THE FOURIER SERIES EXPANSIONS OF FUNCTIONS DEFINED ON S-SETS

Liang Jinrong* Li Wanshe* Su Feng* Ren Fuyao*

Abstract

Let E be a compact s-sets of R^{n}. The authors define an orthonormal system Φ of functions on E and obtain that, for any $f(x) \in L^{1}\left(E, \mathcal{H}^{s}\right)$, the Fourier series of f, with respect to Φ, is equal to $f(x)$ at \mathcal{H}^{s}-a.e. $x \in E$. Moreover, for any $f \in L^{p}\left(E, \mathcal{H}^{s}\right) \quad(p \geq 1)$, the partial sums of the Fourier series, with respect to Φ, of f converges to f in L^{p}-norm.

Keywords Hausdorff measure, Fourier series, s-set, Generalized graph directed construction
1991 MR Subject Classification 42A20
Chinese Library Classification O174.2

§1. Introduction

In $[4,6]$, we have studied the convergence of the Fourier series, with respect to an orthonormal system of functions, of each function for any $f(x) \in L^{p}\left(K, \mathcal{H}^{s}\right)(p \geq 1)$, where K is a Moran fractal or a generalized Moran fractal. In [8], for any $f \in L^{p}\left(K_{1}, \mathcal{H}^{s}\right)$, the similar problems are discussed, where K_{1} is a self-similar fractal. In this paper, for any $f \in L^{p}\left(E, \mathcal{H}^{s}\right)$, where E is an arbitrary compact s-set, we can also obtain the similar results.

In $\S 2$, we first study the Fourier series expansions of functions defined on differentiable s-sets. We define a system of functions $\Phi \subset L^{\infty}\left(E, \mathcal{H}^{s}\right)$ and Φ is orthonormal in the Hilbert space $\mathrm{E}^{2}\left(E, \mathcal{H}^{s}\right)$. We show that for any $f(x) \in L^{1}\left(E, \mathcal{H}^{s}\right)$, the Fourier series of $f(x)$, with respect to Φ, is equal to $f(x)$ at \mathcal{H}^{s}-a.e. $x \in E$ and for any $f \in L^{p}\left(E, \mathcal{H}^{s}\right)$, the partial sums of the Fourier series of f converges to f in L^{p}-norm. So the results in $[4,6,8]$ are completely contained in the conclusions in this paper.

In $\S 3$, as E is an arbitrary compact s-set of R^{n}, we give the results for the convergence of the Fourier series of functions in $L^{p}\left(E, \mathcal{H}^{s}\right), 1 \leq p \leq \infty$. So, on the problems of the Fourier series expansions of functions defined on s-sets, we give satisfactory solutions in some sense.

In $\S 4$, we especially discuss a class of compact s-set produced by generalized graph directed constructions.

Note. A set $E \subset R^{n}$ is said to be an s-set, if E is \mathcal{H}^{s}-measurable and $0<\mathcal{H}^{s}(E)<\infty$, where \mathcal{H}^{s} denotes s-dimensional Hausdorff measure. For more details about s-sets, see [1] or [2].

[^0]
§2. The Fourier Series Expansions of Functions Defined on Differentiable s-Sets

For the sake of completeness, we first give a few definitions (also see [6]).
Definition 2.1. Let E be an \mathcal{H}^{s}-measurable set. For each $x \in E$, let $\mathcal{B}(x)$ be a collection of bounded \mathcal{H}^{s}-measurable sets with positive measure containing x such that there is at least a sequence $\left\{U_{k}\right\} \subset \mathcal{B}(x)$ with $\left|U_{k}\right| \rightarrow 0(k \rightarrow \infty)$. The whole collection $\mathcal{B}=\bigcup_{x \in E} \mathcal{B}(x)$ will be called a differentiation basis for $\left(E, \mathcal{H}^{s}\right)$.

Definition 2.2. Let \mathcal{B} be a differentiation basis for $\left(E, \mathcal{H}^{s}\right)$. For each measurable set A and for almost every $x \in E$, if $\left\{U_{k}\right\}$ is an arbitrary sequence of $\mathcal{B}(x)$ contracting to x, then

$$
D(E, x)=\lim _{k \rightarrow \infty} \frac{\mathcal{H}^{s}\left(A \cap U_{k}\right)}{\mathcal{H}^{s}\left(U_{k}\right)}=\mathcal{X}_{A}(x)
$$

We call \mathcal{B} a density basis, where \mathcal{X} is the characteristic function.
Definition 2.3. Let \mathcal{B} be a differentiation basis for $\left(E, \mathcal{H}^{s}\right)$ and let $f \in L^{p}\left(E, \mathcal{H}^{s}\right)(1 \leq$ $p \leq \infty)$. If

$$
\lim _{k \rightarrow \infty}\left\{\frac{1}{\mathcal{H}^{s}\left(U_{k}\right)} \int_{U_{k}} f d \mathcal{H}^{s}: \quad\left\{U_{k}\right\} \subset \mathcal{B}(x),\left|U_{k}\right| \rightarrow 0\right\}=f(x)
$$

for almost every $x \in E$, then we shall say that \mathcal{B} differentiates $\int f$. We write $D\left(\int f, x\right)=$ $f(x)$.

When \mathcal{B} differentiates $\int f$ for each f in a class X of functions, we shall also say that \mathcal{B} differentiates X.

Definition 2.4. Given a differentiation basis \mathcal{B} for $\left(E, \mathcal{H}^{s}\right)$, we define the maximal operator associated to the basis \mathcal{B} by

$$
M f(x)=\sup _{U \in \mathcal{B}(x)} \frac{1}{\mathcal{H}^{s}(U)} \int_{U}|f(y)| d \mathcal{H}^{s}(y) \quad \text { for all } \quad x \in E
$$

for every function $f \in L^{1}\left(E, \mathcal{H}^{s}\right)$.
Definition 2.5. Let E be an s-set of R^{n}. We say that E is a differentiable s-set, if the following conditions are satisfied:
(a) There exist finite disjoint subsets $A_{i_{1}}$ of $R^{n}, i_{1}=1, \ldots, m$, such that

$$
E \subset \bigcup_{i_{1}=1}^{m} A_{i_{1}}
$$

For each $A_{i_{1}}$, there are finite disjoint subsets $A_{i_{1} i_{2}}, 1 \leq i_{2} \leq m_{i_{1}}, m_{i_{1}} \in N$, such that

$$
A_{i_{1} i_{2}} \subset A_{i_{1}} \quad \text { and } \quad E \subset \bigcup_{i_{1}, i_{2}} A_{i_{1} i_{2}}
$$

In general, as the sets $A_{i_{1} \cdots i_{k-1}}$ are determined, there are finite disjoint subsets $A_{i_{1} \cdots i_{k}}$ such that $A_{i_{1} \cdots i_{k}} \subset A_{i_{1} \cdots i_{k-1}}$ and $E \subset \bigcup_{i_{1}, \ldots, i_{k}} A_{i_{1} \ldots i_{k}}$ where $i_{1}=1, \ldots, m, 1 \leq i_{j} \leq$ $m_{i_{1} \cdots i_{j-1}}, 1<j \leq k, m_{i_{1} \cdots i_{j-1}} \in N$.
(b) $\left|A_{i_{1} \cdots i_{k}}\right| \rightarrow 0 \quad(k \rightarrow \infty)$, where $\left|A_{i_{1} \cdots i_{k}}\right|$ denotes the diameter of $A_{i_{1} \cdots i_{k}}$.
(c) $\mathcal{H}^{s}\left(E \cap A_{i_{1} \cdots i_{k}}\right)>0(k \geq 1)$.
$\left\{A_{i_{1} \cdots i_{k}}: 1 \leq i_{1} \leq m, 1 \leq i_{2} \leq m_{i_{1}}, \ldots, 1 \leq i_{k} \leq m_{i_{1} \cdots i_{k-1}}, k \geq 1\right\}$ is said to be a differentiation cover of E.

Theorem 2.1. Let E be a differentiable s-set of R^{n}, and assume that E is local compact. Then
(a) there exists a system of functions $\Phi=\left\{g_{n}(x)\right\}_{n \geq 1} \subset L^{\infty}\left(E, \mathcal{H}^{s}\right)$ such that Φ is orthonormal in the Hilbert space $L^{2}\left(E, \mathcal{H}^{s}\right)$;
(b) for any $f(x) \in L^{1}\left(E, \mathcal{H}^{s}\right)$,

$$
\sum_{m=1}^{n}\left\langle f, g_{m}\right\rangle g_{m} \rightarrow f(x) \quad \text { at } \quad \mathcal{H}^{s}-\text { a.e. } x \in E
$$

where $\left\langle f, g_{m}\right\rangle=\int_{E} f(x) g_{m}(x) d \mathcal{H}^{s}(x)$;
(c) for any $f(x) \in L^{p}\left(E, \mathcal{H}^{s}\right), 1 \leq p \leq \infty$,

$$
\left\|\sum_{m=1}^{n}\left\langle f, g_{m}\right\rangle g_{m}-f\right\|_{p} \rightarrow 0 \quad(n \rightarrow \infty)
$$

The proof of Theorem 2.1 consists of the following theorems.
Lemma 2.1. Suppose that E is a differentiable s-set in R^{n} and

$$
\left\{A_{i_{1} \cdots i_{k}}: k \geq 1,1 \leq i_{1} \leq m, 1 \leq i_{j} \leq m_{i_{1} \cdots i_{j-1}}, 1<j \leq k\right\}
$$

is a differentiation cover of E. Write

$$
\begin{aligned}
E_{i_{1} \cdots i_{k}} & =E \cap A_{i_{1} \cdots i_{k}} \quad(k \geq 1), & \mathcal{A}=\bigcup_{k \geq 1} \bigcup_{i_{1}, \cdots, i_{k}} E_{i_{1} \cdots i_{k}} \\
\mathcal{A}(x) & =\{A: \quad A \in \mathcal{A}, x \in A\} & \text { for all } \quad x \in E .
\end{aligned}
$$

Then
(a) \mathcal{A} is a differentiation cover of E;
(b) \mathcal{A} is a density basis for $\left(E, \mathcal{H}^{s}\right)$.

Proof. The proof of (a) is trivial. The proof of (b) can be finished by a method similar to that used in the proof of Theorem 3.3 in [7].

Lemma 2.2. Let E be a local compact subset of R^{n} and the conditions of Lemma 2.1 are satisfied. Then for any $f \in L^{1}\left(E, \mathcal{H}^{s}\right)$,

$$
\begin{equation*}
D\left(\int f, x\right)=\lim _{k \rightarrow \infty}\left\{\frac{1}{\mathcal{H}^{s}\left(U_{k}\right)} \int_{U_{k}} f d \mathcal{H}^{s}: \quad\left\{U_{k}\right\} \subset \mathcal{A}(x), U_{k} \rightarrow x\right\}=f(x) \tag{2.1}
\end{equation*}
$$

at \mathcal{H}^{s}-a.e. $x \in E$.
Proof. Because E is a local compact s-set, and \mathcal{A} is a density basis and Hausdorff measure is regular, the result similar to Theorem 1.4 in [3, Chp. III] is valid after the measure and Lebesgue integral are respectively replaced by the Hausdorff measure and Hausdorff integral. That is, \mathcal{B} differentiates $L^{\infty}\left(E, \mathcal{H}^{s}\right)$.

For any $f \in L^{1}\left(E, \mathcal{H}^{s}\right)$ and any $x \in E$, let

$$
f_{k}(x)= \begin{cases}f(x), & \text { if }|f(x)|<k \\ 0, & \text { if }|f(x)| \geq k\end{cases}
$$

and $f=f_{k}+f^{k}$.
Then $D\left(\int f_{k}, x\right)=f_{k}(x)$ for \mathcal{H}^{s}-a.e. $x \in E$.

For $\varepsilon>0$, we have

$$
\begin{aligned}
& \mathcal{H}^{s}\left(\left\{x \in E:\left|D\left(\int f, x\right)-f(x)\right|>\varepsilon\right\}\right) \\
= & \mathcal{H}^{s}\left(\left\{x \in E:\left|D\left(\int f^{k}, x\right)-f^{k}(x)\right|>\varepsilon\right\}\right) \\
\leq & \mathcal{H}^{s}\left(\left\{x \in E: D\left(\int f^{k}, x\right)>\varepsilon / 2\right\}\right)+\mathcal{H}^{s}\left(\left\{x \in E: f^{k}(x)>\varepsilon / 2\right\}\right) \\
\leq & \mathcal{H}^{s}\left(\left\{x: M f^{k}(x)>\varepsilon / 2\right\}\right)+\mathcal{H}^{s}\left(\left\{x: f^{k}(x)>\varepsilon / 2\right\}\right) .
\end{aligned}
$$

The second term in the last member of this chain of inequalities tends to zero as $k \rightarrow \infty$ by the preceding hypothesis.

On the other hand, without any substantial change in the proof with respect to Theorem 3.4 in [7], we may get that for any $f \in L^{1}\left(E, \mathcal{H}^{s}\right)$ and every number $\epsilon>0$,

$$
\mathcal{H}^{s}(x \in E: M f(x)>\epsilon) \leq c \frac{\|f\|_{1}}{\epsilon}
$$

where $c>0$ is a constant independent of ϵ and f.
So we have that $\mathcal{H}^{s}\left(\left\{x \in E: M f^{k}(x)>\varepsilon / 2\right\}\right) \leq 2 c\left\|f^{k}\right\|_{1} / \varepsilon$. But $\left\|f^{k}\right\|_{1} \rightarrow 0$ as $k \rightarrow \infty$, hence $\mathcal{H}^{s}\left(\left\{x \in E:\left|D\left(\int f, x\right)-f(x)\right|>\varepsilon\right\}\right)=0$.

Noting the arbitrariness of ε, we may obtain that $D\left(\int f, x\right)=f(x)$ at $\mathcal{H}^{s}-$ a.e. $x \in E$.
The proof is finished.
Now we begin to define a collection of functions with supports on E. The meanings of the following sets $E_{i_{1} \cdots i_{k}}$ and E are the same as those in Lemma 2.1.

