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Abstract

Briand et al. gave a counterexample showing that given g, Jensen’s inequality
for g-expectation usually does not hold in general. This paper proves that Jensen’s
inequality for g-expectation holds in general if and only if the generator g (t,z) is
super-homogeneous in z. In particular, g is not necessarily convex in z.
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§1. Introduction

It is by now well known that there exists a unique adapted and square integrable
solution to a backward stochastic differential equation (BSDE in short) of type

T T
yr =& +/ g(8,ys, z5)ds — / 2sd By, 0<t<T, (1.1)
t t

providing that the generator g is Lipschitz in both variables y and z, and that ¢ and the
process g(-,0,0) are square integrable. We denote the unique solution of the BSDE (1.1) by
(y§<t)7 z§<t))t€[0,T]-

In [1], y*(0), denoted by &,[¢], is called g-expectation of £&. The notion of g-expectation
can be considered as a nonlinear extension of the well-known Girsanov transformations.
The original motivation for studying g-expectation comes from the theory of expected util-
ity, which is the foundation of modern mathematical economics. Z. Chen and L. Epstein [2]
gave an application of g-expectation to recursive utility. Since the notion of g-expectation
was introduced, many properties of g-expectation have been studied in [1, 3-5]. Some prop-
erties of classical expectation are preserved (monotonicity for instance), and some results on
Jensen’s inequality for g-expectation were obtained in [3, 5]. But also in [3], the authors gave
a counterexample to indicate that even for a linear function ¢, which is obviously convex,
Jensen’s inequality for g-expectation usually does not hold. This yields a natural question:

What kind of generator g can make Jensen’s inequality for g-expectation hold in gen-
eral? Roughly speaking, for convex function ¢ : R — R, what conditions should be given
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to the generator g such that the following inequality

Eglp(O)IFi] > @[y (] F)]

will hold in general?

The objective of this paper is to investigate this problem and to prove that Jensen’s
inequality for g-expectation holds in general if and only if g(¢,z) is super-homogeneous,
and if g is convex, then Jensen’s inequality for g-expectation holds in general if and only if
g(t, z) is a positive-homogeneous generator; For monotonic convex function ¢, we also get
two necessary and sufficient conditions.

8§ 2. Preliminaries

2.1. Notations and Assumptions

Let (€2, F, P) be a probability space and (B;),, be a d-dimensional standard Brownian
motion on this space such that By = 0. Let (.7-}_)1520 be the filtration generated by this
Brownian motion

ftZU{BS,SE[O,t]}\/N, tE[O,TL

where N is the set of all P-null subsets.

Let T >0 be a given real number. In this paper, we always work in the space (Q, Fr, P),
and only consider processes indexed by t € [0, T]. For any positive integer n and z € R", |z|
denotes its Euclidean norm.

We define the following usual spaces of processes:

S%(0, T;R) := {z/J continuous and progressively measurable; E[ sup |’(/Jt|2:| < oo};
0<t<T

T
HZ(0,T; R"™) := {¢ progressively measurable; |43 = E[/ |wt\2dt} < oo}.
0

We recall the notion of g-expectation, defined in [1]. We are given a function
g:Ox[0,T]xRxR* —R

such that the process (g(t,y,2))ie[0,) is progressively measurable for each pair (y,z) in
R x R%, and furthermore, g satisfies some of the following assumptions:

(A1) There exists a constant K > 0, such that P -a.s., we have

Vte [OvT]v vyhy? € R7 z1,%2 € Rd)
‘g(tvylazl) - g(t7y27z2)| < K(lyl - y2| + |'Z1 - Z2|)

(A2) The process (g(t,0,0)):e0,1) € HF(0, T;R).

(A3) P-a.s., V(t,y) €[0,T] xR, ¢(t,y,0) =0.

(A4) P-as., ¥ (y,z) € R x R% t — g(t,y, z) is continuous.
Remark 2.1. The assumption (A3) implies the assumption (A2).

Let g satisfy the assumptions (A1) and (A2). Then for each & € L?(Q, Fr, P), there
exists a unique pair (y*(t), 25(£))sejo,r) of adapted processes in S7.(0,T;R) x H%(0, T; RY)
solving the BSDE (1.1) (see [6]). We often denote (y°(t),2%(£))tepo,r) by (Ut,2t)tepo,r] in
short.
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2.2. Definitions and Propositions

For the convenience of readers, we recall the notion of g-expectation and conditional
g-expectation defined in [1]. We also list some basic properties of BSDEs and g-expectation.
In the following Definitions 2.1 and 2.2, we always assume that g satisfies (A1) and (A3).

