.9)

At the end of the proof of Lemma 3.3, we will explain that this hypothesis is reasonable.
Let

DT
i =





{(t, x) | 0 ≤ t ≤ T, x ≤ (λ1(0) + δ0)t} (i = 1),
{(t, x) | 0 ≤ t ≤ T, (λi(0)− δ0)t ≤ x ≤ (λi(0) + δ0)t} (i = 2, · · · , n− 1),
{(t, x) | 0 ≤ t ≤ T, x ≥ (λn(0)− δ0)t} (i = n).

(3.10)
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Obviously
n⋃

i=1

DT
i ⊂ R(T ). (3.11)

On any given existence domain R(T ) =
n⋃

l=0

Rl(T ) of the weakly discontinuous solution

u = u(t, x) to Cauchy problem (1.1) and (1.12), let

w(l) = (w(l)
1 , · · · , w(l)

n ) (l = 0, 1, · · · , n) (3.12)

with

w
(l)
i = li(u(l))u(l)

x (i = 1, · · · , n), (3.13)

W c
∞(T ) = max

i=1,··· ,n
max

l=0,1,··· ,n
sup

(t,x)∈Rl(T )\DT
i

{(1 + |x− λi(0)t|)1+µ|w(l)
i (t, x)|}, (3.14)

U c
∞(T ) = max

i=1,··· ,n
max

l=0,1,··· ,n
sup

(t,x)∈Rl(T )\DT
i

{(1 + |x− λi(0)t|)1+µ|u(l)
i (t, x)|}, (3.15)

W̃1(T ) = max
i=1,··· ,n

max
j 6=i

{
sup
cj

∫

cj∩Ri−1(T )

|w(i−1)
i (t, x)|dt + sup

cj

∫

cj∩Ri(T )

|w(i)
i (t, x)|dt

}
,

(3.16)

where cj denotes any given j-th characteristic on DT
i ,

W1(T ) = max
i=1,··· ,n

sup
0≤t≤T

{ ∫ xi(t)

a(t)

|w(i−1)
i (t, x)|dx +

∫ b(t)

xi(t)

|w(i)
i (t, x)|dx

}
, (3.17)

where

a(t) =

{
−∞, if i = 1,

(λi(0)− δ0)t, if i = 2, · · · , n,
(3.18)

b(t) =

{
(λi(0) + δ0)t, if i = 1, · · · , n− 1,

+∞, if i = n
(3.19)

and

U∞(T ) = ‖u(t, x)‖L∞(R(T )), (3.20)

W∞(T ) =
n∑

l=0

‖w(l)(t, x)‖L∞(Rl(T )). (3.21)

According to the definition of the weak discontinuity, it is easy to get

Lemma 3.1. On the k-th weak discontinuity x = xk(t), we have

w
(k−1)
i = w

(k)
i , ∀ i 6= k. (3.22)

Lemma 3.2. For each i = 1, · · · , n and any given point (t, x)∈DT
i , let ci : ξi =

ξi(τ) (τ ≤ t) be the i-th characteristic passing through (t, x) and intersecting the x-axis at
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(0, xi0). Then there exist positive constants dk (k = 1, 2, 3) independent of (t, x) and i, such
that

d1|x| ≤ |x− λi(0)t| ≤ d2|xi0| (3.23)

and, if (τ, ξi(τ))∈DT
j for some j, then

|ξi(τ)− λj(0)τ | ≥ d3|xi0|. (3.24)

Proof. When i ∈ {2, · · · , n − 1}, for any given point (t, x)∈DT
i , by the definition of

DT
i , we have

x ≥ (λi(0) + δ0)t or x ≤ (λi(0)− δ0)t. (3.25)

In what follows, we prove (3.23)–(3.24) for the case x ≥ (λi(0)+δ0)t. When x ≤ (λi(0)−δ0)t,
(3.23)–(3.24) can be similarly proved.

Noting (3.5), for τ ≤ t, it is easy to get

ξi(τ) ≥ (λi(0) + δ0)τ, (3.26)
(
λi(0)− δ0

2

)
τ ≤ ξi(τ)− xi0 ≤

(
λi(0) +

δ0

2

)
τ. (3.27)

Then, noting (3.6), we have

ξi(τ) ≤ 2(λi(0) + δ0)
δ0

xi0, (3.28)

in particular,

x ≤ 2(λi(0) + δ0)
δ0

xi0. (3.29)

Thus, noting x ≥ (λi(0) + δ0)t, we immediately get (3.23).
Since (τ, ξi(τ))∈DT

i , in order to prove (3.24), we first consider the case j = i. By
(3.26)–(3.27), it is easy to get

|ξi(τ)− λi(0)τ | ≥ δ0

λi(0) + δ0
xi0. (3.30)

Now we consider the case that there exists j 6= i such that (τ, ξi(τ))∈DT
j . When j < i,

noting (3.3) and (3.30), we have

|ξi(τ)− λj(0)τ | ≥ |ξi(τ)− λi(0)τ | ≥ δ0

λi(0) + δ0
xi0. (3.31)

When j > i, since (τ, ξi(τ))∈DT
j , we have

ξi(τ) ≥ (λj(0) + δ0)τ or ξi(τ) ≤ (λj(0)− δ0)τ.

If ξi(τ) ≥ (λj(0) + δ0)τ , similarly to (3.30) we get

|ξi(τ)− λj(0)τ | ≥ δ0

λj(0) + δ0
xi0; (3.32)

while, if ξi(τ) ≤ (λj(0)− δ0)τ , noting (3.27), it is easy to get

|ξi(τ)− λj(0)τ | ≥ δ0

λj(0)− δ0
xi0. (3.33)
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The combination of (3.30)–(3.33) proves (3.24).
When i = 1 or n, noting the definition of DT

1 and DT
n , similarly we can get (3.23)–

(3.24).

Lemma 3.3. Suppose that in a neighbourhood of u = 0, A(u) ∈ C2 and system
(1.1) is strictly hyperbolic, i.e., (1.6) holds. Suppose furthermore that the initial data satisfy
(1.13). Then there exists θ0 > 0 so small that for any fixed θ ∈ (0, θ0], on any given existence
domain R(T ) of the weakly discontinuous solution u = u(t, x) (see (3.7)) to Cauchy problem
(1.1) and (1.12), we have the following uniform a priori estimates

W c
∞(T ) ≤ κ1θ, (3.34)

W̃1(T ), W1(T ) ≤ κ2θ, (3.35)

U∞(T ) ≤ κ3θ, (3.36)

here and henceforth κi (i = 1, 2, · · · ) are positive constants independent of θ and T .

Proof. We first estimate W c
∞(T ).

For any given i ∈ {1, · · · , n}, passing through any fixed point (t, x) ∈ R(T )\DT
i , we

draw the i-th characteristic ci: ξ = ξi(τ) (τ ≤ t) which intersects the x-axis at a point
(0, xi0). When (t, x) ∈ Rl(T )\DT

i for some l < i, noting Lemma 3.1, integrating (2.16)
along ci from 0 to t yields

w
(l)
i (t, x) = w

(0)
i (0, xi0) +

∫ ti1

0

n∑

j,m=1

γijm(u(0))w(0)
j w(0)

m (τ, ξi(τ))dτ

+
l−1∑

k=1

∫ ti,k+1

tik

n∑

j,m=1

γijm(u(k))w(k)
j w(k)

m (τ, ξi(τ))dτ

+
∫ t

til

n∑

j,m=1

γijm(u(l))w(l)
j w(l)

m (τ, ξi(τ))dτ ; (3.37)

while, when (t, x) ∈ Rl(T )\DT
i for some l ≥ i, similarly we have

w
(l)
i (t, x) = w

(n)
i (0, xi0) +

∫ tin

0

n∑

j,m=1

γijm(u(n))w(n)
j w(n)

m (τ, ξi(τ))dτ

+
n∑

k=l+2

∫ ti,k−1

tik

n∑

j,m=1

γijm(u(k−1))w(k−1)
j w(k−1)

m (τ, ξi(τ))dτ

+
∫ t

ti,l+1

n∑

j,m=1

γijm(u(l))w(l)
j w(l)

m (τ, ξi(τ))dτ, (3.38)

here and hereafter, (tik, xk(tik)) stands for the intersection point of ci with the k-th weak
discontinuity x = xk(t) (k = 1, · · · , n). Moreover, by the definition of DT

1 and DT
n , when

i = 1, (3.37) disappears, and, when i = n, (3.38) disappears. Then, by using Lemma 3.2
and (2.18) and noting (3.9) and |ξi(τ)− λj(0)τ | ≥ δ0τ when (τ, ξi(τ))∈DT

j , it is easy to see
that

(1 + |x− λi(0)t|)1+µ|w(l)
i (t, x)|

≤ C(1 + |xi0|)1+µ(|w(0)
i (0, xi0)|+ |w(n)

i (0, xi0)|) + C{W c
∞(T )W̃1(T ) + (W c

∞(T ))2}, (3.39)
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here and henceforth, C denotes different positive constants independent of θ and T . Noting
(1.13), it turns out that