A function with support on E is defined by

$$
\begin{equation*}
g_{-1}(x)=\mathcal{H}^{s}(E)^{-\frac{1}{2}} \text { for all } \quad x \in E \tag{2.2}
\end{equation*}
$$

$m-1$ functions $g_{0}^{h}, 1 \leq h \leq m-1$, with supports on the sets $\bigcup_{i_{1}=1}^{h+1} E_{i_{1}} \subset E$ are defined as

$$
g_{0}^{h}(x)= \begin{cases}C_{h}^{-\frac{1}{2}}, & \text { if } x \in \bigcup_{i_{1}=1}^{h} E_{i_{1}} \tag{2.3}\\ -C_{h}^{-\frac{1}{2}} \mathcal{H}^{s}\left(E_{h+1}\right)^{-1} \sum_{i_{1}=1}^{h} \mathcal{H}^{s}\left(E_{i_{1}}\right), & \text { if } x \in E_{h+1} \\ 0, & \text { otherwise }\end{cases}
$$

where $C_{h}=\mathcal{H}^{s}\left(E_{h+1}\right)^{-1} \sum_{i_{1}=1}^{h} \mathcal{H}^{s}\left(E_{i_{1}}\right) \sum_{i_{1}=1}^{h+1} \mathcal{H}^{s}\left(E_{i_{1}}\right)$.
Finally, for every $i_{1} \cdots i_{k}, k \geq 1$, we define $m_{i_{1} \cdots i_{k}}-1$ functions $g_{i_{1} \cdots i_{k}}^{h}, 1 \leq h \leq m_{i_{1} \cdots i_{k}}-1$, whose supports are $\bigcup_{i=1}^{h+1} E_{i_{1} \cdots i_{k} i} \subset E_{i_{1} \cdots i_{k}}$. They are

$$
g_{i_{1} \cdots i_{k}}^{h}(x)= \begin{cases}C_{i_{1} \cdots i_{k} h}^{-\frac{1}{2}} \mathcal{H}^{s}\left(E_{i_{1} \cdots i_{k}}\right)^{-\frac{1}{2}}, & \text { if } x \in \bigcup_{i=1}^{h} E_{i_{1} \cdots i_{k} i}, \tag{2.4}\\ -C_{i_{1} \cdots i_{k} h}^{-\frac{1}{2}} \mathcal{H}^{s}\left(E_{i_{1} \cdots i_{k}}\right)^{-\frac{1}{2}} \mathcal{H}^{s}\left(E_{i_{1} \cdots i_{k}(h+1)}\right)^{-1} . & \\ \cdot \sum_{i=1}^{h} \mathcal{H}^{s}\left(E_{i_{1} \cdots i_{k} i}\right), & \text { if } x \in E_{i_{1} \cdots i_{k}(h+1)}, \\ 0, & \text { otherwise },\end{cases}
$$

where $C_{i_{1} \cdots i_{k} h}=\mathcal{H}^{s}\left(E_{i_{1} \cdots i_{k}}\right)^{-1} \mathcal{H}^{s}\left(E_{i_{1} \cdots i_{k}(h+1)}\right)^{-1} \sum_{i=1}^{h+1} \mathcal{H}^{s}\left(E_{i_{1} \cdots i_{k} i}\right) \sum_{i=1}^{h} \mathcal{H}^{s}\left(E_{i_{1} \cdots i_{k} i}\right)$.
Let the system Φ be

$$
\begin{align*}
\Phi= & \left\{g_{-1}\right\} \cup\left\{g_{0}^{h}: 1 \leq h \leq m-1\right\} \\
& \cup\left\{g_{i_{1} \cdots i_{k}}^{h}: k \geq 1,1 \leq i_{1} \leq m, 1 \leq i_{j} \leq m_{i_{1} \cdots i_{j-1}}, 1<j \leq k, 1 \leq h \leq m_{i_{1} \cdots i_{k}}-1\right\} . \tag{2.5}
\end{align*}
$$

Since $\mathcal{H}^{s}(E)<\infty$, it is easy to show that $\Phi \subset L^{\infty}\left(E, \mathcal{H}^{s}\right) \subset L^{p}\left(E, \mathcal{H}^{s}\right), p \geq 1$.
Theorem 2.2. Let E be a differentiable s-set, then there exists a system of functions $\Phi \subset L^{\infty}\left(E, \mathcal{H}^{s}\right)$ such that Φ is orthonormal in the Hilbert space $L^{2}\left(E, \mathcal{H}^{s}\right)$.

Proof. Let Φ be a system of functions in (2.5). Then $\Phi \subset L^{\infty}\left(E, \mathcal{H}^{s}\right)$. The proof of the orthonormality of Φ is completely similar to Theorem 2.1 in [4]. The proof is finished.

For any $f(x) \in L^{1}\left(E, \mathcal{H}^{s}\right)$, we define its Fourier series, with respect to Φ, as

$$
\begin{equation*}
f(x) \sim a_{-1} g_{-1}(x)+\sum_{h=1}^{m-1} a_{0}^{h} g_{0}^{h}(x)+\sum_{k=1}^{\infty} \sum_{\substack{1 \leq i_{1} \leq m, 1 \leq i_{2} \leq m_{i_{1}}, 1 \leq i_{k} \leq m i_{1} \cdots i_{k-1}}} \sum_{h=1}^{m_{i_{1} \cdots i_{k}}-1} a_{i_{1} \cdots i_{k}}^{h} g_{i_{1} \cdots i_{k}}^{h}(x), \tag{2.6}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{-1} & =\left\langle f, g_{-1}\right\rangle=\int_{E} f(y) g_{-1}(y) d \mathcal{H}^{s}(y), \quad a_{0}^{h}=\left\langle f, g_{0}^{h}\right\rangle=\int_{E} f(y) g_{0}^{h}(y) d \mathcal{H}^{s}(y), \\
a_{i_{1} \cdots i_{k}}^{h} & =\left\langle f, g_{i_{1} \cdots i_{k}}^{h}\right\rangle=\int_{E} f(y) g_{i_{1} \cdots i_{k}}^{h}(y) d \mathcal{H}^{s}(y), \quad k \geq 1,
\end{aligned}
$$

$1 \leq h \leq m_{i_{1} \cdots i_{k}}-1,1 \leq i_{1} \leq m, 1 \leq i_{j} \leq m_{i_{1} \cdots i_{j-1}}, 1<j \leq k$, are the Fourier coefficients of f with respect to Φ.

We denote the partial sums of the Fouier series (2.6) by

$$
\begin{align*}
& \mathcal{S}_{n+1}^{j_{1} \cdots j_{n+1} ; q} f(x) \\
& =a_{-1} g_{-1}(x)+\sum_{h=1}^{m-1} a_{0}^{h} g_{0}^{h}(x)+\sum_{k=1}^{n} \sum_{i_{1}, \ldots, i_{k}} \sum_{h=1}^{m_{i_{1} \cdots i_{k}}-1} a_{i_{1} \cdots i_{k}}^{h} g_{i_{1} \cdots i_{k}}^{h}(x) \\
& \quad+\sum_{i_{1} \cdots i_{n+1} \prec j_{1} \cdots j_{n+1}}^{m_{i_{1} \cdots i_{n+1}} \sum_{h=1} a_{i_{1} \cdots i_{n+1}}^{h} g_{i_{1} \cdots i_{n+1}}^{h}(x)+\sum_{h=1}^{q} a_{j_{1} \cdots j_{n+1}}^{h} g_{j_{1} \cdots j_{n+1}}^{h}(x),} \tag{2.7}
\end{align*}
$$

where $n \geq 1,1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m_{j_{1}}, \cdots, 1 \leq j_{n+1} \leq m_{j_{1} \cdots j_{n}}$, and $1 \leq q \leq m_{j_{1} \cdots j_{n+1}}-1$, and $i_{1} \cdots i_{n+1} \prec j_{1} \cdots j_{n+1}$ means that if there is an $h, 1 \leq h \leq n+1$, such that

$$
\begin{aligned}
& i_{p}=j_{p}, \quad \text { if } \quad 1 \leq p<h \\
& i_{h}<j_{h}
\end{aligned}
$$

we always suppose $i_{1} \cdots i_{k} \prec j_{1} \cdots j_{k} j_{k+1}, k \geq 1$.
Note. In (2.7) q may be zero. If $q=0$, then the last term in the right side of (2.7) is zero.

By using the similar method used in [4], we may obtain the following lemma.
Lemma 2.3. The meanings of $E_{i_{1} \cdots i_{k}}$ and E are the same as above. For any $n \geq 1,1 \leq$ $j_{1} \leq m, 1 \leq j_{k} \leq m_{i_{1} \cdots i_{k-1}}, 1<k \leq n+1,1 \leq q \leq m_{j_{1} \cdots j_{n+1}}-1$, write $\alpha=i_{1} \cdots i_{n+1}, \beta=$
$j_{1} \cdots j_{n+1}$. Then for any $f \in L^{1}\left(E, \mathcal{H}^{s}\right)$, we have

Using Lemmas 2.2 and 2.3 we immediately obtain the following theorem.
Theorem 2.3. Let E be a local compact and differentiable s-set. Then for any $f \in$ $L^{1}\left(E, \mathcal{H}^{s}\right)$ the partial sums of its Fourier series, with respect to Φ, converge to f at \mathcal{H}^{s}-a.e. $x \in E$.

Corollary. The system Φ is L^{2}-complete, i.e. if $f \in L^{2}\left(E, \mathcal{H}^{s}\right)$ is orthogonal to every function in Φ, then $f(x)=0$ for \mathcal{H}^{s}-a.e. $x \in E$.

Proof. Suppose that $f \in L^{2}\left(E, \mathcal{H}^{s}\right)$ is orthogonal to every function g in Φ, i.e., $\int_{E} f g d \mathcal{H}^{s}$ $=0$. Then it is clear that $\mathcal{S}_{n+1}^{j_{1} \cdots j_{n+1} ; q} f(x)=0 \quad$ for all $\quad x \in E$ and for every $n \geq 1$, $1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m_{j_{1}}, \cdots, 1 \leq j_{n+1} \leq m_{j_{1} \cdots j_{n}}, 1 \leq q \leq m_{j_{1} \cdots j_{n+1}}-1$. Then using Theorem 2.3, we have that $f(x)=0$ at $\mathcal{H}^{s}-$ a.e. $x \in E$. The proof is finished.

Since Φ is an L^{2}-complete system, we can obtain the same results as the classic results of the Hilbert spaces.

Theorem 2.4. If $f(x) \in L^{2}\left(E, \mathcal{H}^{s}\right)$, and $\left\{a_{k}\right\}_{k \geq 1}$ are its Fourier coefficients with respect to Φ, then
(a) $\|f\|_{2}^{2}=\sum_{k=1}^{\infty} a_{k}^{2}<\infty$.
(b) $\left\|\mathcal{S}_{n+1}^{j_{1} \cdots j_{n+1} ; q} f-f\right\|_{2} \longrightarrow 0$.
(c) If $F(x) \in L^{2}\left(E, \mathcal{H}^{s}\right),\left\{b_{k}\right\}_{k \geq 1}$ are its Fourier coefficients with respect to Φ, then

$$
(f, F)=\int_{E} f(y) F(y) d \mathcal{H}^{s}(y)=\sum_{k=1}^{\infty} a_{k} b_{k}
$$

(d) If $\left\{b_{k}\right\}_{k \geq 1}$ is a sequence of real numbers such that $\sum_{k=1}^{\infty} b_{k}^{2}<\infty$, then there exists a unique function $f \in L^{2}\left(E, \mathcal{H}^{s}\right)$, so that $\left\{b_{k}\right\}_{k \geq 1}$ are its Fourier coefficients with respect to Φ and f satisfies (a) and (b).

Theorem 2.5. For convenience, write the system Φ in (2.5) as $\left\{g_{k}\right\}_{k \geq 1}$ and let $1 \leq p \leq$ ∞ and $\left\{b_{k}\right\}_{k \geq 1}$ is a sequence of real numbers which satisfies

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|b_{k}\right|\left\|g_{k}\right\|_{p}<\infty \tag{2.8}
\end{equation*}
$$

Then there is a unique function $f \in L^{p}\left(E, \mathcal{H}^{s}\right)$ so that $\left\{b_{k}\right\}_{k \geq 1}$ are its Fourier coefficients, and

$$
\begin{equation*}
\left\|\mathcal{S}_{n+1}^{j_{1} \cdots j_{n+1} ; q} f-f\right\|_{p} \longrightarrow 0 \tag{2.9}
\end{equation*}
$$

where the meanings of $j_{1} \cdots j_{n+1}, q$ and E are the same as above.

Moreover, if $f \in L^{p}$, its Fourier coefficients $\left\{a_{k}\right\}_{k \geq 1}$ satisfy (2.8), then the Fourier series of the function f converges to f in L^{p}-norm.

The method used for the proof is similar to Theorem 3.4 in [4].
Therefore, the proof of Theorem 2.1 is finished by Theorem 2.2, Theorem 2.3 and Theorem 2.5.

§3. The Fourier Series Expansions of Functions Defined on Compact s-Sets

Theorem 3.1. Let E be a compact s-set of R^{n}. Then (a), (b) and (c) of Theorem 2.1 are satisfied.

Proof. Let $B_{r}(x)$ denote the ball of centre x and radius r so that $\left|B_{r}(x)\right|=2 r$. For each $x \in R^{n}$, write

$$
\begin{equation*}
\bar{D}_{1}^{s}(E, x)=\limsup _{r \rightarrow \infty} \frac{\mathcal{H}^{s}\left(E \cap B_{r}(x)\right)}{(2 r)^{s}} . \tag{3.1}
\end{equation*}
$$

Then using the same steps of proving Corollary 2.5 in [1] we can obtain

$$
\begin{equation*}
2^{-s} \leq \bar{D}_{1}^{s}(E, x) \leq 1 \tag{3.2}
\end{equation*}
$$

at almost all $x \in E$. We might as well suppose, for any $x \in E$, the inequality (3.2) is satisfied.