Definition 2.1. The g-expectation ;-] : L*(Q, Fr, P) — R is defined by
&l€] = y*(0).
Definition 2.2. The conditional g-expectation of £ with respect to F; is defined by
EglElF] = y4 ().

The following Comparison Theorem is one of the great achievements of theory of BS-
DEs, readers can see the proof in [7] or [8].

Proposition 2.1. (cf. [7,8]) Let g, g satisfy (Al) and (A2), let Yy, Yo €
L*(Q, Fr, P). Let (y(t), 2(t))iepo,r), (5(t),2(t))ieo,r) be the solutions of the following two
BSDEs:

T T
vy = Yr +/ 9(8,Ys, 25)ds — / 25d By, 0<t<T,
t t
o T T
gt:YT+/ §<57gsyzs)d5*/ Esst’ OgtST
t t

(V) If Yr > Y1, g(t, 4, 2t) > G(t, §i, 2), a-s., a.e., then we have
Yt 2> Us, a.e., a.s.
(2) In addition, if we also assume that P(Yr — Y1 > 0) > 0, then
P(y: — g > 0) >0, in particular, yo > To-
Propositions 2.2-2.5 come from [1], where g is assumed to satisfy (A1) and (A3).

Proposition 2.2. (1) (Preserving of constants) For each constant ¢, E4[c] = c;

(2) (Monotonicity) If X; > X, a.s., then 4[X1] > &;[Xa);

(3) (Strict Monotonicity) If X1 > X, a.s., and P(X; > X3) > 0, then £,[Xq] >
Eg[Xo).

Proposition 2.3. (1) If X is F;-measurable, then E4[X|F] = X;
(2) For allt,s € [0,T], EEG[X|Fi]|Fs) = Eg[ X | Fins)-

Proposition 2.4. &,[X|F] is the unique random variable n in L*(Q, Fy, P), such
that
&g X14] = Egnlal forall Ae F.

Proposition 2.5. Let g(w,t,y,2) : @ x [0,T] x R x R — R be a given function
satisfying (A1) and (A3). If g does not depend on y, then we have

EX +nlF) =&X|F]+n,  ¥neL*(Q,F,P), VX € L*Q, Fr,P).
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Proposition 2.6. (cf. [3,8]) Let & € L*(Q, Fr, P), and let the assumptions (A1) and
(A2) hold. If the process (yi, zt)iejo,) is the solution of BSDE (1.1), then we have

T
E{ sup (eﬁs\ys|2)+/ eﬁs|zs|2ds|ft}
t<s<T t

< CE [eﬁT\a? n (/T e<ﬁ/2>8|g(5,o,o>|ds)2‘ft},
t

where 3 = 2(K + K?) and C is a universal constant.

Proposition 2.7. (cf. [3]) Suppose g does not depend on y and g satisfies (Al) and
(A3). Suppose moreover that for each t € [0,T], P-a.s., z — g(t,z) is conver. Given
€€ L3, Fr,P), let ¢ : R — R be a conver function such that ¢(&) € L*(Q, Fr, P). If
P-a.s., 0p|E,(&|F:)]N]0,1[°# 0, then we have

P-a.s., @& (&|F1)] < Elp(ElF)]-

Proposition 2.7 can be regarded as an important result on Jensen’s inequality for g-
expectation, but if dp[€,(§|F:)]N]0, 1[°= 0, for example ¢(z) = /2, Vz € R, Proposition
2.7 can not solve this kind of problems. It also can not tell us what kind of generator g can
make Jensen’s inequality hold in general.

§ 3. Jensen’s Inequality for Super-homogeneous Generator g

In the following, we always consider the situation where the generator g does not
depend on y, that is, g : 2 x [0, 7] x R* — R. We denote this kind of generator g by g(t, z).
We always assume that g(t, z) satisfies (A1) and (A3).

Definition 3.1. Let g satisfy (A1) and (A3). We say that g is a super-homogeneous
generator in z if g also satisfies

P-a.s., Y(t,2)€[0,T] xR NeR:  g(t,Az) > N\g(t, 2).
Now we introduce our main results on Jensen’s inequality for g-expectation.