W c
∞(T ) ≤ C{θ + W c

∞(T )W̃1(T ) + (W c
∞(T ))2}. (3.40)

We next estimate W̃1(T ) and W1(T ).
For i ∈ {1, · · · , n − 1}, passing through any given point A(t, x) ∈ DT

i ∩ Ri(T ), we
draw the j-th characteristic cj : ξ = ξj(τ) (τ ≤ t, j > i) which intersects the i-th weak
discontinuity x = xi(t) at a point B(tB , xB). In the meantime, the i-th characteristic
ci : ξ = ξi(τ) (τ ≤ t) passing through point A intersects the boundary x = (λi(0) + δ0)t of
DT

i at a point C. By (2.20), using Stokes’ formula on the domain ABOC we get

∫ t

tB

|w(i)
i (λj(u(i))− λi(u(i)))(τ, ξj(τ))|dτ

≤
∫

OC

|w(i)
i (λi(0) + δ0 − λi(u(i)))(τ, (λi(0) + δ0)τ)|dτ

+
∫∫

ABOC

∣∣∣
n∑

k,m=1

Γikm(u(i))w(i)
k w(i)

m (t, x)
∣∣∣dtdx. (3.41)

Then, noting (2.22), (3.4) and (3.9) and by using Lemma 3.2, it is easy to get that

∫

cj

|w(i)
i |dτ =

∫ t

tB

|w(i)
i (τ, ξj(τ))|dτ ≤ C{W c

∞(T ) + W c
∞(T )W1(T ) + (W c

∞(T ))2}. (3.42)

When j < i, the j-th characteristic cj : ξ = ξj(τ) (τ ≤ t) intersects the boundary x =
(λi(0) + δ0)t of DT

i at a point B(tB , xB). Using Stokes’ formula on the domain ACB,
similarly we still get (3.42).

For i = n, passing through any given point A(t, x) ∈ DT
n ∩ Rn(T ), both the j-th

characteristic cj : ξ = ξj(τ) (τ ≤ t) and the i-th characteristic ci: ξ = ξi(τ) (τ ≤ t) intersect
the x-axis at points B(0, xB) and C(0, xC) respectively. Using Stokes’ formula on the domain
ACB, similarly we have

∫

cj

|w(n)
n |dτ =

∫ t

0

|w(n)
n (τ, ξj(τ))|dτ ≤ C{θ + W c

∞(T )W1(T ) + (W c
∞(T ))2}. (3.43)

On the other hand, for i ∈ {2, · · · , n} and any given point A(t, x) ∈ DT
i ∩ Ri−1(T ),

similarly we have
∫

cj

|w(i−1)
i |dτ =

∫ t

tB

|w(i−1)
i (τ, ξj(τ))|dτ ≤ C{W c

∞(T )+W c
∞(T )W1(T )+(W c

∞(T ))2}. (3.44)

Moreover, for i = 1, we have
∫

cj

|w(0)
1 |dτ =

∫ t

0

|w(0)
1 (τ, ξj(τ))|dτ ≤ C{θ + W c

∞(T )W1(T ) + (W c
∞(T ))2}. (3.45)

Thus, we finally get

W̃1(T ) ≤ C{θ + W c
∞(T ) + W c

∞(T )W1(T ) + (W c
∞(T ))2}. (3.46)
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Similarly, we can obtain (cf. [9])

W1(T ) ≤ C{θ + W c
∞(T ) + W c

∞(T )W1(T ) + (W c
∞(T ))2}. (3.47)

The combination of (3.40) and (3.46)–(3.47) gives (3.34)–(3.35) (cf. [13]).