Fix $\varepsilon>0$ with $2^{-s}-\varepsilon>0$. Then for any $x \in E$, by (3.1) and (3.2), there exists $r_{n} \downarrow 0$ (means that r_{n} converges decreasingly to 0) such that

$$
\begin{equation*}
2^{-s} \leq \lim _{n \rightarrow \infty} \frac{\mathcal{H}^{s}\left(E \cap B_{r_{n}}(x)\right)}{\left(2 r_{n}\right)^{s}} \leq 1 \tag{3.3}
\end{equation*}
$$

and so there exists an N_{x} such that as $n>N_{x}$,

$$
\begin{equation*}
\mathcal{H}^{s}\left(E \cap B_{r_{n}}(x)\right)>\left(2^{-s}-s\right)\left(2 r_{n}\right)^{s}>0 \tag{3.4}
\end{equation*}
$$

Without loos of generality, we may suppose all the balls $B_{r_{n}}(x)$ in (3.3) satisfy the inequality (3.4).

For each $x \in E$, let $\mathcal{B}=\bigcup_{n=1}^{\infty} B_{r_{n}}(x)$, where $B_{r_{n}}(x)$ satisfies (3.4) and let $\mathcal{B}=\bigcup_{x \in E} \mathcal{B}(x)$. Then \mathcal{B} is an open cover of E. By the finite covering theorem, there are finite balls $B_{r_{1}}\left(x_{1}\right), \cdots, B_{r_{m}}\left(x_{m}\right) \in \mathcal{B}$ such that $E \subset \bigcup_{i=1}^{m} B_{r_{i}}\left(x_{i}\right)$ and we also assume that no one of them is contained in the other. If let

$$
B_{1}^{\prime}=B_{r_{1}}\left(x_{1}\right), B_{2}^{\prime}=B_{r_{2}}\left(x_{2}\right)-B_{r_{1}}\left(x_{1}\right), \cdots, B_{m}^{\prime}=B_{r_{m}}\left(x_{m}\right)-\left(\bigcup_{i=1}^{m-1} B_{r_{i}}\left(x_{i}\right)\right)
$$

then $B_{i}^{\prime}(i=1, \cdots, m)$ are disjoint and $E \subset \bigcup_{i=1}^{m} B_{i}^{\prime}$. (Of course, the ways of dividing $\bigcup_{i=1}^{m} B_{r_{i}}\left(x_{i}\right)$ into finite disjoint sets are not unique, the number of the produced sets may be not equal.)

Write $E_{i_{1}}=E \cap B_{i_{1}}^{\prime}, \quad i_{1}=1, \cdots, m$. Then $\left\{E_{i_{1}}: i_{1}=1, \cdots, m\right\}$ are disjoint and $E=\bigcup_{i_{1}=1}^{m} E_{i_{1}}$.

For any $x \in \bar{E}_{i_{1}}\left(\bar{E}_{i_{1}}\right.$ denotes the closure of $\left.E_{i_{1}}\right)$, let

$$
\mathcal{B}_{i_{1}}(x)=\left\{B \in \mathcal{B}(x):|B|<2 \min _{1 \leq i_{1} \leq m}\left\{r_{i_{1}}\right\}, x \in B\right\}, \quad \mathcal{B}_{i_{1}}=\bigcup_{x \in \bar{E}_{i_{1}}} \mathcal{B}_{i_{1}}(x) .
$$

Then $\mathcal{B}_{i_{1}}$ is an open cover of $\bar{E}_{i_{1}}$, and so we can choose a finite sub-cover denoted by $\left\{B_{r_{i_{1} i_{2}}}\left(x_{i_{1} i_{2}}\right): i_{1}=1, \cdots, m, i_{2}=1, \cdots, m_{i_{1}}^{\prime}\right\}$. We can divide $\left\{B_{r_{i_{1} i_{2}}}\left(x_{i_{1} i_{2}}\right): 1 \leq i_{1} \leq\right.$ $\left.m, 1 \leq i_{2} \leq m_{i_{1}}^{\prime}\right\}$ into disjoint sets $\left\{B_{i_{1} i_{2}}: 1 \leq i_{1} \leq m, 1 \leq i_{2} \leq m_{i_{1}}\right\}$ such that $\bar{E}_{i_{1}} \subset \bigcup_{i_{2}=1}^{m_{i_{1}}} B_{i_{1} i_{2}}^{\prime}$ and $B_{i_{1} i_{2}}^{\prime}$ is a subset of some $B_{r_{i_{1} j}}\left(x_{i_{1} j}\right)\left(1 \leq j \leq m_{i_{1}}^{\prime}\right)$. Let

$$
E_{i_{1} i_{2}}=E_{i_{1}} \cap B_{i_{1} i_{2}}^{\prime}
$$

Then $E_{i_{1} i_{2}}, i_{1}=1, \cdots, m, i_{2}=1, \cdots, m_{i_{1}}$, are disjoint and

$$
E_{i_{1} i_{2}} \subset E_{i_{1}}, \quad E_{i_{1}}=\bigcup_{i_{2}} E_{i_{1} i_{2}}, \quad E=\bigcup_{i_{1}, i_{2}} E_{i_{1}, i_{2}}
$$

For any $x \in \bar{E}_{i_{1} i_{2}}$, let

$$
\mathcal{B}_{i_{1} i_{2}}(x)=\left\{B \in \mathcal{B}(x):|B|<2 \min _{i_{1}, i_{2}}\left(r_{i_{1} i_{2}}\right), x \in B\right\}, \quad \mathcal{B}_{i_{1} i_{2}}=\bigcup_{x \in \bar{E}_{i_{1} i_{2}}} \mathcal{B}_{i_{1} i_{2}}(x) .
$$

Similarly, we can obtain finite disjoint sets $B_{i_{1} i_{2} i_{3}}^{\prime}$ and by letting

$$
E_{i_{1} i_{2} i_{3}}=E_{i_{1} i_{2}} \cap B_{i_{1} i_{2} i_{3}}^{\prime},
$$

we get a cover $\left\{E_{i_{1} i_{2} i_{3}}: 1 \leq i_{1} \leq m, 1 \leq i_{2} \leq m_{i_{1}}, 1 \leq i_{3} \leq m_{i_{1} i_{2}}\right\}$ of E such that $\left\{E_{i_{1} i_{2} i_{3}}\right\}$ are disjoint and

$$
E_{i_{1} i_{2} i_{3}} \subset E_{i_{1} i_{2}}, \quad E_{i_{1} i_{2}}=\bigcup_{i_{3}} E_{i_{1} i_{2} i_{3}}, \quad E=\bigcup_{i_{1}, i_{2}, i_{3}} E_{i_{1} i_{2} i_{3}} .
$$

The rest may be deduced by analogy.
In general, we obtain finite disjoint sets $E_{i_{1} \cdots i_{k}}$ such that

$$
\begin{equation*}
E_{i_{1} \cdots i_{k}} \subset E_{i_{1} \cdots i_{k-1}}, \quad E_{i_{1} \cdots i_{k-1}}=\bigcup_{i_{k}} E_{i_{1} \cdots i_{k}}, \quad E=\bigcup_{i_{1}, \ldots, i_{k}} E_{i_{1} \cdots i_{k}} \tag{3.5}
\end{equation*}
$$

where $k>1,1 \leq i_{1} \leq m, 1 \leq i_{j} \leq m_{i_{1} \cdots i_{j-1}}, 1<j \leq k$.
We might as well suppose $\mathcal{H}^{s}\left(E_{i_{1} \cdots i_{k}}\right)>0(k \geq 1)$. (If not, we shall give a detailed explanation later in the remark.)

By using the definitons of (2.2), (2.3) and (2.4), we may obtain a system of functions $\Phi \subset L^{\infty}\left(E, \mathcal{H}^{s}\right)$ and Φ is orthonormal in the Hilbert space $L^{2}\left(E, \mathcal{H}^{s}\right)$. (Of course, $E_{i_{1} \cdots i_{k}}$ in the definitions means those in (3.5).)

In addition, we can see that $\left|E_{i_{1} \cdots i_{k}}\right| \rightarrow 0(k \rightarrow \infty)$ from the preceding process. So when E is a compact s-set, we can also obtain the same results as Theorem 2.1 by using Theorem 2.2, Theorem 2.3 and Theorem 2.5.

The proof is finished.
Remark. If $E_{i_{1} \cdots i_{k}}$ chosen in the proof of Theorem 3.1 satisfies $\mathcal{H}^{s}\left(E_{i_{1} \cdots i_{k}}\right)=0$, then we shall not consider this set. Finally, we obtain a subset of E denoted by E_{0} and a sequence of sets $E_{i_{1} \cdots i_{k}}^{\prime}$ such that $\left\{E_{i_{1} \cdots i_{k}}^{\prime}: 1 \leq i_{1} \leq n, 1 \leq i_{2} \leq n_{i_{1}}, \ldots, 1 \leq i_{k} \leq n_{i_{1} \cdots i_{k-1}}\right\}$ are
disjoint and

$$
\begin{aligned}
\mathcal{H}^{s}\left(E_{i_{1} \cdots i_{k}}^{\prime}\right) & >0, \quad E_{0}=\bigcup_{i_{1}, \cdots, i_{k}} E_{i_{1} \cdots i_{k}}^{\prime}, \quad E_{i_{1} \cdots i_{k}}^{\prime} \subset E_{i_{1} \cdots i_{k-1}}^{\prime}, \\
E_{i_{1} \cdots i_{k-1}} & =\bigcup_{i_{k}} E_{i_{1} \cdots i_{k}}^{\prime}, \quad \mathcal{H}^{s}\left(E_{0}\right)=\mathcal{H}^{s}(E) .
\end{aligned}
$$

Now we define a sequence of functions on E as

$$
\begin{aligned}
& g_{-1}(x)=\mathcal{H}^{s}(E)^{-\frac{1}{2}} \text { for all } x \in E, \\
& g_{0}^{h}(x)= \begin{cases}C_{h}^{-\frac{1}{2}}, & \text { if } x \in \bigcup_{i_{1}=1}^{h} E_{i_{1}}^{\prime} \\
-C_{h}^{-\frac{1}{2}} \mathcal{H}^{s}\left(E_{h+1}^{\prime}\right)^{-1} \sum_{i_{1}=1}^{h} \mathcal{H}^{s}\left(E_{i_{1}}^{\prime}\right), & \text { if } x \in E_{h+1}^{\prime} \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

where $C_{h}=\mathcal{H}^{s}\left(E_{h+1}^{\prime}\right)^{-1} \sum_{i_{1}=1}^{h} \mathcal{H}^{s}\left(E_{i_{1}}^{\prime}\right) \sum_{i_{1}=1}^{h+1} \mathcal{H}^{s}\left(E_{i_{1}}^{\prime}\right), 1 \leq h \leq n-1$.

$$
g_{\alpha}^{h}(x)= \begin{cases}C_{\alpha h}^{-\frac{1}{2}} \mathcal{H}^{s}\left(E_{\alpha}^{\prime}\right)^{-\frac{1}{2}}, & \text { if } x \in \bigcup_{i=1}^{h} E_{\alpha i}^{\prime} \\ -C_{\alpha h}^{-\frac{1}{2}} \mathcal{H}^{s}\left(E_{\alpha}^{\prime}\right)^{-\frac{1}{2}} \mathcal{H}^{s}\left(E_{\alpha(h+1)}^{\prime}\right)^{-1} \sum_{i=1}^{h} \mathcal{H}^{s}\left(E_{\alpha i}^{\prime}\right), & \text { if } x \in E_{\alpha(h+1)}^{\prime} \\ 0, & \text { otherwise }\end{cases}
$$

where $\alpha=i_{1} \cdots i_{k}, 1 \leq i_{1} \leq n, 1 \leq i_{j} \leq n_{i_{1} \cdots i_{j-1}}, 1<j \leq k, 1 \leq h \leq n_{i_{1} \cdots i_{k}}-1$ and

$$
C_{\alpha h}=\mathcal{H}^{s}\left(E_{\alpha}^{\prime}\right)^{-1} \mathcal{H}^{s}\left(E_{\alpha(h+1)}^{\prime}\right)^{-1} \sum_{i=1}^{h+1} \mathcal{H}^{s}\left(E_{\alpha i}^{\prime}\right) \sum_{i=1}^{h} \mathcal{H}^{s}\left(E_{\alpha i}^{\prime}\right) .
$$

It is easy to show that

$$
\begin{aligned}
\left\{g_{-1}\right\} & \cup\left\{g_{0}^{h}: 1 \leq h \leq n-1\right\} \\
& \cup\left\{g_{i_{1} \cdots i_{k}}^{h}: k \geq 1,1 \leq i_{1} \leq n, 1 \leq i_{j} \leq n_{i_{1} \cdots i_{j-1}}, 1<j \leq k, 1 \leq h \leq n_{i_{1} \cdots i_{k}}-1\right\} \\
& \subset L^{\infty}\left(E, \mathcal{H}^{s}\right)
\end{aligned}
$$

By using the similar to preceding steps and noting $\mathcal{H}^{s}\left(E-E_{0}\right)=0$, we can show that Theorem 3.1 is always valid.

§4. Generalized Ratios Graph Directed Constructions

A generalized ratio graph directed construction in R^{m} consists of
(1) a finite sequence of nonoverlapping, compact subsets of $R^{m}: J_{1}, J_{2}, \cdots, J_{n}$ such that each J_{i} has a nonempty interior,
(2) a sequence of directed graph $\left\{G_{k}\right\}$ with vertex set consisting of the integers $1, \cdots, n$, and contract maps $T_{i, j}^{(k)}$ of \mathbf{R}^{m}, where $(i, j) \in G_{k}$, with contract ratios no more than $t_{i, j}^{(k)}$, such that
(a) for each k and $i, 1 \leq i \leq n$, there is some j such that $(i, j) \in G_{k}$,
(b) for each k and $i,\left\{T_{i, j}^{(k)}\left(J_{j}\right) \mid(i, j) \in G_{k}\right\}$ is a nonoverlapping family and

$$
\begin{equation*}
J_{i} \supset \bigcup\left\{T_{i, j}^{(k)}\left(J_{j}\right) \mid(i, j) \in G_{k}\right\} \tag{4.1}
\end{equation*}
$$

and
(c) if the path component from G_{1} to G_{k} rooted at the vertex i_{1} is a cycle: $\left[i_{1}, \cdots\right.$, $\left.i_{q}, i_{q+1}=i_{1}\right]$, then

$$
\begin{equation*}
\prod_{k=1}^{q} t_{i_{k}, i_{k+1}}<1 \tag{4.2}
\end{equation*}
$$

This construction naturally determines a compact subset K of \mathcal{R}^{m}. This set, which we will term the construction object, is pieced together by the graphs G_{k} and applying the maps coded by the edges to the corresponding sets.

For each i, let $\mathcal{R}\left(J_{i}\right)$ be the space of compact subsets of J_{i} provided with the Hausdorff metric, ρ_{H}. By using the similar method of R.D.Mauldin et al. ${ }^{[5]}$, we may show the following theorem.

Theorem 4.1. For each generalized graph directed construction, there exists a unique compact set K,

$$
\begin{equation*}
K=\bigcap_{m \geq 1} \bigcup\left\{T_{i_{1}, i_{2}}^{(1)} \circ \cdots \circ T_{i_{m}, i_{m+1}}^{(m)}\left(J_{i_{m+1}}\right) \mid\left(i_{j}, i_{j+1}\right) \in G_{j}, \quad 1 \leq j \leq m\right\} \tag{4.3}
\end{equation*}
$$

Let

$$
\begin{aligned}
G(p) & =\left\{\sigma(1) \sigma(2) \cdots \sigma(p+1) \mid(\sigma(i), \sigma(i+1)) \in G_{i} ; 1 \leq i \leq p\right\} \\
G(\infty) & =\left\{\sigma(1) \sigma(2) \cdots \mid(\sigma(i), \sigma(i+1)) \in G_{i} ; i \geq 1\right\}, \quad G^{*}=\bigcup_{p \geq 1} G(p)
\end{aligned}
$$

for $\sigma \in G(\infty), \sigma \mid p=\sigma(1) \cdots \sigma(p+1) \in G(p)$.

$$
\begin{gather*}
t_{\sigma \mid p}=\prod_{i=1}^{p} t_{\sigma(i), \sigma(i+1)}^{(i)} \tag{4.4}\\
J(\sigma \mid p)=T_{\sigma(1), \sigma(2)}^{(1)} \circ T_{\sigma(2), \sigma(3)}^{(2)} \circ \cdots \circ T_{\sigma(p), \sigma(p+1)}^{(p)}\left(J_{\sigma(p+1)}\right) \tag{4.5}
\end{gather*}
$$

Then

$$
\begin{equation*}
K=\bigcap_{p \geq 1} \bigcup_{\sigma \in G(p)} J(\sigma) \tag{4.6}
\end{equation*}
$$

It is easy to see that the generalized graph directed construction object K includes the Moran fractals, the generalized Moran fractals, the self-affine sets and graph directed construction. By Theorem 3.1, we have

Theorem 4.2. If the generalized graph directed construction K is an s-set, and $f \in$ $L^{1}\left(E, \mathcal{H}^{s}\right)$, then the Fourier expansion theorem is true.

It is difficulty to prove that the generalized graph directed construction K is an s-set in general case. Now we give a class of generalized graph directed constructions for which K is an s-set.

Example Let G be a directed graph with vertex set consisting of the integers $1,2, \cdots, n$, and $T_{i, j}^{(1)}, T_{i, j}^{(2)}$ are similarity maps of R^{m} with similarity ratios $t_{i, j}^{(1)}, t_{i, j}^{(2)}$, respectively, where $(i, j) \in G$.

A sequence of similarity maps $\left\{\left\{T_{i, j}^{(k)}\right\}_{(i, j) \in G}\right\}$ is produced by $\left\{T_{i, j}^{(1)}\right\}_{(i, j) \in G},\left\{T_{i, j}^{(2)}\right\}_{(i, j) \in G}$, in non-periodic form. Let

$$
\begin{equation*}
N(k)=\#\left\{h:\left\{T_{i, j}^{(h)}\right\}_{(i, j) \in G}=\left\{T_{i, j}^{(1)}\right\}_{(i, j) \in G} ; h \leq k\right\} \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
a_{k}=\frac{N(k)}{k} . \tag{4.8}
\end{equation*}
$$

The weighted incidence matrix or construction matrix $A^{(k)}=A_{G}^{(k)}$ associated with a graph directed construction is the $n \times n$ matrix defined by

$$
\begin{equation*}
A^{(k)}=\left[t_{i, j}^{(k)}\right]_{i, j \leq n} \tag{4.9}
\end{equation*}
$$

where we make the convention that $t_{i, j}^{(k)}=0$ if $(i, j) \notin G$. For each $\beta \geq 0$, let $A_{\beta}^{(k)}=A_{G, \beta}$ be the $n \times n$ matrix given by $\left(t_{i, j}^{(k)}\right)^{\beta}$. Also, let $\Phi^{(k)}(\beta)$ be the spectral radius of $A_{\beta}^{(k)}$. Of course, according to the Frobenius-Perron theorem, $\Phi^{(k)}(\beta)$ is the largest nonegative eigenvalue of $A_{\beta}^{(k)}$. Let

$$
\begin{equation*}
\Phi(\beta)=\left(\Phi^{(1)}(\beta)\right)^{a}\left(\Phi^{(2)}(\beta)\right)^{1-a} \tag{4.10}
\end{equation*}
$$

Theorem 4.3. If $G_{k}=G$ itself is strongly connected, and satisfies:
(1) $\sup _{k \geq 1} k\left|a-a_{k}\right|<c<\infty$,
(2) $t_{i, j}^{(1)}=r t_{i, j}^{(2)}$, for any $(i, j) \in G r<1$,
then the Hausdorff dimension of K is α, where $\Phi(\alpha)=1$, and K is an α-set.
Proof. It is known the $\Phi^{(k)}(\beta)$ is continuous, $\Phi(\beta)$ is continuous, too. By Theorem 2 in $[5], \Phi^{(k)}(0)>1$, and $\lim _{\beta \rightarrow \infty} \Phi^{(k)}(\beta)=0$. So, there exists a real number α such that $\Phi(\alpha)=1$. Since $A_{\alpha}^{(k)}$ is irreducible, by the Frobenius-Perron theorem, there is a unique strictly positive column vector V,

$$
V=\left(\begin{array}{c}
v_{1} \tag{4.11}\\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)
$$

with $\sum_{i=1}^{n} v_{i}=1$ and $A_{\alpha}^{(k)} V=\Phi^{(k)}(\alpha) V$, i.e. for each i,

$$
\begin{equation*}
v_{i}=\sum_{j=1}^{n} \frac{\left(t_{i, j}^{(k)}\right)^{\alpha}}{\Phi^{(k)}(\alpha)} v_{j}=\sum_{(i, j) \in G} \frac{\left(t_{i, j}^{(k)}\right)^{\alpha}}{\Phi^{(k)}(\alpha)} v_{j} \tag{4.12}
\end{equation*}
$$

Let $w_{\sigma}=\prod_{i=1}^{|\sigma|-1} w_{\sigma(i), \sigma(i+1)}, w_{\sigma(k-1), \sigma(k)}=\left(\Phi^{(k)}\right)^{-1}$. Then $c_{1}^{-1} \leq w_{\sigma} \leq c_{1}$, where $c_{1}=$ $\left(\frac{\Phi^{(1)}}{\Phi^{(2)}}\right)^{c}+\left(\frac{\Phi^{(2)}}{\Phi^{(1)}}\right)^{c}$.