Theorem 3.1. Let g satisfy (Al), (A3) and (A4). Then the following two conditions
are equivalent:

(1) g is a super-homogeneous generator;
(i) Jensen’s inequality for g-expectation holds in general, i.e., for each & € L*(Q, Fr, P)
and convex function ¢ : R — R, if o(€) € L*(Q, Fr, P), then for each t € [0,T], P-a.s.,

Eglp(OIFL] > @[E4(&]F)]-

Proof. (i)=(ii). Given ¢ € L?(Q, Fr, P) and convex function ¢ such that ¢(¢) €
L*(Q, Fr, P), for each t € [0,T7], we set n; = ¢"_[E,(§|F:)]. Then 7 is Fp-measurable. Since
© is convex, we have

(@) —o(y) =2 (y)(x—y), Va,yeR
Take z =&, y = £4(€|F;). Then we have
(&) — plEy (&I F)] = ml§ — E4(&]F)]-
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For each positive integer n, we define

Q= {IEEIF) + |ne| + |0l€ (€1 F)I| < n}-

Because &;[&|F], ne, ¢[E4(E|F:)] are all Fy-measurable, we see that €, € F;. We denote
the indicator function of €, by 1q, . Set ., = 1q, ,n:. Then we have

Lo, [p(&) = 0l€ (I F)] = menl€ — E9(&]F2)]- (3.1)
Since 1,5, 1a,., ¢[€q(£|F:)] are bounded by n and &, (&) € L*(Q, Fr, P), we deduce that
1Qt,n(p(€)7 nt,nf € LQ(QufT7 P)7
]-Qf,,n@[gg(ﬂft)} € LQ(Q;‘FtaP)a
(M€ (€| Fs))e<s<T € SF(t, T; R).

From the well-known Comparison Theorem we know that conditional g-expectation
&g+ |Fi] is nondecreasing. Thus from the inequality (3.1), and by taking conditional g-
expectation, we can get

Eg[La, , [0(§) — w(Eg(EIFIFe] = Eglnenl€ — Eg(EI1F)]IF-
Since 1q, , [Eg(E|1F)], men&yl€|Fi] € L*(Q, Fy, P), it follows from Proposition 2.5 that

Ella, , P(OIF] — 1a, Pl (§IF)] Z Egline & | Ft] — 1n&glE] F2. (3-2)
Let (Yus Zu)uejo,r] be the solution of the following BSDE (3.3)

T T
Yu =& —|—/ 9(s,z5)ds — / 25d By, 0<u<T. (3.3)

Then for the given ¢t € [0, 7], we have

T T

NenYu = Nené +/ Neng(s, 25)ds — / M¢.n2sdBs, t<u<T. (3.4)

u u

We define function g, (s, z) in this way: for each (s, z) € [t,T] x RY,

n ) njs .f n 0;
g.(s,2) = 4 9(8:2/nt.n) i e 7
0, if nen, =0.

Since 1, is bounded, the following BSDE

Yu = nt,ng + /

has a unique solution in SZ(¢, T;R) x HZ%(t, T; R%). We denote it by (s Zs)sepe,r)- Also
from that 7, , is bounded we know that (7¢,,Ys, Nt,n2s)sef,r] 1s in SZ(t, T;R)xHZ(t, T RY).
From (3.4) and the definition of g,, we conclude that the solution of BSDE (3.5) is just

(ntmysv nt7nzs)s€[t,T]~
Consider the solutions of BSDE (3.5) and the following BSDE (3.6):

Tu = Ne.né +/

T T

9,(8,Zs)ds — / Z;dBs, t<u<T (3.5)

T T

g(s,Zs)ds — / ZsdBs, t<u<T. (3.6)
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Due to the super-homogeneity of g(¢,2) in z, we can get that for each s € [¢t,T], P-a.s.,

g(S, nt,nzs) Z nt,ng(sa ZS)'

Combining this with the definition of g,, we have, P-a.s.,

VS S [taT]a g(S, 28) = 9(5777t7nzs) Z nt,ng(s7 ZS) = gl (Svnt,’l’bzs> = g1 <S7 28)

Thus from Comparison Theorem, we have, P-a.s.,

EglemblF) = Tt = Ut = Menye = Me.nEyE|Fi]- (3.7)

Coming back to (3.2), we can get

Eglla,,, (N Ft] — 1a, 1€y (EIF1)] = Eglnenél Ft] — nemg[€]F2] > 0.

Applying Lebesgue’s dominated convergence theorem to (1q,,(£))pZ;, we can get
easily that

L?* — lim 1q, () = ¢(&).

