
Chin. Ann. Math.

30B(3), 2009, 281–292
DOI: 10.1007/s11401-007-0494-3

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2009

Pseudo-Anosov Mapping Classes and Their

Representations by Products

of Two Dehn Twists

Chaohui ZHANG
∗

Abstract Let eS be a Riemann surface of analytically finite type (p, n) with 3p−3+n > 0.

Let a ∈ eS and S = eS − {a}. In this article, the author studies those pseudo-Anosov maps
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1 Introduction

According to Thurston [14], an orientation-preserving homeomorphism f of a Riemann

surface is called pseudo-Anosov if there exists a pair (F+,F−) of transverse measured foliations

on the surface with f(F+) = λF+ and f(F−) = 1
λ
F− for some λ > 1 (see also [5, 12–13]).

Let S̃ be a Riemann surface of type (p, n) with 3p − 3 + n > 0. Fix a point a ∈ S̃. Then

S = S̃−{a} is of type (p, n+1). Let F be the set of maps on S that fix a and are isotopic to the

identity on S̃. By [2, Theorem 10] (see also [4, Theorems 4.2 and 4.3]), F is isomorphic to the

Fuchsian group G that uniformizes S̃ under a universal covering ̺ : H = {z : Imz > 0} → S̃.

Throughout this paper, we write f = g∗ if g ∈ G corresponds to f ∈ F under the isomorphism.

In [7, Theorem 2], Kra showed that g∗ ∈ F is pseudo-Anosov if and only if g is an essential

hyperbolic element of G; that is, its axis c projects to a filling geodesic c̃ in the sense that the

complement S̃ −{c̃} consists of disks and once punctured disks. Let F0 ⊂ F denote the subset

consisting of elements g∗ for essential hyperbolic elements of g ∈ G.

It is obvious that if α1, α2 are simple closed geodesics on S that are trivial on S̃, then any

products ∏

i

tri

1 ◦ t−si

2 , ri, si ∈ Z
+ − {0}, (1.1)

where ti is the Dehn twist along αi, are in F . That is, (1.1) is of form g∗ for some g ∈ G.

On the other hand, certain elements g∗ ∈ F are isotopic to products of Dehn twists along two

filling simple closed geodesics α1 and α2 on S that are also nontrivial on S̃.

The main purpose of this paper is to investigate elements in F0 that are isotopic to a map

of form (1.1).
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Theorem 1.1 There exist infinitely many pseudo-Anosov maps f = g∗ ∈ F0 that can

not be isotopic to any products of Dehn twists along two simple curves that are trivial on S̃.

Furthermore, if S̃ contains at least one puncture, there exist infinitely many pseudo-Anosov

maps f = g∗ ∈ F0 that are isotopic to products of Dehn twists along two simple curves that are

trivial on S̃.

Now we assume that f = g∗ ∈ F0 is isotopic to a product (1.1) for αi being nontrivial on

S̃. Let α̃i denote the geodesic homotopic to αi on S̃. The Dehn twist teαi
can be lifted to a

mapping τi : H → H so that τ∗i = ti. The map τi determines a collection Ui of disjoint maximal

half-planes Di each of which is invariant under τi. Let Hi be the complement of Ui in H. Then

τi|Hi
is the identity. See Section 4 for an illustration.

Theorem 1.2 There exist infinitely many elements f = g∗ ∈ F0 that are isotopic to prod-

ucts (1.1) with α̃1 and α̃2 being nontrivial. Furthermore, if f = g∗ ∈ F0 is isotopic to a product

(1.1), then either α1 and α2 are trivial on S̃, or α̃1 and α̃2 are nontrivial. In later case, we let

τi denote the lift of teαi
so that τ∗i = ti. Then the following two conditions hold:

(1) The pair {α1, α2} fills S, α̃1 = α̃2, and thus teα1
= teα2

and
∑
i

(ri − si) = 0;

(2) There are maximal elements D1 ∈ U1 and D2 ∈ U2 such that D1∩D2 6= ∅, ∂D1∩∂D2 =

∅, and the axis of g lies in D1 ∩D2.

Denote by L the set of pseudo-Anosov maps on S obtained from products of Dehn twists

along two filling simple closed geodesics. Let a′ ∈ S and Ṡ = S − {a′}. In [16, Theorem 1.2],

we showed that for any element f ∈ L, there exist infinitely many pseudo-Anosov maps F on

Ṡ = S − {a′} isotopic to f on S as a′ is filled in.