Define a probability measure $\widehat{\mu}$ on $G(\infty)$ by setting for each $\sigma \in G^{*}$,

$$
\begin{equation*}
\widehat{\mu}(C(\sigma))=w_{\sigma} t_{\sigma}^{\alpha} v_{\sigma(|\sigma|)} \tag{4.13}
\end{equation*}
$$

where

$$
\begin{equation*}
C(\sigma)=\{\tau \in G(\infty): \tau \| \sigma \mid=\sigma\} \tag{4.14}
\end{equation*}
$$

To see that Kolmogorov's consistency theorem may be applied it is sufficient to note that if $\sigma \in G^{*}$, then

$$
\begin{aligned}
\sum_{(\sigma(|\sigma|), j) \in G} \widehat{\mu}(C(\sigma * j)) & =\sum_{(\sigma(|\sigma|), j) \in G} w_{\sigma * j} t_{\sigma * j}^{\alpha} v_{j} \\
& =w_{\sigma} t_{\sigma}^{\alpha} \sum_{(\sigma(|\sigma|), j) \in G} w_{\sigma(|\sigma|), j} t_{|\sigma|, j}^{\alpha} v_{j} \\
& =w_{\sigma} t_{\sigma}^{\alpha} v_{\sigma(|\sigma|)}=\widehat{\mu}(C(\sigma)) .
\end{aligned}
$$

First, we show that $\mathcal{H}^{\alpha}(K)<+\infty$. For each p, we have

$$
\sum_{\sigma \in G(p)}\left|J_{\sigma}\right|^{\alpha}=\sum_{\sigma \in G(p)} t_{\sigma}^{\alpha}\left|J_{(|\sigma|)}\right|^{\alpha}
$$

and since V is strictly positive,

$$
\begin{aligned}
\sum_{\sigma \in G(p)} \widehat{\mu}(C(\sigma))\left|J_{(|\sigma|)}\right|^{\alpha} / w_{\sigma} v_{\sigma(|\sigma|)} & =\sup \left\{\left|J_{(|\sigma|)}\right|^{\alpha} /\left\{w_{\sigma} v_{\sigma(|\sigma|)}\right\}\right\} \sum_{\sigma \in G(p)} \widehat{\mu}(C(\sigma)) \\
& \leq c_{1} \sup \left\{\left|J_{i}\right|^{\alpha} / v_{i}\right\}<+\infty
\end{aligned}
$$

By the similar methods in [5], we have

$$
\begin{equation*}
\lim \sup \left\{\mid J_{\sigma} \| \sigma \in G(p)\right\}=0 \tag{4.15}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathcal{H}^{\alpha}(K) \leq c_{1} \sup \left\{\left|J_{i}\right|^{\alpha} / v_{i}\right\}<+\infty . \tag{4.16}
\end{equation*}
$$

In order to show $0<\mathcal{H}^{\alpha}(K)$, transfer $\widehat{\mu}$ to a probability measure on K. Let g be the map of $G(\infty)$ into R^{m} defined for each $\sigma \in G(\infty)$, by $\{g(\sigma)\}=\bigcap_{k=1}^{\infty} J_{\sigma \mid k}$. Then g is a continuous map of $G(\infty)$ onto K (see [5]). Let $\mu=\widehat{\mu} \circ g^{-1}$. We will show that there is some $c>0$ such that if E is a Borel subset of R^{d} with $\operatorname{diam} E<\inf \left\{\left|J_{i}\right|\right\}$, then

$$
\begin{equation*}
\mu(E) \leq c|E|^{\alpha} . \tag{4.17}
\end{equation*}
$$

Of course, this inequality implies $\frac{1}{c} \leq \mathcal{H}^{\alpha}(K)$.
Set $B=\left\{\sigma_{i}\left|k_{i} \in G^{*} ;\left|J_{\sigma_{i} \mid k_{i}}\right| \leq|E| \leq\left|J_{\sigma_{i} \mid k_{i}-1}\right|\right.\right.$ and $\left.E \cap J_{\sigma_{i} \mid k_{i}} \neq \emptyset\right\}$. Then

$$
\begin{aligned}
\mu(E) & \leq \sum_{\sigma_{i} \mid k_{i} \in B} \widehat{\mu}\left(C\left(\sigma_{i} \mid k_{i}\right)\right) \leq \# B \sup _{\sigma_{i} \mid k_{i} \in B} w_{\sigma} t_{\sigma_{i}}^{\alpha} v_{\sigma_{i}\left(k_{i}\right)} \\
& \leq \# B \sup _{\sigma_{i} \mid k_{i} \in B} c_{1}|E|^{\alpha} v_{\sigma_{i}\left(k_{i}\right)} /\left|J_{\sigma_{i}\left(k_{i}\right)}\right| \leq \# B c_{1}|E|^{\alpha} \sup _{1 \leq i \leq n} v_{i} /\left|J_{i}\right|
\end{aligned}
$$

By Lemma V in [5], $c_{2}=\# B c_{1} \sup _{1 \leq i \leq n} v_{i} /\left|J_{i}\right|<\infty$.
Therefore, (4.17) holds and Theorem 4.2 follows.

References

[1] Falconer, K. J., The geometry of fractal sets, Cam. Uni. Press, 1985.
[2] Falconer, K. J., Fractal geometry: Mathematical foundations and applications, John Wiley \& Sons, New York, 1990.
[3] de Guzman, M., Differentiation of itegrals in R^{n}, Springer, Lecture Notes in Mathematics, Vol. 481, 1985.
[4] Liang Jinrong \& Ren Fuyao, The study of the Fourier series of functions defined on Moran fractals, Acta Math. Appli. Sinica, 13: 1(1997).
[5] Mauldin, R. D. \& Williams, S. C., Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., 309:2 (1988).
[6] Ren Fuyao \& Liang Jinrong, The Hausdorff dimensions and measures of the generalized Moran fractals and Fourier series, Chin. Ann. Math., 16B:2 (1995), 153-162.
[7] Reyes, M., An analytic study on the self-similar fractals: Differentiation of integrals, Collect.Math., 40:2 (1989), 159-167.
[8] Reyes, M., An analytic study of functions defined on self-similar fractals, Real Analy. Exch., 16 (19901991), 197-214.

[^0]: Manuscript received October 6, 1994. Revised May 7, 1995.
 *Institute of Mathematics, Fudan University, Shanghai 200433, China.