Finally, we estimate U∞(T ).
Passing through any given point (t, x) ∈ R(T ), we draw the n-th characteristic cn :

ξ = ξn(τ) (τ ≤ t) which intersects the x-axis at a point (0, x0). When (t, x) ∈ Rl(T ) for
l ∈ {0, 1, · · · , n− 1}, integrating (2.6) (in which i = n) along cn from 0 to t gives

u(l)(t, x) = u(0)(0, x0) +
∫ tn1

0

n−1∑
m=1

(λn(u(0))− λm(u(0)))w(0)
m rm(u(0))(τ, ξn(τ))dτ

+
l−1∑

k=1

∫ tn,k+1

tnk

n−1∑
m=1

(λn(u(k))− λm(u(k)))w(k)
m rm(u(k))(τ, ξn(τ))dτ

+
∫ t

tnl

n−1∑
m=1

(λn(u(l))− λm(u(l)))w(l)
m rm(u(l))(τ, ξn(τ))dτ ; (3.48)

while, when (t, x) ∈ Rn(T ), similarly we have

u(n)(t, x) = u(n)(0, x0) +
∫ t

0

n−1∑
m=1

(λn(u(n))− λm(u(n)))w(n)
m rm(u(n))(τ, ξn(τ))dτ. (3.49)

Then, noting (1.13) and by using (3.34)–(3.35), it is easy to see that

|u(t, x)| ≤ C{θ + W c
∞(T ) + W̃1(T )} ≤ Cθ. (3.50)

Thus, (3.36) follows immediately. At the same time, (3.50) also means that hypothesis (3.9)
is reasonable.

Lemma 3.4. Under the assumptions of Lemma 3.3, suppose furthermore that system
(1.1) is weakly linearly degenerate, then, in normalized coordinates there exists θ0 > 0 so
small that for any fixed θ ∈ (0, θ0], on any given existence domain R(T ) of the weakly
discontinuous solution u = u(t, x) to Cauchy problem (1.1) and (1.12), we have the following
uniform a priori estimates

U c
∞(T ) ≤ κ4θ, (3.51)

W∞(T ) ≤ κ5θ. (3.52)

Proof. Similarly to (3.16)–(3.17), let

Ũ1(T ) = max
i=1,··· ,n

max
j 6=i

{
sup
cj

∫

cj∩Ri−1(T )

|u(i−1)
i (t, x)|dt + sup

cj

∫

cj∩Ri(T )

|u(i)
i (t, x)|dt

}
, (3.53)

U1(T ) = max
i=1,··· ,n

sup
0≤t≤T

{ ∫ xi(t)

a(t)

|u(i−1)
i (t, x)|dx +

∫ b(t)

xi(t)

|u(i)
i (t, x)|dx

}
. (3.54)

We now estimate U c
∞(T ).
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Similarly to (3.37)–(3.38), when (t, x) ∈ Rl(T )\DT
i for some l < i, integrating (2.7)

along ci from 0 to t, we have

u
(l)
i (t, x) = u

(0)
i (0, xi0) +

∫ ti1

0

n∑

j,m=1

ρijm(u(0))u(0)
j w(0)

m (τ, ξi(τ))dτ

+
l−1∑

k=1

∫ ti,k+1

tik

n∑

j,m=1

ρijm(u(k))u(k)
j w(k)

m (τ, ξi(τ))dτ

+
∫ t

til

n∑

j,m=1

ρijm(u(l))u(l)
j w(l)

m (τ, ξi(τ))dτ ; (3.55)

while, when (t, x) ∈ Rl(T )\DT
i for some l ≥ i, we have

u
(l)
i (t, x) = u

(n)
i (0, xi0) +

∫ tin

0

n∑

j,m=1

ρijm(u(n))u(n)
j w(n)

m (τ, ξi(τ))dτ

+
n∑

k=l+2

∫ ti,k−1

tik

n∑

j,m=1

ρijm(u(k−1))u(k−1)
j w(k−1)

m (τ, ξi(τ))dτ

+
∫ t

ti,l+1

n∑

j,m=1

ρijm(u(l))u(l)
j w(l)

m (τ, ξi(τ))dτ. (3.56)

Then, noting (2.8) and using Lemma 3.2, similarly to (3.40) we get

U c
∞(T ) ≤ C{θ + U c

∞(T )W̃1(T ) + W c
∞(T )U c

∞(T ) + Ũ1(T )W c
∞(T )}. (3.57)

Hence, using Lemma 3.3, we get immediately

U c
∞(T ) ≤ Cθ{1 + Ũ1(T )}. (3.58)

We next estimate Ũ1(T ) and U1(T ).
For i ∈ {1, · · · , n− 1}, similarly to (3.41), by (2.11) we have

∫ t

tB

|u(i)
i (λj(u(i))− λi(u(i)))(τ, ξj(τ))|dτ

≤
∫

OC

|u(i)
i (λi(0) + δ0 − λi(u(i)))(τ, (λi(0) + δ0)τ)|dτ

+
∫∫

ABOC

∣∣∣
n∑

k,m=1

Fikm(u(i))u(i)
k w(i)

m (t, x)
∣∣∣dtdx. (3.59)

Then, noting (2.13)–(2.14), the second term on the right hand side of (3.59) can be rewritten
as

∫∫

ABOC

∣∣∣
n∑

k,m=1

Fikm(u(i))u(i)
k w(i)

m (t, x)
∣∣∣dtdx

=
∫∫

ABOC

∣∣∣
∑

k 6=m

Fikm(u(i))u(i)
k w(i)

m (t, x) + Fiii(u(i))u(i)
i w

(i)
i (t, x)

∣∣∣dtdx. (3.60)
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Since λi(u) is weakly linearly degenerate and u = (u1, · · · , un)T are normalized coordinates,
by (2.15) we have

Fiii(uiei) ≡ 0, ∀ |ui| small. (3.61)

Then, using Hardmard’s formula, we have

Fiii(u(i)) = Fiii(u(i))− Fiii(u
(i)
i ei)

=
∫ 1

0

∑

l 6=i

∂Fiii

∂ul
(τu

(i)
1 , · · · , τu

(i)
i−1, u

(i)
i , τu

(i)
i+1, · · · , τu(i)

n )u(i)
l dτ. (3.62)

Hence, similarly to (3.42), using Lemma 3.3, from (3.59) we get

∫

cj

|u(i)
i |dτ =

∫ t

tB

|u(i)
i (τ, ξj(τ))|dτ

≤ C{U c
∞(T ) + U1(T )W c

∞(T ) + U c
∞(T )W1(T )

+ U c
∞(T )W c

∞(T ) + U∞(T )U c
∞(T )W1(T )}

≤ C{U c
∞(T ) + θU1(T )}. (3.63)

For i = n, similarly to (3.43), we have

∫

cj

|u(n)
n |dτ =

∫ t

0

|u(n)
n (τ, ξj(τ))|dτ

≤ C{θ + U1(T )W c
∞(T ) + U c

∞(T )W1(T )

+ U c
∞(T )W c

∞(T ) + U∞(T )U c
∞(T )W1(T )}

≤ Cθ{1 + U c
∞(T ) + U1(T )}. (3.64)

Moreover, similarly to (3.44)–(3.45), we can estimate

∫

cj

|u(i−1)
i |dτ for i = 1, · · · , n.

Hence, we get
Ũ1(T ) ≤ C{U c

∞(T ) + θ(1 + U1(T ))}. (3.65)

Similarly, we have
U1(T ) ≤ C{U c

∞(T ) + θ(1 + U1(T ))}. (3.66)

Thus we get
Ũ1(T ), U1(T ) ≤ C{θ + U c

∞(T )}. (3.67)

Finally, (3.51) follows immediately from the combination of (3.58) and (3.67).

We finally estimate W∞(T ).
For any given i ∈ {1, · · · , n} and any given point (t, x) ∈ DT

i , let ci : ξ = ξi(τ) (τ ≤ t)
be the i-th characteristic passing through (t, x), which intersects the x-axis at a point (0, xi0).
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When (t, x) ∈ Ri−1(T ), integrating (2.16) along ci from 0 to t gives

w
(i−1)
i (t, x) = w

(0)
i (0, xi0) +

∫ ti1

0

n∑

j,m=1

γijm(u(0))w(0)
j w(0)

m (τ, ξi(τ))dτ

+
i−2∑

k=1

∫ ti,k+1

tik

n∑

j,m=1

γijm(u(k))w(k)
j w(k)

m (τ, ξi(τ))dτ

+
∫ t

ti,i−1

n∑

j,m=1

γijm(u(i−1))w(i−1)
j w(i−1)

m (τ, ξi(τ))dτ ; (3.68)

while, when (t, x) ∈ Ri(T ), similarly we have

w
(i)
i (t, x) = w

(n)
i (0, xi0) +

∫ tin

0

n∑

j,m=1

γijm(u(n))w(n)
j w(n)

m (τ, ξi(τ))dτ

+
n∑

k=i+2

∫ ti,k−1

tik

n∑

j,m=1

γijm(u(k−1))w(k−1)
j w(k−1)

m (τ, ξi(τ))dτ

+
∫ t

ti,i+1

n∑

j,m=1

γijm(u(i))w(i)
j w(i)

m (τ, ξi(τ))dτ. (3.69)

Since λi(u) is weakly linearly degenerate and u = (u1, · · · , un)T are normalized coor-
dinates, by (2.19) we have

γiii(uiei) ≡ 0, ∀ |ui| small. (3.70)

Then, noting (1.13) and (2.18), similarly to (3.63) and (3.64), it is easy to get

|w(i−1)
i (t, x)|, |w(i)

i (t, x)| ≤ C{θ + W c
∞(T )W̃1(T ) + (W c

∞(T ))2

+ W c
∞(T )W∞(T ) + U c

∞(T )(W∞(T ))2}. (3.71)

Thus, noting Lemma 3.3 and (3.51) we have

W∞(T ) ≤ Cθ{1 + W∞(T ) + (W∞(T ))2}, (3.72)

which implies (3.52).

From Lemmas 3.3 and 3.4, the sufficiency in Theorem 1.1 follows immediately.

We now prove the necessity in Theorem 1.1.
For the Cauchy problem of a scalar equation





∂v

∂t
+ λ(v)

∂v

∂x
= 0,

t = 0 : v =

{
ψl(x), x ≤ 0,

ψr(x), x ≥ 0

(3.73)

with
ψl(0) = ψr(0) and ψ′l(0) 6= ψ′r(0), (3.74)

where ψl(x) and ψr(x) ∈ C1 and satisfy (1.13), it is easy to get
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Lemma 3.5. There exists θ0 > 0 so small that for any given θ ∈ (0, θ0], Cauchy
problem (3.73) admits a unique global weakly discontinuous solution if and only if λ(v) is a
constant in a neighbourhood of v = 0.

Then, noting that in normalized coordinates the characteristic λi(u) is weakly linearly
degenerate if and only if

λi(uiei) ≡ const., ∀ |ui| small, (3.75)

we easily get the necessity in Theorem 1.1 (cf. [4, 5]).

Remark 3.1. Comparing with the method used in [6] and [13], the estimates on the
domains DT

± and DT
0 and the estimates for vi = li(u)u (i = 1, · · · , n) are all omitted in the

proof of Theorem 1.1.

§ 4 . Application

Consider the following Cauchy problem for the system of the planar motion of an elastic
string (cf. [8, 13]) 




ut − vx = 0,

vt −
(T (r)

r
u
)

x
= 0

(4.1)

with the initial condition

t = 0 : (u, v) =

{
(ũ0 + ul (x), ṽ0 + vl (x)) (x ≤ 0),
(ũ0 + ur(x), ṽ0 + vr(x)) (x ≥ 0),

(4.2)

where

(ul(0), vl(0)) = (ur(0), vr(0)) and (u′l(0), v′l(0)) 6= (u′r(0), v′r(0)), (4.3)

u = (u1, u2)T , v = (v1, v2)T , r = |u| =
√

u2
1 + u2

2, T (r) is a C3 function of r > 1, such that

T ′(r̃0) >
T (r̃0)

r̃0
> 0, (4.4)

in which ũ0 and ṽ0 are constant vectors and r̃0 = |ũ0| > 1, (ul(x), vl(x)) and (ur(x), vr(x)) ∈
C1 and satisfy (1.13). Let

U =
(
u
v

)
. (4.5)

By (4.4), in a neighbourhood of U0 =
(ũ0

ṽ0

)
, (4.1) is a strictly hyperbolic system with the

following distinct real eigenvalues:

λ1(U) = −
√

T ′(r) < λ2(U) = −
√

T (r)
r

< 0 < λ3(U) =

√
T (r)

r
< λ4(U) =

√
T ′(r). (4.6)

λ2(U) and λ3(U) are linearly degenerate in the sense of P. D. Lax, then weakly linearly
degenerate. Moreover, λ1(U) and λ4(U) are also linearly degenerate, then weakly linearly
degenerate, provided that

T ′′(r) ≡ 0, ∀ |r − r̃0| small. (4.7)
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By Theorem 1.1 we get

Theorem 4.1. Suppose that (4.7) holds. There exists θ0 > 0 so small that for any fixed
θ ∈ (0, θ0], Cauchy problem (4.1)–(4.2) admits a unique global weakly discontinuous solution
U = U(t, x) on t ≥ 0, which possesses at most 4 weak discontinuities x = xk(t) (k = 1, · · · , 4)
passing through the origin.
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