Unfortunately, by [6, Corollary 1.3], we know that not every pseudo-Anosov map on S is

in L. Also, it is not clear whether every element of F0 is in L. In contrast, F0 ∩ L contains

infinitely many elements. A question arises as to whether there exist pseudo-Anosov maps F

on Ṡ isotopic to a given map f in F0 − L on S (if the set is not empty). Our last result is the

following:

Theorem 1.3 Let S̃ be a Riemann surface of type (p, n) with 3p − 3 + n > 0. For any

f ∈ F0, there exist infinitely many pseudo-Anosov maps F on Ṡ that are isotopic to f on S as

a′ is filled in.

Here we recall the main theorem of Imayoshi, Ito and Yamamoto [8]. Denote M = S̃ × S̃,

~a = {a, a′}, and ∆ = {(x, y) ∈ M : x 6= y}. Since F is isotopic to the identity on S̃, there

is an isotopy H : S̃ × I → S̃ such that H( · , 0) = F and H( · , 1) = id. Then s1 = F (a, t)

and s2 = F (a′, t), where 1 ≤ t ≤ 1, are closed curve on S̃, which define a pure braids [bF ]

represented by bF = (s1, s2) in the fundamental group π1(M −∆,~a). By Theorem 1.3 and the

main theorem of [8], we obtain infinitely many essential pure braids [bF ] so that s1 and s2 are

nontrivial and nonparallel.

2 Notation and Background

In this section, we review some basic facts on Teichmüller theory (see [1–3, 7] for more

details). Denote by L∞(H, G) the space of measurable functions on the hyperbolic plane H

satisfying

(µ ◦ g)(z) ·
g′(z)

g′(z)
= µ(z) for all g ∈ G.
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Let M(G) ⊂ L∞(H, G) denote the unit ball. For each element µ ∈M(G), there exists a quasi-

conformal mapping wµ : C → C that fixes 0, 1 and also satisfies these properties: (i) wµG(wµ)−1

is a group of Möbius transformations, (ii) wµ is conformal on H = {z ∈ C : Imz < 0}, (iii) the

Beltrami coefficient ∂zwµ(z)
∂zwµ(z) of wµ on H is µ(z), (iv) for any fixed z ∈ C, the function

M(G) ∋ µ 7−→ wµ(z) ∈ C

is holomorphic (see [1]). For µ, ν in M(G), we set µ ∼ ν if and only if

wµ ◦ g ◦ (wµ)−1 = wν ◦ g ◦ (wν)−1 for each g ∈ G.

The Teichmüller space T (S̃) is defined as the quotient M(G)/ ∼ equipped with the quotient

structure. The equivalence class of µ ∈ M(G) is denoted by [µ]. T (S̃) is a complex manifold

with dimension 3p− 3 + n. The Bers fiber space F (S̃) over T (S̃) is defined by the total space

F (S̃) = {([µ], z) : [µ] ∈ T (S̃), z ∈ wµ(H)}.

The projection π : F (S̃) → T (S̃) that sends a point ([µ], z) to [µ] is holomorphic. Bers [2,

Theorem 9] states that there is an isomorphism ϕ : F (S̃) → T (S) making the following diagram

commutative:
F (S̃)

ϕ
−−−−→ T (S)

π

y ηa

y

T (S̃)
id

−−−−→ T (S̃)

(2.1)

where ηa : T (S) → T (S̃) is defined by forgetting the puncture a. The group of isotopy classes

of selfmaps of S̃ is called the mapping class group of S̃ and is denoted by ModeS . Let θ ∈ ModeS
and w be a representative of θ. Then w can be lifted to an automorphism ŵ : H → H under the

universal covering ̺ : H → S̃. Let mod S̃ denote the group that consists of equivalence classes

[ŵ] of ŵ, where two lifts ŵ and ŵ′ : H → H of w are considered equivalent (we write ŵ ∼ ŵ′)

if they induce the same automorphism by conjugation on G. ŵ naturally extends to ∂H, and

ŵ|∂H = ŵ′|∂H if and only if ŵ ∼ ŵ′.

The group mod S̃ acts on F (S̃) in a fiber preserving way, and the group G, which is

isomorphic to the fundamental group π1(S̃, a), can be regarded as a normal subgroup of

mod S̃ so that mod S̃/G ∼= ModeS . Let Moda
S be the subgroup of ModS that consists of

mapping classes on S fixing a. From [2, Theorem 10], the group mod S̃ is isomorphic to Moda
S

under the isomorphism ϕ∗ : mod S̃ → Moda
S , defined as

mod S̃ ∋ [ŵ]
ϕ∗

7−→ ω̂∗ = ϕ ◦ [ŵ] ◦ ϕ−1 ∈ Moda
S . (2.2)

An element θ ∈ Moda
S is called a reducible mapping class if there is a curve system C =

{c1, · · · , cs} of independent simple closed geodesics on S with f({c1, · · · , cs}) = {c1, · · · , cs}

for certain representative f in θ. There is a smallest positive integer K such that fK maps each

loop in C to itself and the restriction of fK to each component of S −{c1, · · · , cs} is either the

identity or a pseudo-Anosov map.