Since that & — &,(&|F;) is a continuous map from L?(Fr) into L?(F;) (see [1, Lemma 36.9]),
it follows that

L? = lim &[la, ,(&)IF] = Elp(©)|F).

Thus for the given ¢ € [0,77, there exists a subsequence (&y[¢(§)1q, . |F])72; such that,
P-a.s.,

Jim Elp(O)1a, | Fi] = Elp(§)IF.
On the other hand, by the definition of € ,,, we can get, P-a.s.,

Tim Lo, 16, (617)] = ol€, (7).
Hence we can assert that (i) implies (ii). Indeed, P-a.s.,
EJPOIF] = lim &[1a,, o(€)1F) > lim 1n, , o[, (E1F)] = ol&,(EF)
(ii)=>(i). Firstly we show that for each z € R%, t € [0, T,

L? = lim n[€y(z - (Byyr1yn — Be)lFo)] = g(t, 2). (3-8)

n—o0o

(3.8) is a special case of [3, Proposition 2.3]. But for the convenience of readers and
the completeness of our proof, here we give a straightforward proof. For each given z € R?,
t € [0,T[, we choose a large enough positive integer n, such that t + 1/n < T. We denote
by (Ys,ns Zs,n)seft,t+1/n] the solution of the following BSDE:

t+1/n t+1/n
Ys = 2+ (Beg1m — Bt) —|—/ g(u, 2, )du — / 2ydBy,, t<s<t+1/n. (3.9)

We set
gs,n =Ys;n — 2 (Bs - Bt)a Zs,n = Zs;n — -

Then we have y; ,, = ¥, and

t+1/n t+1/n
s = / g(u, Zypn + 2)du — / Zu,ndBy, t<s<t+1/n. (3.10)
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Since
t+1/n
gg[z . (Bt-i-l/n - Bt)‘ft} = UYtn = gt,n = E|:/ g(SV zs,n + Z)ds|“7:t ’
t
by the classical Jensen’s inequality and Holder’s inequality, we have
Elné, [z - (Byey — B)IF) - g(t, )
t+1 2
~ B[ / (905, Zom + 2) — g(t, 2))ds| 7|
t
t+1/n 2
§ ’I7,2E|:/ (9(8755,7;4—2) _g<t7z))d8:|
t
t+1/n
< nE / 198, Zon + 2) — (¢, 2)|ds
t
t+1/n
<208 [ lg(s.zun+2) — g(s,2)ds
t

t+1/n
+ QnE/ lg(s,2) — g(t, 2)|?ds. (3.11)
t

By (A1), Proposition 2.6 and (A3), we know that there exists a universal constant C
such that

t+1/n
2n]i-"/ |g(s,25’n+z) —g(S,Z)|2dS
t
t+1/n
< 2nK2E/ \Zsm\zds
t
t+1/n 2
< 2nKzCE</ |g(s,z)|ds)
t

t+1/n 2
< 2nK20E(/ K|z|ds>
t

= 2K*C|z*/n,

where K is the Lipschitz constant.
By (A4), we know that

t+1/n
P-a.s., lim Zn/ l9(s,2) — g(t, 2)|*ds = 0.
¢

n—oo

In view of (A3) and (A1), we have
t+1/n t+1/n
2n/ l9(s,2) — g(t, 2)|2ds < 2n/ (2K |2|)%ds = 8K?|z|*.
t t
It follows from Lebesgue’s dominated convergence theorem that

t+1/n
lim 2nE/ lg(s,2) — g(t, 2)|*ds = 0.
¢

n—0oo
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Then coming back to (3.11), we can get

lim E[n&(z - (Bit1/n — B)|Ft) — 9(t, Z)]2

n—oo

t+1/n
< lim 2K*C|z]*/n + lim 2nE/ lg(s, 2) — g(t, 2)|?ds = 0.
n—oo n—oo t
Therefore we have

L? — lim n[€y(z - (Biy1/m — B)|F2)] = g(t, 2).

Secondly we prove that for each triple (t, z,\) € [0,7] x R? x R, we have
P-as., g(t,\z) > A\g(t, 2). (3.12)

Given A € R, we define a corresponding convex function ¢, : R — R, such that
ox(z) = Az, V2 € R. Givent € [0,T7], let us pick a large enough positive integer n, such that
t+1/n < T. Then for each z € R, it is obvious that px(z - (Biy1/n — Bt)) € L*(2, Fr, P).
By (ii), we know that, P-a.s.,

Egloa(z - (Bigayn — Be))|Ft] =2 oal€g(z - (Bigaym — Be)lF)];
that is, P-a.s.,
Eg[Az - (Biy1yn — BO)|Fi] 2 MEg(z - (Birym — Be)|Fi)l. (3.13)
Because of (3.8), we know there exists a subsequence {n;}7°; such that

P-as., m n[Eg(Az - (Biyi/n, — Be)|Fe)] = g(t, Az),

li
k—oo

P-as., kli_{I;O A [Eg(2 - (Bigayn, — Bo)|F)] = Ag(t, 2).

Thus for the given t € [0,T[, z € R, A € R, by (3.13), we have
P-as., g(t, \z) > Ag(t, 2).
By (A4), we know that for each z, the process t — g¢(t, z) is continuous. Hence we have

P-as., g(T, z)= lim g(T —¢e,Az) > lim M\g(T —¢,z2) = Ag(T, z).

e—0+ e—0t

Therefore we can get (3.12) immediately. The proof is complete.

Remark 3.1. When we prove that (i) implies (ii), we do not need (A4).

Example 3.1. Let g : R—R be defined as follows: g(z) = z%, if |2|< 1 and g(z) =
4)z| — 3, if |z| > 1. We can see clearly that though g is convex, g is not super-homogeneous.
Thus for this generator g, by Theorem 3.1, we know that Jensen’s inequality for g-expectation
does not hold in general.

In fact, if we take T' =1, £ = By — T and o(z) = §, Vo € R, then we can verify that
(Bt —t,1)scj0,1) is the solution of the following BSDE:

T T
yt=£+/ g(zs)ds—/ zsdBs,  0<t<T,
t t
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and (Bt — 2T 1y, o 7 is the solution of the following BSDE:

T T
g = (&) + / g(zs)ds — / Z,dB,, 0<t<T.
t t

We can calculate that

26
Egle(@IF] = pl&g (€l F)] = 7 (¢ =T) <0, when t <T.
Example 3.1 yields a natural question: What kind of convex generator g can make
Jensen’s inequality for g-expectation hold in general? The following Theorem 3.2 will answer
this question.

Definition 3.2. We call a generator g(t,z) is positive-homogeneous in z if
P-a.s., YA>0,te[0,T], ze R, g(t,\z) = \g(t, 2).

Theorem 3.2. Suppose g satisfies (Al), (A3) and (A4). Suppose moreover that for
each t € R, P-a.s., z — g(t,z) is convezr in z. Then the following two conditions are
equivalent:

(1) g(t, 2) is positive-homogeneous in z;

(ii) Jensen’s inequality for g-expectation holds in general.

Proof. By Theorem 3.1, it suffices to prove that if g(¢, z) is convex in z and g(¢,0) = 0,
then g¢(t, z) is positive-homogeneous in z if and only if g(¢, z) is super-homogeneous.

Suppose g(t, z) is positive-homogeneous in z. We only need to consider the case when
A < 0. For each A <0, (t,2) € [0,7] x R%, since g is convex and g(t,0) = 0, we have, P-a.s.,

0=g(t,0) = g(t, % i (—;)z) < 9t A2) n g(t,—Az) _ g(t,\z) N —\g(t, 2)

- 2 2 2 2

Thus we have
P-as., YA<O0, (t,2)€[0,T] x RY,  g(t,\2) > M\g(t, 2).

Hence ¢(t, z) is super-homogeneous.
Suppose g(t, z) is super-homogeneous. For each given triple (¢, 2, ) € [0, T] xR xR,
if 0 < X\ <1, then by the convexity of g and (A3) we have

P-as., g(t,\z) < Ag(z).
Thus by the super-homogeneity of g, we have, P-a.s.,
YAe[0,1], t€[0,T], g(t,Az) = Ag(t,2). (3.14)

For A > 1, it follows from (3.14) that P-a.s.,

Ag(t,z) = Ag(t,% X ()\z)) =AX % x g(t,\z) = g(t, A\z).

Thus ¢(t, z) is positive-homogeneous. This completes the proof.

Corollary 3.1. Given p > 0, let the generator g(t,z) = plz|, V(t,2) € [0,T] x R%.
Then Jensen’s inequality for g-expectation holds in general.

This kind of g-expectation &,[-] plays a key role in [4].
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8§4. Jensen’s Inequality for Monotonic Convex Function ¢

In this section, we will consider the following problem: If g is independent of y, ¢
is a monotonic convex function, then what conditions should be given to the generator g,
such that Jensen’s inequality for g-expectation holds for ¢? We will give two necessary and
sufficient conditions to solve this problem, one condition is for increasing convex function ¢,
the other condition is for decreasing convex function .

Theorem 4.1. Let g satisfy (Al), (A3) and (A4). Then the following two conditions
are equivalent:

(i) P-a.s., ¥V (t,2,A) € [0,T] x R x Ry, g(t,\2) > Ag(t, 2);

(ii) Jensen’s inequality for g-expectation holds for increasing convex function, i.e., for
each & € L*(Q, Fr, P) and increasing convex function ¢ : R — R, if ¢(&) € L*(Q, Fr, P),
then for each t € [0,T], P-a.s.,

Eglp(O)IF] = @l€4 (€] F2)]-

Proof. (i)=(ii). Given £ € L?(Q, Fr, P) and increasing convex function ¢ such that
0(€) € L*(Q, Fr, P). For each t € [0,7T] and positive integer n, just as in the proof of
Theorem 3.1, we set or define

m=¢"[Eg(EIF)], Q= {IEJLEIF+ Inel + [@lEg(EIFI < n}, Men = Loy e
We already know that

Qi n € Ft, Mt.ns 1a,,, are Fi-measurable;

Nty Lo, 0[Eq(€|Ft)] are bounded by n;

1Qt,n(p(§)7 nt,ng € L2(Q7}—T7P)7 1Qt,n<p[gg(§|‘7:t)] € L2(Q,ft,P);
(nt,ngg(gl}—s))se[t,T] S S_?—'(tv T; R)

Moreover, we also know that

Eg[La, . p(OIF] — La, 0l (E|F)] = Eglmng|Fi] — men€ylElF2]- (4.1)
Let (yu, Zu)ue[o,T] be the unique square integrable solution of the following BSDE:

T T
Yy =& —|—/ 9(s, zs)ds — / 25dBs, 0<u<T. (4.2)

Then for the given ¢ € [0,T], we have

T T

MenYu = N +/ Neng(S, zs)ds — / N¢.n2sdBs, t<u<T. (4.3)

u u

For the given ¢, again we define function g, (s, z) in this way: for each (s, z) € [t,T] x R4,

9, (S, Z) — nt,ng(S, Z/Wt,n)7 lf Mt,n # 07
07 if Ntn = 0.
Consider the solutions of the following BSDE (4.4) and BSDE (4.5):
T T
Yy = nt,nf "r/ g, (s, Es)ds — / z,dBs, t<u<T, (4.4)
u u
T

T
Ju = Ne.né +/ g(s,25)ds — / ZsdBs, t<u<T. (4.5)

u
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Analogous to the proof of Theorem 3.1, from (4.3) we deduce that (1:,nYs,Nt,n2s)sef,] 19
the unique solution of BSDE (4.4).
For the given t € [0,7] and ¢, since ¢ is increasing, we have

me =9 EE|F)] 20, M =1q,,m > 0.
In view of (i), for each s € [t,T], P-a.s., we have
g(Sant,nZs) > Ut,ng(«% ZS)' (4'6)
Therefore, for each s € [¢,T], we can get, P-a.s.,
9(5,%5) = g(5,Mn2s) 2 Meng(s,25) = G,(8, menzs) = 9, (8, Zs).

Thus from Comparison Theorem we have

P-as., Egmen&lFil = Gt > Ut = Myt = Ne.n&gl§F]- (4.7)
This with (4.1), it follows that

EglLa, . P(OIFi] = 1o, 0l (1 F1)] = Eglminé|Fi] = ne.n€yl€]Fi] = 0.

Applying Lebesgue’s dominated theorem to (1q, ,¢(§))Z,, we can get easily that

L? - lim 1q, () = ¢(&).
Similarly to the proof of Theorem 3.1, we can get
L2 — lim &[la, ,¢(§)|F] = Elp(&)|7].
Hence for each t € [0,T], P-a,s., we have
Eglo(&)|Fe] = w[€4 (€] 7))

(ii)=(i). Given A > 0, we define a corresponding increasing convex function ¢y :
R — R, such that ¢y(z) = Az, Yz € R. For each t € [0,T], z € R%, let us pick a large
enough positive integer n, such that ¢ +1/n < T. It is obvious that (2 - (Bip1/n — Bt)) €
L2(Q, Fr, P). By (ii), we know that Jensen’s inequality holds for the increasing function ¢y
Thus we have, P-a.s.,

Egloa(z - (Bigiyn — