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Abstract

The authors study a generalized thin film equation. Under some assumptions on the
initial value, the existence of weak solutions is established by the time-discrete method.
The uniqueness and asymptotic behavior of solutions are also discussed.
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§ 1 . Introduction

In this paper, we consider the variant version of the thin film equation, namely

∂u

∂t
+ div(|∇∆u|p−2∇∆u) = 0, x ∈ Ω, t > 0, p > 2, (1.1)

where Ω ⊂ R2 is a bounded domain with smooth boundary.
The equation (1.1) is a typical higher order equation, which has a sharp physical

background and a rich theoretical connotation. It is relevant to capillary driven flows of
thin films of power-law fluids, where u denotes the height from the surface of the oil to
the surface of the solid. It was J. R. King [1] who first derived the equation. J. R. King
[1] studied the Cauchy problem of the equation in one-dimension, exploiting local analyses
about the edge of the support and special closed form solutions such as travelling waves,
separable solutions, instantaneous source solutions.

We restrict ourselves to the two dimensional case, which has a particular physical
derivation as mentioned in [2], modelling the spreading of an oil film over an solid surface.
On the basis of physical consideration, as usual the equation (1.1) is supplemented with the
natural boundary value conditions

u = ∆u = 0, x ∈ ∂Ω, t > 0, (1.2)

The boundary value conditions (1.2) are reasonable for the thin film equation or the Cahn-
Hillaird equation, (see [3–5]) and initial value condition

u(x, 0) = u0(x), x ∈ Ω. (1.3)
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This equation is something quite like the p-Laplacian equation, but many methods used in
the p-Laplacian equation such as the methods based on maximun principle are no longer
valid for this equation. Because of the degeneracy, the problem (1.1)–(1.3) does not admit
classical solutions in general. So, we introduce weak solutions in the sense as following

Definition 1.1. A function u is said to be a weak solution of the problem (1.1)–(1.3),
if the following conditions are satisfied:

(1) u ∈ L∞(0, T ; W 3,p(Ω)) ∩ C(0, T ; L2(Ω)), u, ∆u ∈ W 1,p
0 (Ω), ∂u

∂t ∈ L∞(0, T ;
W−1,p′(Ω)), where p′ is the conjugate exponent of p;

(2) For any ϕ ∈ C∞0 (QT ), the following integral equality holds:

∫∫

QT

u
∂ϕ

∂t
dxdt +

∫∫

QT

|∇∆u|p−2∇∆u∇ϕdxdt = 0;

(3) u(x, 0) = u0(x) in L2(Ω).

This paper is arranged as following: We first discuss the existence of weak solutions in
Section 2. Our method for investigating the existence of weak solutions is based on the time
discrete method to construct an approximate solutions. By means of the uniform estimates
on solutions of the time difference equations, we prove the existence of weak solutions of the
problem (1.1)–(1.3). Using energy techniques, Poincaré inequality and Friedrichs inequality,
we also prove the uniqueness and asymptotic behavior subsequently.

§ 2 . Existence of Weak Solutions

In this section, we are going to prove the existence of weak solutions.

Theorem 2.1. Let u0 ∈ W 3,p(Ω), u0, ∆u0 ∈ W 1,p
0 (Ω), p > 2. Then the problem

(1.1)–(1.3) admits at least one weak solution.

To prove the existence, we first consider the following time-discrete problem

1
h

(uk+1 − uk) + div(|∇∆uk+1|p−2∇∆uk+1) = 0, (2.1)

uk+1|∂Ω = ∆uk+1|∂Ω = 0, k = 0, 1, · · · , N − 1, (2.2)

where h = T
N , u0 is the initial value.

Lemma 2.1. For any fixed k, if uk ∈ H1
0 (Ω), then the problem (2.1)–(2.2) admits

weak solutions uk+1 ∈ W 3,p(Ω), uk+1,∆uk+1 ∈ W 1,p
0 (Ω) such that for any ϕ ∈ C∞0 (Ω),

there holds
1
h

∫

Ω

(uk+1 − uk)ϕdx−
∫

Ω

|∇∆uk+1|p−2∇∆uk+1∇ϕdx = 0. (2.3)

Proof. First we define the space

U = {u | u ∈ W 3,p(Ω) ∩W 1,p
0 (Ω); ∆u ∈ W 1,p

0 (Ω)}.
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It is not difficult to conclude that the space U is a Banach space. Let us consider the
following functionals on the space U ,

F [u] =
1
p

∫

Ω

|∇∆u|pdx,

G[u] =
1
2

∫

Ω

|∇u|2dx,

H[u] = F [u] +
1
h

G[u]−
∫

Ω

f∆udx,

where f ∈ H1
0 (Ω) is a known function. By using the Young inequality, there exists C1 > 0,

such that

H[u] =
1
p

∫

Ω

|∇∆u|pdx +
1
2h

∫

Ω

|∇u|2dx−
∫

Ω

f∆udx

≥ 1
p

∫

Ω

|∇∆u|pdx− C1

∫

Ω

|∇f |2dx.

We need to check that H[u] satisfies the coercive condition. For this purpose, we notice
that by u|∂Ω = 0, we have

∫

Ω

|D3u|pdx ≤ C
( ∫

Ω

|∇∆u|pdx +
∫

Ω

|∆u|pdx
)
,

and by the Lp theory for elliptic equation (see [8]),

‖u‖W 2,p ≤ C‖∆u‖Lp .

Again by ∆u ∈ W 1,p
0 (Ω) and the Poincaré inequality, we get

‖∆u‖Lp ≤ C‖∇∆u‖Lp .

Therefore ‖u‖W 3,p ≤ C‖∇∆u‖Lp , and hence H[u] → +∞, as ‖u‖W 3,p → +∞. On the other
hand, H[u] is clearly weakly lower semicontinuous on U . So, it follows from the theory in
[6] that there exists u∗ ∈ W 3,p(Ω) ∩W 1,p

0 (Ω), ∆u∗ ∈ W 1,p
0 (Ω), such that

H[u∗] = inf H[u],

and u∗ is the weak solution of the Euler equation corresponding to H[u], namely

1
h

u + div(|∇∆u|p−2∇∆u) = f.

Taking f = 1
huk, we get the conclusion of the lemma. The proof is complete.

Now, we construct an approximate solution uh of the problem (1.1)–(1.3) by defining

uh(x, t) = uk(x), kh < t ≤ (k + 1)h, k = 0, 1, · · · , N − 1,

uh(x, 0) = u0(x).

The desired solution of the problem (1.1)–(1.3) will be obtained as the limit of some subse-
quence of {uh}. To this purpose, we need some uniform estimates on uh.
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Lemma 2.2. Let uk be the weak solution of the problem (2.1)–(2.2). Then the following
estimates

h

N∑

k=1

∫

Ω

|∇∆uk|pdx ≤ C, (2.4)

sup
0<t<T

∫

Ω

|∇∆uh(x, t)|pdx ≤ C (2.5)

hold, where C is a constant independent of h, k.

Proof. ( i ) We take ϕ = ∆uk+1 in the integral equality (2.3) (we can easily prove
that for ϕ ∈ W 1,p

0 (Ω), (2.3) also holds) and obtain

1
h

∫

Ω

(uk+1 − uk)∆uk+1dx−
∫

Ω

|∇∆uk+1|p−2∇∆uk+1∇∆uk+1dx = 0.

Integrating by parts, we have

1
h

∫

Ω

|∇uk+1|2dx +
∫

Ω

|∇∆uk+1|pdx =
1
h

∫

Ω

∇uk∇uk+1dx,

and by Young inequality, we have

1
h

∫

Ω

|∇uk+1|2dx +
∫

Ω

|∇∆uk+1|pdx ≤ 1
2h

∫

Ω

|∇uk|2dx +
1
2h

∫

Ω

|∇uk+1|2dx,

and hence
1
2

∫

Ω

|∇uk+1|2dx + h

∫

Ω

|∇∆uk+1|pdx ≤ 1
2

∫

Ω

|∇uk|2dx. (2.6)

Summing up these inequalities for k from 0 to N − 1, we have

h

N∑

k=1

∫

Ω

|∇∆uk|pdx ≤ 1
2

∫

Ω

|∇u0|2dx.

Hence (2.4) holds.
(ii) Choosing ϕ = ∆uk+1−∆uk in the integral equality (2.3) and integrating by parts,

we have

1
h

∫

Ω

|∇uk+1 −∇uk|2dx +
∫

Ω

|∇∆uk+1|p−2∇∆uk+1∇∆(uk+1 − uk)dx = 0.

Since the first term is nonnegative, it follows that
∫

Ω

|∇∆uk+1|pdx ≤
∫

Ω

|∇∆uk+1|p−2∇∆uk+1∇∆ukdx

≤ p− 1
p

∫

Ω

|∇∆uk+1|pdx +
1
p

∫

Ω

|∇∆uk|pdx,

which implies that ∫

Ω

|∇∆uk+1|pdx ≤
∫

Ω

|∇∆uk|pdx.
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For any m, 1 ≤ m ≤ N − 1, summing the above inequality for k from 0 to m− 1, we have
∫

Ω

|∇∆um|pdx ≤
∫

Ω

|∇∆u0|pdx,

hence (2.5) holds.

Lemma 2.3. Let uk+1 be the weak solution of the problem (2.1)–(2.2). Then the
following estimate

−Ch ≤
∫

Ω

|∇uk+1|2dx−
∫

Ω

|∇uk|2dx ≤ 0 (2.7)

holds, where C is a constant independent of h.

Proof. To prove the first inequality, we let ϕ = ∆uk in (2.3). Integrating by parts
and using the boundary value condition, we obtain

1
h

∫

Ω

|∇uk|2dx =
1
h

∫

Ω

∇uk+1∇ukdx +
∫

Ω

|∇∆uk+1|p−2∇∆uk+1∇∆ukdx.

Applying the Hölder inequality and the estimate (2.5), we have

1
h

∫

Ω

|∇uk|2dx ≤ 1
h

∫

Ω

∇uk+1∇ukdx +
p− 1

p

∫

Ω

|∇∆uk+1|p +
1
p

∫

Ω

|∇∆uk|pdx

≤ 1
2h

∫

Ω

|∇uk+1|2dx +
1
2h

∫

Ω

|∇uk|2dx + C,

that is
−Ch ≤

∫

Ω

|∇uk+1|2dx−
∫

Ω

|∇uk|2dx.

By (2.6) again, we have ∫

Ω

|∇uk+1|2dx−
∫

Ω

|∇uk|2dx ≤ 0.

The proof is complete.

Proof of Theorem 2.1. First, we define the operator At,

At(∇∆uh) = |∇∆uk|p−2∇∆uk, ∆huh = uk+1 − uk,

where kh < t ≤ (k + 1)h, k = 0, 1, · · · , N − 1. By the discrete equation (2.1) and (2.4) in
Lemma 2.2, we see that

1
h

∆huh is bounded in L∞(0, T ; (W 1,p(Ω))′). (2.8)

By (2.3), (2.5), (2.8) and using the compactness results (see [7]), we see that there exists a
subsequence of {uh} (which we denote as the original sequence), such that

uh ?
⇀u in L∞(0, T ; W 3,p(Ω)),

uh →u in C(0, T ; L2(Ω)),
1
h

(uk+1 − uk) ?
⇀

∂u

∂t
in L∞(0, T ; (W 1,p(Ω))′),

At(∇∆uh) ?
⇀w in L∞(0, T ; Lp′(Ω)),



352 LIU, C. C., YIN, J. X. & GAO, H. J.

where p′ is the conjugate exponent of p. Then from (2.3), we see that, for any ϕ ∈ C∞0 (QT ),
∫∫

QT

( 1
h

∆huhϕ−At(∇∆uh)∇ϕ
)
dxdt = 0.

Letting h → 0 yields
∂u

∂t
+ div(w) = 0, (2.9)

in the sense of distributions.
It remains to prove that w = |∇∆u|p−2∇∆u a.e. in QT . Set

fh(t) =
t− kh

2h

( ∫

Ω

|∇uk+1|2dx−
∫

Ω

|∇uk|2dx
)

+
1
2

∫

Ω

|∇uk|2dx,

where kh < t ≤ (k + 1)h, k = 0, 1, · · · , N − 1. By (2.7), we have

1
2

∫

Ω

|∇uk|2dx− Ch ≤ fh(t) ≤ 1
2

∫

Ω

|∇uk|2dx,

−C ≤ f ′h(t) ≤ 0.

According to the Ascoli-Arzela theorem, there exists a function f(t) ∈ C([0, T ]), such that

lim
h→0

fh(t) = f(t) uniformly for t ∈ [0, T ].

Using (2.7), we have

lim
h→0

1
2

∫

Ω

|∇uh|2dx = f(t) uniformly for t ∈ [0, T ]. (2.10)

It follows from (2.6) that

1
2

∫

Ω

|∇uN |2dx +
∫∫

QT

|∇∆uh|pdxdt ≤ 1
2

∫

Ω

|∇u0|2dx.

Letting h → 0 in the above inequality and using (2.10), we have

lim
h→0

∫∫

QT

|∇∆uh|pdxdt

≤ f(0)− f(T )

= lim
ε→0

1
ε

∫ T−ε

0

(f(t)− f(t + ε))dt

= lim
ε→0

lim
h→0

1
2ε

∫ T−ε

0

∫

Ω

(|∇uh(x, t)|2 − |∇uh(x, t + ε)|2)dxdt.

Consider the functional
G[u] =

1
2

∫

Ω

|∇u|2dx.

Clearly G[u] is convex and
δG[u]

δu
= −∆u.
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Thus, we have

1
2

∫

Ω

|∇uh(x, t)|2dx− 1
2

∫

Ω

|∇uh(x, t + ε)|2dx

≤ −
∫

Ω

(uh(x, t)− uh(x, t + ε))∆uh(x, t)dx.

Thus

lim
h→0

1
2ε

∫ T−ε

0

∫

Ω

(|∇uh(x, t)|2 − |∇uh(x, t + ε)|2)dxdt

≤ −1
ε

∫ T−ε

0

∫

Ω

(u(x, t)− u(x, t + ε))∆udxdt,

hence

lim
h→0

∫∫

QT

|∇∆uh|pdxdt ≤
∫ T

0

〈∂u

∂t
,∆u

〉
dt,

where 〈·, ·〉 denotes inner product. From (2.9), we have

lim
h→0

∫∫

QT

|∇∆uh|pdxdt ≤
∫ T

0

∫

Ω

w∇∆udxdt. (2.11)

Again by
δF [u]

δu
= −∆(div(|∇∆u|p−2∇∆u))

and the convexity of F [u], for any g ∈ L∞(0, T ; W 3,p(Ω)), we have

1
p

∫∫

QT

|∇∆g|pdxdt− 1
p

∫∫

QT

|∇∆uh|pdxdt

≥
∫∫

QT

(|∇∆uh|p−2∇∆uh)∇∆(g − uh)dxdt.

By (2.11) and the fact that F (u) is weakly lower semicontinuous, letting h → 0 in the above
equality, we have

1
p

∫∫

QT

|∇∆g|pdxdt− 1
p

∫∫

QT

|∇∆u|pdxdt ≥ −
∫∫

QT

w∇∆(u− g)dxdt.

Replacing g by εg + u, we see that

1
ε
(F [u + εg]− F [u]) ≥

∫∫

QT

w∇∆gdxdt.

Letting ε → 0, which implies that
∫∫

QT

δF [u]
δu

gdxdt =
∫∫

|∇∆u|p−2∇∆u∇∆gdxdt ≥
∫∫

QT

w∇∆gdxdt.

Due to the arbitrariness of g, we get the opposite inequality of the above inequality. There-
fore

w = |∇∆u|p−2∇∆u.

The strong convergence of uh in C(0, T ;L2(Ω)) and the fact that uh(x, 0) = u0(x)
imply that u satisfies the initial value condition. The proof is complete.
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§ 3 . Uniqueness of Solutions

In this section, we will prove the uniqueness of solutions.

Theorem 3.1. The problem (1.1)–(1.3) admits at most one weak solution.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.1. For ϕ ∈ L∞(t1, t2; W
1,p
0 (Ω)) with ϕt ∈ L2(Ω×(t1, t2)), the weak solution

u of the problem (1.1)–(1.3) on QT satisfies
∫

Ω

u(x, t1)ϕ(x, t1)dx +
∫ t2

t1

∫

Ω

(
u

∂ϕ

∂t
+ |∇∆u|p−2∇∆u∇ϕ

)
dxdt

=
∫

Ω

u(x, t2)ϕ(x, t2)dx.

In particular, for ϕ ∈ W 1,p
0 (Ω), we have

∫

Ω

(u(x, t1)− u(x, t2))ϕdx−
∫ t2

t1

∫

Ω

|∇∆u|p−2∇∆u∇ϕdxdt = 0. (3.1)

Proof. For ϕ ∈ L∞(t1, t2;W
1,p
0 (Ω)) and ϕt ∈ L2(Ω × (t1, t2)), we choose a sequence

of functions {ϕk}, such that ϕk(·, t) ∈ C∞0 (Ω). When k →∞, we have

‖ϕkt − ϕt‖ → 0, ‖ϕk − ϕ‖L∞(t1,t2;W
1,p
0 (Ω)) → 0.

Choose a function j(s) ∈ C∞0 (R) such that

j(s) ≥ 0 for s ∈ R; j(s) = 0, ∀ |s| > 1;
∫

R

j(s)ds = 1.

For h > 0, define

jh(s) =
1
h

j
( s

h

)
, ηh(t) =

∫ t−t1−2h

t−t2+2h

jh(s)ds.

Clearly ηh(t) ∈ C∞0 (t1, t2), lim
h→0+

ηh(t) = 1, ∀ t ∈ (t1, t2).

Taking ϕ = ϕk(x, t)ηh(t) in the definition of weak solutions, we have
∫ t2

t1

∫

Ω

uϕkjh(t− t1 − 2h)dxdt−
∫ t2

t1

∫

Ω

uϕkjh(t− t2 + 2h)dxdt

+
∫ t2

t1

∫

Ω

uϕktηhdxdt +
∫ t2

t1

∫

Ω

|∇∆u|p−2∇∆u∇ϕkηhdxdt = 0.

Observing that
∣∣∣
∫ t2

t1

∫

Ω

uϕkjh(t− t1 − 2h)dxdt−
∫

Ω

(uϕk)|t=t1

∣∣∣

=
∣∣∣
∫ t1+3h

t1+h

∫

Ω

uϕkjh(t− t1 − 2h)dxdt−
∫ t1+3h

t1+h

∫

Ω

(uϕk)|t=t2jh(t− t1 − 2h)dxdt
∣∣∣

≤ sup
t1+h<t<t1+3h

∫

Ω

|(uϕk)|t − (uϕk)|t1 |dx,
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and u ∈ C(0, T ;L2(Ω)), we see that the right hand side tends to zero as h → 0.
Similarly

∣∣∣
∫ t2

t1

∫

Ω

uϕkjh(t− t2 + 2h)dxdt−
∫

Ω

(uϕk)|t=t2

∣∣∣ → 0 as h → 0.

Letting h → 0, k →∞, we get
∫

Ω

u(x, t1)ϕ(x, t1)dx +
∫ t2

t1

∫

Ω

(
u

∂ϕ

∂t
+ |∇∆u|p−2∇∆u∇ϕ

)
dxdt

=
∫

Ω

u(x, t2)ϕ(x, t2)dx.

Particularly, for ϕ ∈ W 1,p
0 (Ω), we have

∫

Ω

(u(x, t1)− u(x, t2))ϕdx−
∫ t2

t1

∫

Ω

|∇∆u|p−2∇∆u∇ϕdxdt = 0.

For fixed τ ∈ (0, T ), and any h with 0 < τ < τ + h < T , letting t1 = τ , t2 = τ + h, and
multiplying (3.1) by 1

h , for ϕ ∈ W 1,p
0 (Ω), we obtain

∫

Ω

(uh(x, τ))τϕ(x)dx +
∫

Ω

(|∇∆u|p−2∇∆u)h(x, τ)∇ϕdx = 0, (3.2)

where

uh(x, t) =





1
h

∫ t+h

t

u(·, τ)dτ, t ∈ (0, T − h),

0, t > T − h.

Proof of Theorem 3.1. Suppose that u1, u2 are two solutions of the problem (1.1)–
(1.3). Then we have

∫

Ω

(u1(x, τ)− u2(x, τ))hτϕ(x)dx

−
∫

Ω

(|∇∆u1|p−2∇∆u1 − |∇∆u2|p−2∇∆u2)h(x, τ)∇ϕdx = 0.

For fixed τ , taking ϕ(x) = [∆(u1 − u2)]h ∈ W 1,p
0 (Ω), we have

∫

Ω

∇(u1(x, τ)− u2(x, τ))hτ∇(u1 − u2)hdx

= −
∫

Ω

[(|∇∆u1|p−2∇∆u1 − |∇∆u2|p−2∇∆u2)h](x, τ)∇∆(u1 − u2)hdx.

Integrating the above equality with respect to τ over (0, t), we have
∫

Ω

|∇(u1 − u2)h|2(x, t)dx ≤ 0.

By Poincaré inequality, it follows that
∫

Ω

|(u1 − u2)h|2dx = 0,

therefore u1 = u2.
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§ 4 . Asymptotic Behavior

This section is devoted to the asymptotic behavior of solutions. To this purpose, we
first show the following theorem.

Theorem 4.1. The weak solution u obtained in Theorem 2.1 satisfies, for any 0 ≤
ρ ∈ C2(Ω),

1
2

∫

Ω

ρ(x)|∇u(x, t)|2dx− 1
2

∫

Ω

ρ(x)|∇u0(x)|2dx

= −
∫∫

Qt

|∇∆u|p−2∇∆u∇div(ρ(x)∇u)dx, (4.1)

where Qt = Ω× (0, t).

Proof. In the proof of Theorem 2.1, we have

f(t) =
1
2

∫

Ω

|∇u(x, t)|2dx ∈ C([0, T ]).

Similarly, we can also easily prove that for any 0 ≤ ρ ∈ C2(Ω),

fρ(t) =
1
2

∫

Ω

ρ(x)|∇u(x, t)|2dx ∈ C([0, T ]).

Consider the functional

Φρ[v] =
1
2

∫

Ω

ρ(x)|∇v|2dx.

It is easy to see that Φρ[v] is a convex functional on H1
0 (Ω).

For any τ ∈ (0, T ) and h > 0, we have

Φρ[u(τ + h)]− Φρ[u(τ)] ≥ 〈u(τ + h)− u(τ),−div(ρ(x)∇u(x, τ))〉.

By
δΦρ[v]

δv
= −div(ρ(x)∇v),

for any fixed t1, t2 ∈ [0, T ], t1 < t2, integrating the above inequality with respect to τ over
(t1, t2) , we have

∫ t2+h

t2

Φρ[u(τ)]dτ −
∫ t1+h

t1

Φρ[u(τ)]dτ ≥
∫ t2

t1

〈u(τ + h)− u(τ),−div(ρ(x)∇u)〉dτ.

Multiplying the both side of the above equality by 1
h , and letting h → 0, we obtain

Φρ[u(t2)]− Φρ[u(t1)] ≥
∫ t2

t1

〈∂u

∂t
,−div(ρ(x)∇u)

〉
dτ.

Similarly, we have

Φρ[u(τ)]− Φρ[u(τ − h)] ≤ 〈(u(τ)− u(τ − h)),−div(ρ(x)∇u)〉.



A GENERALIZED THIN FILM EQUATION 357

Thus

Φρ[u(t2)]− Φρ[u(t1)] ≤
∫ t2

t1

〈∂u

∂t
,−div(ρ(x)∇u)

〉
dτ,

and hence

Φρ[u(t2)]− Φρ[u(t1)] =
∫ t2

t1

〈∂u

∂t
,−div(ρ(x)∇u)

〉
dτ.

Taking t1 = 0, t2 = t, we get from the definition of solutions that

Φρ[u(t)]− Φρ[u(0)] =
∫ t

0

〈−div(|∇∆u|p−2∇∆u),−div(ρ(x)∇u(τ))〉dτ

= −
∫ t

0

〈|∇∆u|p−2∇∆u,∇[div(ρ(x)∇u(τ))]〉dτ.

Theorem 4.2. Let u be the weak solution of the problem (1.1)–(1.3), p > 2. Then
∫

Ω

|u(x, t)|2dx ≤ C3

(C1t + C2)α
, α =

2
p− 2

, Ci > 0, i = 1, 2, 3.

Proof. Taking ρ(x) = 1 in the equality (4.1), we have

1
2

∫

Ω

|∇u(x, t)|2dx− 1
2

∫

Ω

|∇u0(x)|2dx = −
∫ t

0

∫

Ω

|∇∆u|pdxdt. (4.2)

Let
f(t) =

1
2

∫

Ω

|∇u(x, t)|2dx.

Then, by (4.2), we have

f ′(t) = −
∫

Ω

|∇∆u|pdx ≤ 0.

Similarly to the discussion in the proof of Lemma 2.1, by u ∈ W 3,p(Ω), u, ∆u ∈
W 1,p

0 (Ω), we see that
∫

Ω

|∇u(x, t)|2dx ≤ C

∫

Ω

|∇∆u|2dx ≤ C
( ∫

Ω

|∇∆u|pdx
)2/p

,

that is f(t) ≤ C|f ′(t)|2/p.
Again by f ′(t) ≤ 0, we have f ′(t) ≤ −Cf(t)p/2, and hence

∫

Ω

|∇u(x, t)|2dx ≤ 1
(C1t + C2)α

, α =
2

p− 2
, Ci > 0, i = 1, 2.

By Poincaré inequality, we have
∫

Ω

|u|2dx ≤ C

∫

Ω

|∇u|2dx.

Therefore ∫

Ω

|u(x, t)|2dx ≤ C3

(C1t + C2)α
, α =

2
p− 2

.

The proof is complete.
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