We assume that θ is reducible and projects to a pseudo-Anosov mapping class θ̃ on S̃ that

is induced by a map w. By [15, Lemmas 3.1 and 3.2], the curve system C consists of only one

curve c1 that bounds a twice punctured disk enclosing a and another puncture of S̃, which is

equivalent to that c1, becomes a trivial loop on S̃. If we denote by [ŵ] the element of mod S̃
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corresponding to θ, then ŵ : H → H fixes a parabolic fixed point ofG. Conversely, every element

[ŵ] fixing the fixed point of a parabolic element of G corresponds to a reducible mapping class

in Moda
S which is reduced by a single closed geodesic that is trivial on S̃.

The natural projection η∗a : Moda
S → ModeS induced by (2.1) makes the diagram commuta-

tive

mod S̃
ϕ∗

−−−−→ Moda
S

π∗

y η∗

a

y

ModeS id
−−−−→ ModeS (2.3)

Thus the kernel ker(η∗a) of η∗a : Moda
S → ModeS is G∗ = ϕ∗(G). For every element g ∈ G,

g∗ = ϕ∗(g) defines a mapping class on S that projects to the trivial mapping class on S̃.

Conversely, any mapping class on S that projects to the trivial mapping class is of the form g∗

for some g ∈ G.

Let g be a simple hyperbolic element with c ⊂ H its axis, which means that c̃ = ̺(c) is a

simple closed geodesic on S̃. [7, Theorem 2] and [11] show that g∗ is induced by a spin t−1
2 ◦ t1,

where t1 and t2 are the Dehn twists along boundary geodesics {α1, α2} of an a-punctured

cylinder P so that they are both homotopic to c̃ on S̃. If g ∈ G is parabolic, g∗ is represented

by a Dehn twist along a loop α that bounds a twice punctured disk ∆ ⊂ S enclosing a and

another puncture of S̃ corresponding to the conjugacy class of g in G. Since every essential

hyperbolic element g is written as a word generated by simple hyperbolic and parabolic elements

of G, the pseudo-Anosov class g∗ can be represented as a word generated by spins and Dehn

twists.

3 Proof of Theorem 1.1

It suffices to show that there are (infinitely many) essential hyperbolic elements g of G, so

that g∗ can not be isotopic to a finite product (1.1), where αi bounds a twice punctured disk

∆i that encloses a for i = 1, 2.

Let a = x1, x2, · · · , xn (n ≥ 2) denote the punctures of S. Thus S̃ = S ∪ {a} has punctures

x2, · · · , xn. For every i = 2, · · · , n, let

Si = S ∪ {xi} and S̃i = S̃ ∪ {xi} = Si ∪ {a}.

Let Gi denote the Fuchsian group that uniformizes S̃i. Gi acts on the Bers fiber space F (S̃i)

fiber wise, and is regarded as a normal subgroup of mod S̃i. Let ϕi : F (S̃i) → T (Si) denote the

Bers isomorphism. ϕi induces a group isomorphism ϕ∗

i of mod S̃i onto Moda
Si

by conjugation.

Let Moda,xi

S be the subgroup of ModS consisting of mapping classes fixing both a and xi,

and η∗i : Moda,xi

S → Moda
Si

the natural projection defined by forgetting the puncture xi. We fix

an isomorphism π1(S̃i, a) ∼= Gi as well as the isomorphism π1(S̃, a) ∼= G. Clearly, there exists

a naturally defined projection ξi of π1(S̃, a) onto π1(S̃i, a) by forgetting the puncture xi. Then

we obtain a projection ζi : G→ Gi making the diagram

G
ζi

−−−−→ Gi

∼=

y ∼=

y

π1(S̃, a)
ξi

−−−−→ π1(S̃i, a)

(3.1)

commutative.
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Lemma 3.1 Let G and Gi be regarded as normal subgroups of mod S̃ and mod S̃i, respec-

tively. With notations above, for every i = 2, · · · , n, the diagram

G
ϕ∗

−−−−→ Moda,xi

S

ζi

y η∗

i

y

Gi

ϕ∗

i−−−−→ Moda
Si

(3.2)

commutes.

Proof Fix a set of generators of G. Let g ∈ G. Without loss of generality, we assume

that g is one of the generators of G. The general case is handled by the properties of group

homomorphisms. Then g is either parabolic or simple hyperbolic. Let c̃ ∈ π1(S̃, a) be a loop

that corresponds to g under the fixed isomorphism.

