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Abstract

Let E be a compact s-sets of Rn. The authors define an orthonormal system Φ of functions
on E and obtain that, for any f(x) ∈ L1(E,Hs), the Fourier series of f , with respect to Φ, is
equal to f(x) at Hs-a.e. x ∈ E. Moreover, for any f ∈ Lp(E,Hs) (p ≥ 1), the partial sums of
the Fourier series, with respect to Φ, of f converges to f in Lp−norm.
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§1. Introduction

In [4, 6], we have studied the convergence of the Fourier series, with respect to an or-

thonormal system of functions, of each function for any f(x) ∈ Lp(K,Hs) (p ≥ 1), where

K is a Moran fractal or a generalized Moran fractal. In [8], for any f ∈ Lp(K1,Hs), the

similar problems are discussed, where K1 is a self-similar fractal. In this paper, for any

f ∈ Lp(E,Hs), where E is an arbitrary compact s-set, we can also obtain the similar re-

sults.

In §2, we first study the Fourier series expansions of functions defined on differentiable

s-sets. We define a system of functions Φ ⊂ L∞(E,Hs) and Φ is orthonormal in the Hilbert

space  L2(E,Hs). We show that for any f(x) ∈ L1(E,Hs), the Fourier series of f(x), with

respect to Φ, is equal to f(x) at Hs−a.e. x ∈ E and for any f ∈ Lp(E,Hs), the partial

sums of the Fourier series of f converges to f in Lp-norm. So the results in [4, 6, 8] are

completely contained in the conclusions in this paper.

In §3, as E is an arbitrary compact s-set of Rn, we give the results for the convergence of

the Fourier series of functions in Lp(E,Hs), 1 ≤ p ≤ ∞. So, on the problems of the Fourier

series expansions of functions defined on s-sets, we give satisfactory solutions in some sense.

In §4, we especially discuss a class of compact s-set produced by generalized graph directed

constructions.

Note. A set E ⊂ Rn is said to be an s-set, if E is Hs-measurable and 0 < Hs(E) < ∞,

where Hs denotes s-dimensional Hausdorff measure. For more details about s-sets, see [1]

or [2].
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§2. The Fourier Series Expansions of
Functions Defined on Differentiable s-Sets

For the sake of completeness, we first give a few definitions (also see [6]).

Definition 2.1. Let E be an Hs-measurable set. For each x ∈ E, let B(x) be a collection

of bounded Hs-measurable sets with positive measure containing x such that there is at least

a sequence {Uk} ⊂ B(x) with |Uk| → 0 (k → ∞). The whole collection B =
∪

x∈E

B(x) will be

called a differentiation basis for (E,Hs).

Definition 2.2. Let B be a differentiation basis for (E,Hs). For each measurable set A

and for almost every x ∈ E, if {Uk} is an arbitrary sequence of B(x) contracting to x, then

D(E, x) = lim
k→∞

Hs(A ∩ Uk)

Hs(Uk)
= XA(x).

We call B a density basis, where X is the characteristic function.

Definition 2.3. Let B be a differentiation basis for (E,Hs) and let f ∈ Lp(E,Hs) (1 ≤
p ≤ ∞). If

lim
k→∞

{
1

Hs(Uk)

∫
Uk

fdHs : {Uk} ⊂ B(x), |Uk| → 0

}
= f(x)

for almost every x ∈ E, then we shall say that B differentiates
∫
f . We write D(

∫
f, x) =

f(x).

When B differentiates
∫
f for each f in a class X of functions, we shall also say that B

differentiates X.

Definition 2.4. Given a differentiation basis B for (E,Hs), we define the maximal

operator associated to the basis B by

Mf(x) = sup
U∈B(x)

1

Hs(U)

∫
U

|f(y)|dHs(y) for all x ∈ E

for every function f ∈ L1(E,Hs).

Definition 2.5. Let E be an s-set of Rn. We say that E is a differentiable s-set, if the

following conditions are satisfied:

(a) There exist finite disjoint subsets Ai1 of Rn, i1 = 1, . . . ,m, such that

E ⊂
m∪

i1=1

Ai1 .

For each Ai1 , there are finite disjoint subsets Ai1i2 , 1 ≤ i2 ≤ mi1 ,mi1 ∈ N , such that

Ai1i2 ⊂ Ai1 and E ⊂
∪
i1,i2

Ai1i2 .

In general, as the sets Ai1···ik−1
are determined, there are finite disjoint subsets Ai1···ik

such that Ai1···ik ⊂ Ai1···ik−1
and E ⊂

∪
i1,... ,ik

Ai1...ik where i1 = 1, . . . ,m, 1 ≤ ij ≤
mi1···ij−1 , 1 < j ≤ k,mi1···ij−1 ∈ N.

(b) |Ai1···ik | → 0 (k → ∞), where |Ai1···ik | denotes the diameter of Ai1···ik .

(c) Hs(E ∩Ai1···ik) > 0 (k ≥ 1).

{Ai1···ik : 1 ≤ i1 ≤ m, 1 ≤ i2 ≤ mi1 , . . . , 1 ≤ ik ≤ mi1···ik−1
, k ≥ 1} is said to be a

differentiation cover of E.
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Theorem 2.1. Let E be a differentiable s-set of Rn, and assume that E is local compact.

Then

(a) there exists a system of functions Φ = {gn(x)}n≥1 ⊂ L∞(E,Hs) such that Φ is

orthonormal in the Hilbert space L2(E,Hs);

(b) for any f(x) ∈ L1(E,Hs),

n∑
m=1

⟨f, gm⟩gm → f(x) at Hs − a.e. x ∈ E,

where ⟨f, gm⟩ =
∫
E
f(x)gm(x)dHs(x);

(c) for any f(x) ∈ Lp(E,Hs), 1 ≤ p ≤ ∞,∥∥∥ n∑
m=1

⟨f, gm⟩gm − f
∥∥∥
p
→ 0 (n → ∞).

The proof of Theorem 2.1 consists of the following theorems.

Lemma 2.1. Suppose that E is a differentiable s-set in Rn and

{Ai1···ik : k ≥ 1, 1 ≤ i1 ≤ m, 1 ≤ ij ≤ mi1···ij−1 , 1 < j ≤ k}

is a differentiation cover of E. Write

Ei1···ik = E ∩Ai1···ik (k ≥ 1), A =
∪
k≥1

∪
i1,··· ,ik

Ei1···ik ,

A(x) = {A : A ∈ A, x ∈ A} for all x ∈ E.

Then

(a) A is a differentiation cover of E;

(b) A is a density basis for (E,Hs).

Proof. The proof of (a) is trivial. The proof of (b) can be finished by a method similar

to that used in the proof of Theorem 3.3 in [7].

Lemma 2.2. Let E be a local compact subset of Rn and the conditions of Lemma 2.1

are satisfied. Then for any f ∈ L1(E,Hs),

D
(∫

f, x
)

= lim
k→∞

{
1

Hs(Uk)

∫
Uk

fdHs : {Uk} ⊂ A(x), Uk → x

}
= f(x) (2.1)

at Hs-a.e.x ∈ E.

Proof. Because E is a local compact s-set, and A is a density basis and Hausdorff measure

is regular, the result similar to Theorem 1.4 in [3, Chp. III] is valid after the measure and

Lebesgue integral are respectively replaced by the Hausdorff measure and Hausdorff integral.

That is, B differentiates L∞(E,Hs).

For any f ∈ L1(E,Hs) and any x ∈ E, let

fk(x) =

{
f(x), if |f(x)| < k,

0, if |f(x)| ≥ k,

and f = fk + fk.

Then D(
∫
fk, x) = fk(x) for Hs-a.e. x ∈ E.
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For ε > 0, we have

Hs
({

x ∈ E :
∣∣∣D(∫

f, x
)
− f(x)

∣∣∣ > ε
})

= Hs
({

x ∈ E :
∣∣∣D(∫

fk, x
)
− fk(x)

∣∣∣ > ε
})

≤ Hs
({

x ∈ E : D
(∫

fk, x
)
> ε/2

})
+ Hs({x ∈ E : fk(x) > ε/2})

≤ Hs({x : Mfk(x) > ε/2}) + Hs({x : fk(x) > ε/2}).

The second term in the last member of this chain of inequalities tends to zero as k → ∞ by

the preceding hypothesis.

On the other hand, without any substantial change in the proof with respect to Theorem

3.4 in [7], we may get that for any f ∈ L1(E,Hs) and every number ϵ > 0,

Hs(x ∈ E : Mf(x) > ϵ) ≤ c
∥f∥1
ϵ

,

where c > 0 is a constant independent of ϵ and f .

So we have that Hs({x ∈ E : Mfk(x) > ε/2}) ≤ 2c∥fk∥1/ε. But ∥fk∥1 → 0 as k → ∞,

hence Hs({x ∈ E : |D(
∫
f, x) − f(x)| > ε}) = 0.

Noting the arbitrariness of ε, we may obtain that D
( ∫

f, x
)

= f(x) at Hs − a.e. x ∈ E.

The proof is finished.

Now we begin to define a collection of functions with supports on E. The meanings of

the following sets Ei1···ik and E are the same as those in Lemma 2.1.

A function with support on E is defined by

g−1(x) = Hs(E)−
1
2 for all x ∈ E. (2.2)

m− 1 functions gh0 , 1 ≤ h ≤ m− 1, with supports on the sets
h+1∪
i1=1

Ei1 ⊂ E are defined as

gh0 (x) =


C

− 1
2

h , if x ∈
h∪

i1=1

Ei1 ,

−C
− 1

2

h Hs(Eh+1)−1
h∑

i1=1

Hs(Ei1), if x ∈ Eh+1,

0, otherwise,

(2.3)

where Ch = Hs(Eh+1)−1
h∑

i1=1

Hs(Ei1)
h+1∑
i1=1

Hs(Ei1).

Finally, for every i1 · · · ik, k ≥ 1, we define mi1···ik−1 functions ghi1···ik , 1 ≤ h ≤ mi1···ik−1,

whose supports are
h+1∪
i=1

Ei1···iki ⊂ Ei1···ik . They are

ghi1···ik(x) =



C
− 1

2

i1···ikhH
s(Ei1···ik)−

1
2 , if x ∈

h∪
i=1

Ei1···iki,

−C
− 1

2

i1···ikhH
s(Ei1···ik)−

1
2Hs(Ei1···ik(h+1))

−1·

·
h∑

i=1

Hs(Ei1···iki), if x ∈ Ei1···ik(h+1) ,

0, otherwise,

(2.4)
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where Ci1···ikh = Hs(Ei1···ik)−1Hs(Ei1···ik(h+1))
−1

h+1∑
i=1

Hs(Ei1···iki)
h∑

i=1

Hs(Ei1···iki).

Let the system Φ be

Φ ={g−1} ∪ {gh0 : 1 ≤ h ≤ m− 1}
∪ {ghi1···ik : k ≥ 1, 1 ≤ i1 ≤ m, 1 ≤ ij ≤ mi1···ij−1 , 1 < j ≤ k, 1 ≤ h ≤ mi1···ik − 1}.

(2.5)

Since Hs(E) < ∞, it is easy to show that Φ ⊂ L∞(E,Hs) ⊂ Lp(E,Hs), p ≥ 1.

Theorem 2.2. Let E be a differentiable s-set, then there exists a system of functions

Φ ⊂ L∞(E,Hs) such that Φ is orthonormal in the Hilbert space L2(E,Hs).

Proof. Let Φ be a system of functions in (2.5). Then Φ ⊂ L∞(E,Hs). The proof of the

orthonormality of Φ is completely similar to Theorem 2.1 in [4]. The proof is finished.

For any f(x) ∈ L1(E,Hs), we define its Fourier series, with respect to Φ, as

f(x) ∼ a−1g−1(x) +

m−1∑
h=1

ah0g
h
0 (x) +

∞∑
k=1

∑
1≤i1≤m,

1≤i2≤mi1 ,···
1≤ik≤mi1···ik−1

mi1···ik−1∑
h=1

ahi1···ikg
h
i1···ik(x), (2.6)

where

a−1 = ⟨f, g−1⟩ =

∫
E

f(y)g−1(y) dHs(y), ah0 = ⟨f, gh0 ⟩ =

∫
E

f(y)gh0 (y) dHs(y),

ahi1···ik = ⟨f, ghi1···ik⟩ =

∫
E

f(y)ghi1···ik(y) dHs(y), k ≥ 1,

1 ≤ h ≤ mi1···ik − 1, 1 ≤ i1 ≤ m, 1 ≤ ij ≤ mi1···ij−1 , 1 < j ≤ k, are the Fourier coefficients of

f with respect to Φ.

We denote the partial sums of the Fouier series (2.6) by

Sj1···jn+1;q
n+1 f(x)

= a−1g−1(x) +
m−1∑
h=1

ah0g
h
0 (x) +

n∑
k=1

∑
i1,... ,ik

mi1···ik−1∑
h=1

ahi1···ikg
h
i1···ik(x)

+
∑

i1···in+1≺j1···jn+1

mi1···in+1
−1∑

h=1

ahi1···in+1
ghi1···in+1

(x) +

q∑
h=1

ahj1···jn+1
ghj1···jn+1

(x),
(2.7)

where n ≥ 1, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ mj1 , · · · , 1 ≤ jn+1 ≤ mj1···jn , and 1 ≤ q ≤ mj1···jn+1 − 1,

and i1 · · · in+1 ≺ j1 · · · jn+1 means that if there is an h, 1 ≤ h ≤ n + 1, such that

ip = jp, if 1 ≤ p < h,

ih < jh,

we always suppose i1 · · · ik ≺ j1 · · · jkjk+1, k ≥ 1.

Note. In (2.7) q may be zero. If q = 0, then the last term in the right side of (2.7) is

zero.

By using the similar method used in [4], we may obtain the following lemma.

Lemma 2.3. The meanings of Ei1···ik and E are the same as above. For any n ≥ 1, 1 ≤
j1 ≤ m, 1 ≤ jk ≤ mi1···ik−1

, 1 < k ≤ n + 1, 1 ≤ q ≤ mj1···jn+1 − 1, write α = i1 · · · in+1, β =
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j1 · · · jn+1. Then for any f ∈ L1(E,Hs), we have

Sβ;q
n+1f(x) =



1
Hs(Eαi)

∫
Eαi

f(y) dHs(y), if x ∈ Eαi, α ≺ β, 1 ≤ i ≤ mi1···in+1 ,

1
Hs(Eβ)

∫
Eβ

f(y) dHs(y) + 1
Hs(Eβi)

∫
Eβi

f(y) dHs(y)−

− 1

Hs

(
q+1∪
k=1

Eβk

) ∫
q+1∪
k=1

Eβk

f(y) dHs(y), if x ∈ Eβi, 1 ≤ i ≤ q + 1,

1
Hs(Eβ)

∫
Eβ

f(y) dHs(y), if x ∈ Eβi, q + 1 < i ≤ mj1···jn+1 ,

1
Hs(Eα)

∫
Eα

f(y) dHs(y), if x ∈ Eα, α ≻ β.

Using Lemmas 2.2 and 2.3 we immediately obtain the following theorem.

Theorem 2.3. Let E be a local compact and differentiable s-set. Then for any f ∈
L1(E,Hs) the partial sums of its Fourier series, with respect to Φ, converge to f at Hs-a.e.

x ∈ E.

Corollary. The system Φ is L2-complete, i.e. if f ∈ L2(E,Hs) is orthogonal to every

function in Φ, then f(x) = 0 for Hs-a.e. x ∈ E.

Proof. Suppose that f ∈ L2(E,Hs) is orthogonal to every function g in Φ, i.e.,
∫
E
fgdHs

= 0. Then it is clear that Sj1···jn+1;q
n+1 f(x) = 0 for all x ∈ E and for every n ≥ 1,

1 ≤ j1 ≤ m, 1 ≤ j2 ≤ mj1 , · · · , 1 ≤ jn+1 ≤ mj1···jn , 1 ≤ q ≤ mj1···jn+1 − 1. Then using

Theorem 2.3, we have that f(x) = 0 at Hs − a.e.x ∈ E. The proof is finished.

Since Φ is an L2-complete system, we can obtain the same results as the classic results

of the Hilbert spaces.

Theorem 2.4. If f(x) ∈ L2(E,Hs), and {ak}k≥1 are its Fourier coefficients with respect

to Φ, then

(a) ∥f∥22 =
∞∑
k=1

a2k < ∞.

(b)
∥∥∥Sj1···jn+1;q

n+1 f − f
∥∥∥
2
−→ 0.

(c) If F (x) ∈ L2(E,Hs), {bk}k≥1 are its Fourier coefficients with respect to Φ, then

(f, F ) =

∫
E

f(y)F (y) dHs(y) =
∞∑
k=1

akbk.

(d) If {bk}k≥1 is a sequence of real numbers such that
∞∑
k=1

b2k < ∞, then there exists a

unique function f ∈ L2(E,Hs), so that {bk}k≥1 are its Fourier coefficients with respect to

Φ and f satisfies (a) and (b).

Theorem 2.5. For convenience, write the system Φ in (2.5) as {gk}k≥1 and let 1 ≤ p ≤
∞ and {bk}k≥1 is a sequence of real numbers which satisfies

∞∑
k=1

|bk| ∥gk∥p < ∞. (2.8)

Then there is a unique function f ∈ Lp(E,Hs) so that {bk}k≥1 are its Fourier coefficients,

and ∥∥∥Sj1···jn+1;q
n+1 f − f

∥∥∥
p
−→ 0, (2.9)

where the meanings of j1 · · · jn+1, q and E are the same as above.
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Moreover, if f ∈ Lp, its Fourier coefficients {ak}k≥1 satisfy (2.8), then the Fourier series

of the function f converges to f in Lp-norm.

The method used for the proof is similar to Theorem 3.4 in [4].

Therefore, the proof of Theorem 2.1 is finished by Theorem 2.2, Theorem 2.3 and Theorem

2.5.

§3. The Fourier Series Expansions of
Functions Defined on Compact s-Sets

Theorem 3.1. Let E be a compact s-set of Rn. Then (a), (b) and (c) of Theorem 2.1

are satisfied.

Proof. Let Br(x) denote the ball of centre x and radius r so that |Br(x)| = 2r. For each

x ∈ Rn, write

D
s

1(E, x) = lim sup
r→∞

Hs(E ∩Br(x))

(2r)s
. (3.1)

Then using the same steps of proving Corollary 2.5 in [1] we can obtain

2−s ≤ D
s

1(E, x) ≤ 1 (3.2)

at almost all x ∈ E. We might as well suppose, for any x ∈ E, the inequality (3.2) is

satisfied.

Fix ε > 0 with 2−s − ε > 0. Then for any x ∈ E, by (3.1) and (3.2), there exists rn ↓ 0

(means that rn converges decreasingly to 0) such that

2−s ≤ lim
n→∞

Hs(E ∩Brn(x))

(2rn)s
≤ 1 (3.3)

and so there exists an Nx such that as n > Nx,

Hs(E ∩Brn(x)) > (2−s − s)(2rn)s > 0. (3.4)

Without loos of generality, we may suppose all the balls Brn(x) in (3.3) satisfy the

inequality (3.4).

For each x ∈ E, let B =
∞∪

n=1
Brn(x), where Brn(x) satisfies (3.4) and let B =

∪
x∈E

B(x).

Then B is an open cover of E. By the finite covering theorem, there are finite balls

Br1(x1), · · · , Brm(xm) ∈ B such that E ⊂
m∪
i=1

Bri(xi) and we also assume that no one

of them is contained in the other. If let

B′
1 = Br1(x1), B′

2 = Br2(x2) −Br1(x1), · · · , B′
m = Brm(xm) −

(m−1∪
i=1

Bri(xi)
)
,

then B′
i (i = 1, · · · ,m) are disjoint and E ⊂

m∪
i=1

B′
i. (Of course, the ways of dividing

m∪
i=1

Bri(xi) into finite disjoint sets are not unique, the number of the produced sets may be

not equal.)

Write Ei1 = E ∩ B′
i1
, i1 = 1, · · · ,m. Then {Ei1 : i1 = 1, · · · ,m} are disjoint and

E =
m∪

i1=1

Ei1 .
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For any x ∈ Ei1 (Ei1 denotes the closure of Ei1), let

Bi1(x) =

{
B ∈ B(x) : |B| < 2 min

1≤i1≤m
{ri1}, x ∈ B

}
, Bi1 =

∪
x∈Ei1

Bi1(x).

Then Bi1 is an open cover of Ei1 , and so we can choose a finite sub-cover denoted by

{Bri1i2
(xi1i2) : i1 = 1, · · · ,m, i2 = 1, · · · ,m′

i1
}. We can divide {Bri1i2

(xi1i2) : 1 ≤ i1 ≤
m, 1 ≤ i2 ≤ m′

i1
} into disjoint sets {Bi1i2 : 1 ≤ i1 ≤ m, 1 ≤ i2 ≤ mi1} such that

Ei1 ⊂
mi1∪
i2=1

B′
i1i2

and B′
i1i2

is a subset of some Bri1j (xi1j)(1 ≤ j ≤ m′
i1

). Let

Ei1i2 = Ei1 ∩B′
i1i2 .

Then Ei1i2 , i1 = 1, · · · ,m, i2 = 1, · · · ,mi1 , are disjoint and

Ei1i2 ⊂ Ei1 , Ei1 =
∪
i2

Ei1i2 , E =
∪
i1,i2

Ei1,i2 .

For any x ∈ Ei1i2 , let

Bi1i2(x) =

{
B ∈ B(x) : |B| < 2 min

i1,i2
(ri1i2), x ∈ B

}
, Bi1i2 =

∪
x∈Ei1i2

Bi1i2(x).

Similarly, we can obtain finite disjoint sets B′
i1i2i3

and by letting

Ei1i2i3 = Ei1i2 ∩B′
i1i2i3 ,

we get a cover {Ei1i2i3 : 1 ≤ i1 ≤ m, 1 ≤ i2 ≤ mi1 , 1 ≤ i3 ≤ mi1i2} of E such that {Ei1i2i3}
are disjoint and

Ei1i2i3 ⊂ Ei1i2 , Ei1i2 =
∪
i3

Ei1i2i3 , E =
∪

i1,i2,i3

Ei1i2i3 .

The rest may be deduced by analogy.

In general, we obtain finite disjoint sets Ei1···ik such that

Ei1···ik ⊂ Ei1···ik−1
, Ei1···ik−1

=
∪
ik

Ei1···ik , E =
∪

i1,... ,ik

Ei1···ik , (3.5)

where k > 1, 1 ≤ i1 ≤ m, 1 ≤ ij ≤ mi1···ij−1
, 1 < j ≤ k.

We might as well suppose Hs(Ei1···ik) > 0 (k ≥ 1). (If not, we shall give a detailed

explanation later in the remark.)

By using the definitons of (2.2), (2.3) and (2.4), we may obtain a system of functions

Φ ⊂ L∞(E,Hs) and Φ is orthonormal in the Hilbert space L2(E,Hs). (Of course, Ei1···ik
in the definitions means those in (3.5).)

In addition, we can see that |Ei1···ik | → 0(k → ∞) from the preceding process. So when

E is a compact s-set, we can also obtain the same results as Theorem 2.1 by using Theorem

2.2, Theorem 2.3 and Theorem 2.5.

The proof is finished.

Remark. If Ei1···ik chosen in the proof of Theorem 3.1 satisfies Hs(Ei1···ik) = 0, then we

shall not consider this set. Finally, we obtain a subset of E denoted by E0 and a sequence

of sets E′
i1···ik such that {E′

i1···ik : 1 ≤ i1 ≤ n, 1 ≤ i2 ≤ ni1 , . . . , 1 ≤ ik ≤ ni1···ik−1
} are
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disjoint and

Hs(E′
i1···ik) > 0, E0 =

∪
i1,··· ,ik

E′
i1···ik , E′

i1···ik ⊂ E′
i1···ik−1

,

Ei1···ik−1
=

∪
ik

E′
i1···ik , Hs(E0) = Hs(E).

Now we define a sequence of functions on E as

g−1(x) = Hs(E)−
1
2 for all x ∈ E,

gh0 (x) =


C

− 1
2

h , if x ∈
h∪

i1=1

E′
i1
,

−C
− 1

2

h Hs(E′
h+1)−1

h∑
i1=1

Hs(E′
i1

), if x ∈ E′
h+1,

0, otherwise,

where Ch = Hs(E′
h+1)−1

h∑
i1=1

Hs(E′
i1

)
h+1∑
i1=1

Hs(E′
i1

), 1 ≤ h ≤ n− 1.

ghα(x) =


C

− 1
2

αh Hs(E′
α)−

1
2 , if x ∈

h∪
i=1

E′
αi,

−C
− 1

2

αh Hs(E′
α)−

1
2Hs(E′

α(h+1))
−1

h∑
i=1

Hs(E′
αi), if x ∈ E′

α(h+1),

0, otherwise,

where α = i1 · · · ik, 1 ≤ i1 ≤ n, 1 ≤ ij ≤ ni1···ij−1 , 1 < j ≤ k, 1 ≤ h ≤ ni1···ik − 1 and

Cαh = Hs(E′
α)−1Hs(E′

α(h+1))
−1

h+1∑
i=1

Hs(E′
αi)

h∑
i=1

Hs(E′
αi).

It is easy to show that

{g−1} ∪ {gh0 : 1 ≤ h ≤ n− 1}
∪ {ghi1···ik : k ≥ 1, 1 ≤ i1 ≤ n, 1 ≤ ij ≤ ni1···ij−1 , 1 < j ≤ k, 1 ≤ h ≤ ni1···ik − 1}
⊂ L∞(E,Hs).

By using the similar to preceding steps and noting Hs(E − E0) = 0, we can show that

Theorem 3.1 is always valid.

§4. Generalized Ratios Graph Directed Constructions

A generalized ratio graph directed construction in Rm consists of

(1) a finite sequence of nonoverlapping, compact subsets of Rm: J1, J2, · · · , Jn such that

each Ji has a nonempty interior,

(2) a sequence of directed graph {Gk} with vertex set consisting of the integers 1, · · · , n,

and contract maps T
(k)
i,j of Rm, where (i, j) ∈ Gk,with contract ratios no more than t

(k)
i,j ,

such that

(a) for each k and i, 1 ≤ i ≤ n, there is some j such that (i, j) ∈ Gk,

(b) for each k and i, {T (k)
i,j (Jj)|(i, j) ∈ Gk} is a nonoverlapping family and

Ji ⊃
∪

{T (k)
i,j (Jj)|(i, j) ∈ Gk} (4.1)
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and

(c) if the path component from G1 to Gk rooted at the vertex i1 is a cycle: [i1, · · · ,
iq, iq+1 = i1], then

q∏
k=1

tik,ik+1
< 1. (4.2)

This construction naturally determines a compact subset K of Rm. This set, which we will

term the construction object, is pieced together by the graphs Gk and applying the maps

coded by the edges to the corresponding sets.

For each i, let R(Ji) be the space of compact subsets of Ji provided with the Hausdorff

metric, ρH . By using the similar method of R.D.Mauldin et al.[5], we may show the following

theorem.

Theorem 4.1. For each generalized graph directed construction, there exists a unique

compact set K,

K =
∩
m≥1

∪
{T (1)

i1,i2
◦ · · · ◦ T (m)

im,im+1
(Jim+1) | (ij , ij+1) ∈ Gj , 1 ≤ j ≤ m}. (4.3)

Let

G(p) = {σ(1)σ(2) · · ·σ(p + 1)|(σ(i), σ(i + 1)) ∈ Gi; 1 ≤ i ≤ p},

G(∞) = {σ(1)σ(2) · · · |(σ(i), σ(i + 1)) ∈ Gi; i ≥ 1}, G∗ =
∪
p≥1

G(p),

for σ ∈ G(∞), σ|p = σ(1) · · ·σ(p + 1) ∈ G(p).

tσ|p =

p∏
i=1

t
(i)
σ(i),σ(i+1). (4.4)

J(σ|p) = T
(1)
σ(1),σ(2) ◦ T

(2)
σ(2),σ(3) ◦ · · · ◦ T

(p)
σ(p),σ(p+1)(Jσ(p+1)). (4.5)

Then

K =
∩
p≥1

∪
σ∈G(p)

J(σ). (4.6)

It is easy to see that the generalized graph directed construction object K includes the

Moran fractals, the generalized Moran fractals, the self-affine sets and graph directed con-

struction. By Theorem 3.1, we have

Theorem 4.2. If the generalized graph directed construction K is an s-set, and f ∈
L1(E,Hs), then the Fourier expansion theorem is true.

It is difficulty to prove that the generalized graph directed construction K is an s-set in

general case. Now we give a class of generalized graph directed constructions for which K

is an s-set.

Example Let G be a directed graph with vertex set consisting of the integers 1, 2, · · · , n,

and T
(1)
i,j , T

(2)
i,j are similarity maps of Rm with similarity ratios t

(1)
i,j , t

(2)
i,j , respectively, where

(i, j) ∈ G.

A sequence of similarity maps {{T (k)
i,j }(i,j)∈G} is produced by {T (1)

i,j }(i,j)∈G, {T
(2)
i,j }(i,j)∈G,

in non-periodic form. Let

N(k) = #{h : {T (h)
i,j }(i,j)∈G = {T (1)

i,j }(i,j)∈G; h ≤ k}, (4.7)
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ak =
N(k)

k
. (4.8)

The weighted incidence matrix or construction matrix A(k) = A
(k)
G associated with a

graph directed construction is the n× n matrix defined by

A(k) = [t
(k)
i,j ]i,j≤n, (4.9)

where we make the convention that t
(k)
i,j = 0 if (i, j) /∈ G. For each β ≥ 0, let A

(k)
β = AG,β be

the n×n matrix given by (t
(k)
i,j )β . Also, let Φ(k)(β) be the spectral radius of A

(k)
β . Of course,

according to the Frobenius-Perron theorem, Φ(k)(β) is the largest nonegative eigenvalue of

A
(k)
β . Let

Φ(β) = (Φ(1)(β))a(Φ(2)(β))1−a. (4.10)

Theorem 4.3. If Gk = G itself is strongly connected, and satisfies:

(1) sup
k≥1

k|a− ak| < c < ∞, (2) t
(1)
i,j = rt

(2)
i,j , for any (i, j) ∈ Gr < 1,

then the Hausdorff dimension of K is α, where Φ(α) = 1, and K is an α-set.

Proof. It is known the Φ(k)(β) is continuous, Φ(β) is continuous, too. By Theorem 2 in

[5], Φ(k)(0) > 1, and lim
β→∞

Φ(k)(β) = 0. So, there exists a real number α such that Φ(α) = 1.

Since A
(k)
α is irreducible, by the Frobenius-Perron theorem, there is a unique strictly positive

column vector V ,

V =


v1
v2
...
vn

 (4.11)

with
n∑

i=1

vi = 1 and A
(k)
α V = Φ(k)(α)V , i.e. for each i,

vi =
n∑

j=1

(t
(k)
i,j )α

Φ(k)(α)
vj =

∑
(i,j)∈G

(t
(k)
i,j )α

Φ(k)(α)
vj . (4.12)

Let wσ =
|σ|−1∏
i=1

wσ(i),σ(i+1), wσ(k−1),σ(k) = (Φ(k))−1. Then c−1
1 ≤ wσ ≤ c1, where c1 =(

Φ(1)

Φ(2)

)c
+
(
Φ(2)

Φ(1)

)c
.

Define a probability measure µ̂ on G(∞) by setting for each σ ∈ G∗,

µ̂(C(σ)) = wσt
α
σvσ(|σ|), (4.13)

where

C(σ) = {τ ∈ G(∞) : τ ||σ| = σ}. (4.14)

To see that Kolmogorov’s consistency theorem may be applied it is sufficient to note that

if σ ∈ G∗, then ∑
(σ(|σ|),j)∈G

µ̂(C(σ ∗ j)) =
∑

(σ(|σ|),j)∈G

wσ∗jt
α
σ∗jvj

= wσt
α
σ

∑
(σ(|σ|),j)∈G

wσ(|σ|),jt
α
|σ|,jvj

= wσt
α
σvσ(|σ|) = µ̂(C(σ)).
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First, we show that Hα(K) < +∞. For each p, we have

∑
σ∈G(p)

|Jσ|α =
∑

σ∈G(p)

tασ |J(|σ|)|α

and since V is strictly positive,∑
σ∈G(p)

µ̂(C(σ))|J(|σ|)|α/wσvσ(|σ|) = sup{|J(|σ|)|α/{wσvσ(|σ|)}}
∑

σ∈G(p)

µ̂(C(σ))

≤ c1 sup{|Ji|α/vi} < +∞.

By the similar methods in [5], we have

lim sup{|Jσ||σ ∈ G(p)} = 0. (4.15)

Thus

Hα(K) ≤ c1 sup{|Ji|α/vi} < +∞. (4.16)

In order to show 0 < Hα(K), transfer µ̂ to a probability measure on K. Let g be the map

of G(∞) into Rm defined for each σ ∈ G(∞), by {g(σ)} =
∞∩
k=1

Jσ|k. Then g is a continuous

map of G(∞) onto K (see [5]). Let µ = µ̂ ◦ g−1. We will show that there is some c > 0 such

that if E is a Borel subset of Rd with diamE < inf{|Ji|}, then

µ(E) ≤ c|E|α. (4.17)

Of course, this inequality implies 1
c ≤ Hα(K).

Set B = {σi|ki ∈ G∗; |Jσi|ki
| ≤ |E| ≤ |Jσi|ki−1| and E ∩ Jσi|ki

̸= ∅}. Then

µ(E) ≤
∑

σi|ki∈B

µ̂(C(σi|ki)) ≤ #B sup
σi|ki∈B

wσt
α
σi
vσi(ki)

≤ #B sup
σi|ki∈B

c1|E|αvσi(ki)/|Jσi(ki)| ≤ #Bc1|E|α sup
1≤i≤n

vi/|Ji|.

By Lemma V in [5], c2 = #Bc1 sup
1≤i≤n

vi/|Ji| < ∞.

Therefore, (4.17) holds and Theorem 4.2 follows.
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