If g is parabolic, then c̃ goes around xi, ζi(g) is trivial, and hence ϕ∗

i ◦ ζi(g) is trivial. On

the other hand, by [7, Theorem 2] and [11], g∗ is the Dehn twist along the loop c bounding a

twice punctured disk ∆ that encloses a and xi. As xi is filled in, c shrinks and thus g∗ becomes

a trivial loop, which means that η∗i (g∗) is trivial. This shows that

η∗i (g∗) = ϕ∗

i ◦ ζi(g)

if g is a parabolic element corresponding to xi.

If g is a parabolic element that corresponds to xj (i 6= j) ζi(g) ∈ Gi corresponds to xj (as a

puncture of S̃i). So ϕ∗

i ◦ ζi(g) is the Dehn twist along the loop c that bounds a twice punctured

disk ∆ enclosing a and xj . On the other hand, g∗ is the Dehn twist along ∂∆. Since xi lies

outside of ∆, as xi is filled in, ∆ does not vanish. So η∗i (g∗) is also the Dehn twist along ∂∆.

So in this case, we again have

η∗i (g∗) = ϕ∗

i ◦ ζi(g).

If g is simple hyperbolic, the argument is similar to the above. Instead of having a twice

punctured disk ∆, g∗ is a spin defined by an a-punctured cylinder P ⊂ S that does not contain

any other punctures of S̃. Thus η∗i (g∗) is the spin defined by P ⊂ Si. If we follow the other

path, we see that ζi(g) ∈ Gi is also simple hyperbolic, and it is easy to check that ϕ∗

i ◦ ζi(g) is

the spin determined by P .

Now we claim that there are infinitely many essential hyperbolic elements g of G such that

ξi(g) ∈ Gi are also essential elements. One example is demonstrated below, from which one

can generate infinitely many essential elements by taking powers of generators or permuting

generators.

Let S denote the compactification of S, c̃1, c̃2 be two simple closed geodesics on S so that c̃1
and c̃2 go through a and {c̃1, c̃2} fills S, and Q1, · · · , Qk be the disk components of S−{c̃1, c̃2}.

They are all polygons whose boundaries are geodesic segments (some of which may be identical).

We assume that all the points x2, · · · , xn lie in Q1, say, and a = x1 is a vertex of Q1. In Q1, we

can take a parabolic basis ẽ1, · · · , ẽn ∈ π1(S̃, a). That is, ẽi is a loop representative that starts

from a, goes around xi exactly once in the clockwise direction, and then return to a.

Note that c̃1 and c̃2 also represent two nontrivial elements in π1(S̃, a). For 1 ≤ i ≤ n,

let Ti ∈ G be the elements that correspond to ẽi, and h1, h2 the elements corresponding to

c̃1, c̃2, respectively, under the isomorphism π1(S̃, a) ∼= G. Note that Ti ∈ G are parabolic, while

h1, h2 ∈ G are hyperbolic.
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We define

g = T2 ◦ (T2 ◦ T3) · · · ◦ (T2 ◦ · · · ◦ Tn) ◦ h2 ◦ h1. (3.3)

Consider the curve

λ̃ = c̃1 · c̃2 · (ẽn · · · ẽ2) · · · (ẽ3 · ẽ2) · ẽ2.

See Figure 1. We notice that the complement of λ̃ on Q1 consists of one disk and n − 1 once

punctured disks (Figure 1 above shows the portion of the curve λ̃ in Q1), and the complement

of λ̃ in S̃ − Q1 is determined by S − {c̃1, c̃2} that consists of disks only. It follows that λ̃ is a

filling curve. Now the axis of g projects to a geodesic homotopic to the filling curve λ̃ on S̃.

S
S

S
S

S
S

S
Sa = x1

Figure 1 The portion of the curve λ̃ in Q1

�
�

�





r r r· · ·
x2 x3

xn

Q1

It follows that the element g defined in (3.3) is essential hyperbolic. Moreover, as xi is filled

in, the homomorphism π1(S̃, a) → π1(S̃i, a) only kills the loop ẽi. The image loop still fills S̃i,

which says that ζi(g) corresponds to the element that fills S̃i. Therefore, ζi(g) is an essential

hyperbolic element of Gi. Finally, we need

Lemma 3.2 Let g be defined in (3.3). Then η∗i (g∗) ∈ Moda
Si

represents a pseudo-Anosov

mapping class.

Proof We know that ζi(g) is an essential hyperbolic element of Gi. Hence, by [7, Theorem

2], ϕ∗

i ◦ ζi(g) is pseudo-Anosov. By Lemma 3.1, η∗i (g∗) = ϕ∗

i ◦ ζi(g). We conclude that η∗i (g∗) ∈

Moda
Si

is a pseudo-Anosov class.

Proof of Theorem 1.1 Let g be defined in (3.3). Assume that g∗ is represented by

(1.1) for α1 and α2 being boundaries of twice punctured disks ∆1 and ∆2 enclosing a. Write

α1 = ∂∆1 and α2 = ∂∆2. Let {a, xi} be the punctures included in ∆1, and {a, xj} be the

punctures included in ∆2. If xi = xj , then on the surface Si = S ∪{xi}, both α̃1 and α̃2 shrink

to the puncture a. It follows that the mapping class η∗i (g∗) is trivial, which contradicts Lemma

3.2.

We assume that xi 6= xj . Observe that as xi is filled in, the loop α1 shrinks to the puncture

a while α2 remains noncontractible on Si. This means that

η∗i

(∏

i

tri

1 ◦ t−si

2

)
= t̂

−

P
i

si

2 , (3.4)

where t̂2 denotes the Dehn twist along the loop α̃2 regarded as a loop on Si. But (3.4) is a

power of Dehn twist that is a special kind of reducible mapping class. This again contradicts

Lemma 3.2.
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Finally, by the argument of [18, Section 4], we can conclude that there exist infinitely many

pseudo-Anosov maps f = g∗ ∈ F0 that are isotopic to products of Dehn twists along two simple

curves that are trivial on S̃, if S̃ contains at least one puncture. This completes the proof of

Theorem 1.1.

4 Proof of Theorem 1.2

Proof of Theorem 1.2(1) We need to construct a pair of geodesics {α1, α2} on S so that

it fills S and α̃1 = α̃2. Then any products of form (1.1) with
∑
i

(ri − si) = 0 have the required

properties.

Since 3p− 3 + n > 0, we can take a simple closed geodesic α̃0 ⊂ S̃. Note that α̃0 can also

be viewed as a curve on S whose geodesic representative is denoted by α1. Since F0 contains

infinitely elements (see [7, Theorem 2]), we can pick an element f ∈ F0. By definition, f is

pseudo-Anosov and is isotopic to the identity on S̃. By a theorem of Masur and Minsky [10],

for sufficiently large integer k, the geodesic representative α2 of fk(α1) together with α1 itself

fills S. We must have α̃1 = α̃2 = α̃0.

To prove the rest of the results, we let I denote the subset of F ∩L that consists of elements

of form (1.1) for α1 and α2 being boundaries of twice punctured disks ∆1,∆2 ⊂ S both of which

enclose a. Let χ ∈ F∩(L−I). There is g ∈ G such that χ = g∗. Recall that η∗a : Moda
S → ModeS

denotes the natural projection induced by (2.1). If α̃1 is contractible while α̃2 is not contractible

on S̃, then

η∗a

( ∏

i

tri

1 ◦ t−si

2

)
= t

P
i

−sieα2
. (4.1)

On the other hand, η∗a(g∗) is a trivial mapping class. This is a contradiction.

Let us now consider the case that both α̃i, i = 1, 2, are not contractible on S̃. Clearly, if α̃1

is disjoint from α̃2, (1.1) projects to a multi-twist that is nontrivial. This is a contradiction.

If α̃1 intersects α̃2, then (1.1) projects to

Θ =
∏

i

trieα1
◦ t−sieα2

.

Let Σ be a system of geodesics such that one component R̃ of S̃ − Σ contains α̃1 and α̃2. We

assume that R̃ − Σ is a union of disks, once punctured disks, and annuli with boundary loops

in Σ. Then from [9], we know that Θ| eR is pseudo-Anosov. In particular, this implies that Θ is

nontrivial.

We conclude that α̃1 = α̃2, i.e., teα1
= teα2

. Since χ ∈ F , it projects to the trivial mapping

class. Hence, in order for the maps with form (1.1) to project to the identity, we must have

∑

i

(ri − si) = 0.

Since g is essential, by [7, Theorem 2], g∗ is pseudo-Anosov, which means that {α1, α2} fills S.

This proves Theorem 1.2(1).

Proof of Theorem 1.2(2) To prove Theorem 1.2(2), we first need to describe a lift τi of

teαi
to the hyperbolic plane H. Let α̂i ⊂ H be a geodesic with ̺(α̂i) = α̃i, and Di, D

′

i be the

components of H− α̂i. A lift τi : H → H with respect to Di can be constructed as follows. Let

gi ∈ G be the primitive simple hyperbolic element such that gi(Di) = Di. We assume that gi

is oriented as shown in Figure 2.
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Di D′

i

gi

Figure 2 A maximal element for the lift τi of teαi

We then take an earthquake gi-shift on Di and leave D′

i fixed. Then we define τi : H → H

via G-invariance, which gives rise to a collection Ui of half planes in H in a partial order. In

Figure 2, the arrow underneath α̂i indicates the direction of the motion of τi on Di. There are

infinitely many disjoint maximal elements Di(j) of Ui, each of which is invariant under τi (Di

is just one of them). The restriction of τi to the complement Hi of the union of these disjoint

maximal elements is the identity. It was shown in [17] that among the preimages {̺−1(α̃i)},

one may choose a geodesic α̂i and hence a component Di ∈ Ui, so that the lifts τi with respect

to Di satisfy the conditions τ∗i = ti.

Since α̃1 = α̃2, {̺−1(α̃1)} = {̺−1(α̃2)}. We see that, for any D1 ∈ U1 and any D2 ∈ U2,

∂D1 ∩ ∂D2 = ∅. Suppose that there does not exist any Di ∈ Ui such that D1 ∩D2 6= ∅. Then

for any Di ∈ Ui, either D1 and D2 are disjoint, or D1 ⊂ D2, or D2 ⊂ D1. All of these cases

imply that τ1 commutes with τ2, which is equivalent to that τ∗1 commutes with τ∗2 . But τ∗i = ti.

We assert that t1 commutes with t2, which further implies that α1 is disjoint from α2. This

contradicts the fact that {α1, α2} fills S.

We conclude that there exist Di ∈ Ui such that D1∩D2 6= ∅. The pair {D1, D2} is drawn in

Figure 3. Clearly, D1 ∪D2 = H. Denote by (U, V ) and [U, V ] the open and the closed circular

arc on ∂H connecting the two labeled points U and V on ∂H without passing through any other

labeled points. Let x ∈ (U, V ). Then τr1

1 τ−s1

2 (x) ∈ (U, V ). By induction, one showes that for

any finite product

ζ =
∏

i

τri

1 τ
−si

2 ,

ζ(x) ∈ (U, V ), and its m-th iteration ζm(x) ∈ (U, V ). But we know that ζ∗ = g∗ for some

g ∈ G. In particular, the iterations of ζ and g on the boundary circle are the same. Hence

gm(x) tends to a point x0 ∈ [U, V ] as m→ +∞. By definition, x0 is the attracting fixed point

of g. If x0 = U or V , then g would share a fixed point with a simple hyperbolic element of G,

which is impossible. Therefore x0 ∈ (U, V ).
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Figure 3 Stable region (U, V ) and unstable region (Y, Z) for the iteration of ζ

α̂1

α̂2
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Similarly, as m → −∞, gm(x) tends to a point y0 ∈ (Y, Z) that is the repelling fixed point

of g. It follows that the geodesic c connecting x0 and y0, which is the axis of g, is completely

in the interior of the region D1 ∩D2. This completes the proof of Theorem 1.2.

5 Proof of Theorem 1.3

Under the universal covering ̺ : H → S̃, the point a determines a set A = {̺−1(a)} that is

a discrete subset of H invariant under the action of G. Consider the complement H−A. Then

G keeps H − A invariant and ̺ restricts to a covering ̺ : H − A → S̃ with the covering group

G. On the other hand, H − A can be thought of as a Riemann surface with infinite type. Let

̺1 : H → H−A be the universal covering with a covering group G1, which is isomorphic to the

fundamental group π1(H − A, â0) for a fixed point â0 ∈ H − A with ̺(â0) = a0. Observe that

π1(H −A, â0) is generated by infinitely many simple small loops δj each of which goes around

a point âj ∈ A once and zero times around any other âk for j 6= k and âk ∈ A. Under the

isomorphism of π1(H − A, â0) onto G1, δj corresponds to a primitive parabolic element γj of

G1. Let zj ∈ R be the fixed point of γj .

Lemma 5.1 Let {uij} ∈ H −A (i = 1, 2, · · · ) be a sequence such that uij → zj nontangen-

tially as i→ ∞. Then ̺1(uij) tends to the puncture aj.

Proof Draw a horodiskDj at zj that is invariant under γj . ThenDj/〈γj〉 is an aj-punctured

disk conformally embedded in H −A. Since uij → zj nontangentially, we may assume that uij

are not γj-equivalent. It follows that ̺1(uij) are all distinct and tend to the puncture aj, as

asserted.

By construction, there is an exact sequence of covering groups

1 −→ G1 →֒ Ġ −→ G −→ 1. (5.1)

This is equivalent to that Ġ is a semi-product of G1 and G. We need to examine the represen-

tatives f of g∗ and its lifts to H −A under ̺.

Lemma 5.2 Fix a point â ∈ A. Then there exists a quasiconformal map ω : H → H such

that the following conditions hold:

(1) the map ω leaves A = {̺−1(a)} ⊂ H invariant,

(2) if ω is regarded as a selfmap of H −A onto itself, then ̺ ◦ ω = f ◦ ̺,

(3) the map ω commutes with every element of G,

(4) ω−1 ◦ g(â) = g ◦ ω−1(â) = â.

Proof By using topological arguments (see, for example, [7, Proposition 1]), we know

that for â ∈ A, we can construct a quasiconformal map ω of H that satisfies (3) and (4). For

convenience, we outline the construction as follows. Connect â and g(â) by a geodesic segment

Γ. By fattening Γ, we obtain a flat ellipse E containing â and g(â). There is a quasiconformal

map in E which sends â to g(â) and is the identity outside of E (see [7, Lemma 1] for the

construction). We then define ω via G-invariance. Evidently, ω possesses properties (3) and

(4).

To see that (1) is satisfied, we choose a point â′ ∈ A. There is an element h ∈ G such that

h(â) = â′. Then ω(â′) = ω ◦h(â) = h ◦ω(â) = h ◦ g−1(â) ∈ A since G keeps A invariant. Hence

(1) holds. Finally, from (4) and the construction of the Bers isomorphism (see [2, Theorem 9]

or [7, Theorem 2]), we know that the map ω, if regarded as a map of H−A onto itself, descends

to f : S → S under the restricted covering ̺ : H −A→ S̃ − {a} ∼= S. So (2) is satisfied.
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Therefore, we can lift the map ω : H−A→ H−A to ω̂ : H → H through the covering map

̺1 that satisfies

̺1 ◦ ω̂ = ω ◦ ̺1. (5.2)

Clearly, the composition ̺0 = ̺ ◦ ̺1 : H → S̃ is a universal covering with the covering group Ġ.

Combining with Lemma 5.2(4) and (5.1), we compute

̺0 ◦ ω̂ = (̺ ◦ ̺1) ◦ ω̂ = ̺ ◦ ω ◦ ̺1 = f ◦ (̺ ◦ ̺1) = f ◦ ̺0,

which says that ω̂ is a lift of f through ̺0. Hence, ω̂ is of form ḣ1 ◦ f̂ ◦ ḣ2 for ḣ1, ḣ2 ∈ Ġ, where

f̂ is one of the lifts of f .

More careful investigation on the map ω yields

Lemma 5.3 As a map of H −A onto itself, ω has the following properties:

(1) the restriction ω|∂H is the identity,

(2) the action of ω on A is fixed-point free,

(3) for every simple hyperbolic or parabolic element h of G, the action of h ◦ω on A is also

fixed-point free.

Proof (1) is obvious since ω commutes with every element of G. Suppose that for some

â′ ∈ A we have ω(â′) = â′. Choose h ∈ G so that h(â) = â′. That is ω ◦ h(â) = h(â). Since ω

commutes with each element of G, we get h◦ω(â) = h(â). By Lemma 5.2(4), h◦g(â) = h(â). It

follows that g(â) = â, contradicting the fact that g has no fixed point inside of H. This proves

(2).

To prove (3), we assume that for â′ ∈ A, we have

h ◦ ω(â′) = â′. (5.3)

Choose g0 ∈ G so that â′ = g0(â). Then (5.3) becomes h◦ω◦(g0(â)) = g0(â). Since ω commutes

with h, h ◦ g0 ◦ ω(â) = g0(â), or g−1
0 ◦ h ◦ g0 ◦ ω(â) = â. Set g−1

0 ◦ h ◦ g0 = h0. Then h0 is

also parabolic or simple hyperbolic, depending on whether h is parabolic or simple hyperbolic.

Thus we obtain

h0 ◦ ω(â) = â. (5.4)

Now from Lemma 5.2(4), ω(â) = g(â). It follows from (5.4) that

h0 ◦ g(â) = â. (5.5)

Notice that h0 ∈ G is either parabolic or simple hyperbolic, while g is essential. We see that

h0 ◦g 6= id. From (5.5), we conclude that h0 ◦g fixes a point inside of H and thus it is an elliptic

Möbius transformation. This contradicts that G is a torsion free Fuchsian group. This proves

(3).

Proof of Theorem 1.3 It suffices to show that there are infinitely many pseudo-Anosov

mapping classes on Ṡ that are isotopic to f on S as a′ is filled in.

Let h ∈ G be any simple hyperbolic element. Consider the map h ◦ ω : H − A → H − A.

By Lemma 5.3(1), ω|∂H = id. Hence h ◦ ω|∂H fixes no parabolic fixed point of G. By Lemma

5.3(3), h ◦ ω|A is fixed point free. Let ω̂0 : H → H be a lift of h ◦ w|R which satisfies

̺1 ◦ ω̂0 = h ◦ ω ◦ ̺1. (5.6)
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Suppose that ω̂0 fixes some fixed point zj of γj . Choose a sequence {uij} ∈ H that tends to

the fixed point zj of γj non-tangentially. By (5.6), for all uij , i = 1, 2, · · · , we have

̺1 ◦ ω̂0(uij) = h ◦ ω ◦ ̺1(uij). (5.7)

Let i→ ∞. Then uij → zj . By continuity, we obtain

̺1 ◦ ω̂0(zj) = h ◦ ω ◦ ̺1(zj).

By assumption, we have that ω̂0 fixes zj . So ̺1(zj) = h ◦ ω ◦ ̺1(zj). By Lemma 5.1, we get

lim
i→∞

̺1(uij) = aj ; that is, h ◦ ω fixes aj . This contradicts Lemma 5.3(3).

We conclude that ω̂0 cannot fix the fixed point of any parabolic element γj of Ġ that emerges

from a point in the set A.

We also need to prove that ω̂0 does not fix any parabolic fixed point of Ġ other than zj .

Suppose for the contrary, we assume that ω̂0 fixes a parabolic fixed point x of Ġ. Let γ̇ ∈ Ġ be

the parabolic element fixing x. From (5.1), there is a nontrivial element γ ∈ G such that

̺1 ◦ γ̇
m = γm ◦ ̺1 (5.8)

for any integer m. Since γ̇ ∈ Ġ is parabolic, for any u ∈ H, both γ̇m(u) and γ̇−m(u) tend to

the fixed point x of γ̇ in R. From (5.8), we get that both γm̺1(u) and γ−m̺1(u) tend to ̺1(x).

This implies that γ ∈ G is parabolic and its fixed point is ̺1(x). It follows that x projects

(under ̺1) to a parabolic fixed point of G. By hypothesis, ω̂0(x) = x. We thus obtain

̺1(x) = ̺1 ◦ ω̂0(x) = h ◦ ω ◦ ̺1(x),

which tells us that h ◦ ω fixes ̺1(x), a parabolic fixed point of G. By Lemma 5.3(1), we have

ω|∂H = id. We conclude that h(̺1(x)) = ̺1(x). But h is simple hyperbolic; it can not fix a

parabolic fixed point of G. This contradiction proves that ω̂0 does not fix any parabolic fixed

point of Ġ other than zj, and hence ω̂0 does not fix any parabolic fixed point of Ġ.

Now from (5.1) we know that ̺0 : H → S̃ is a covering map with the group Ġ. To see that

ω̂0 projects via ̺0 to the map f that represents g∗ ∈ F0, we notice that ̺0 = ̺◦̺1. From (5.1),

(5.6), (5.7) and Lemma 5.2(2), one computes

̺0 ◦ ω̂0 = ̺ ◦ ̺1 ◦ ω̂0 = ̺ ◦ h ◦ ω ◦ ̺1 = ̺ ◦ ω ◦ ̺1 = f ◦ (̺ ◦ ̺1) = f ◦ ̺0.

It follows that ω̂0Ġω̂
−1
0 = Ġ and ω̂0 projects to f . Moreover, its equivalence class [ω̂0] is an

element of mod S. Let ψ : F (S) → T (Ṡ) denote a Bers isomorphism. Then ψ induces an

isomorphism ψ∗ of mod S onto Moda′

Ṡ
. By the above argument, we see that ω̂∗

0 = ψ∗([ω̂0]) ∈

Moda′

Ṡ
projects to the mapping class g∗.

Now suppose that ω̂∗

0 is a reducible mapping class on Ṡ that is reduced by a curve system

{c1, c2, · · · , cs} for s ≥ 1. By taking a suitable power, we may assume that ω̂∗

0 leaves each

curve in the system invariant. If s ≥ 2, then at least one curve in the system, c1, say, is also

noncontractible on S. Let c′1 denote the corresponding curve on S. This implies that g∗ leaves

c′1 invariant. This contradicts the fact that g∗ is pseudo-Anosov. So the only possibility is that

s = 1 and c′1 is a trivial curve on S. That is, c1 is a curve that is the boundary of a twice

punctured disk enclosing two punctures, one of which is a′. But in this case, by [15, Lemmas

3.1 and 3.2], we have that ω̂0 fixes a parabolic fixed point of Ġ. This also contradicts the above

argument.
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We conclude that ω̂∗

0 = ψ∗([ω̂0]) ∈ Moda′

Ṡ
is a pseudo-Anosov element projecting to g∗.

Since there are infinitely many simple hyperbolic elements in G, there are infinitely many

pseudo-Anosov elements ω̂∗

0 in Moda′

Ṡ
. This completes the proof of Theorem 1.3.
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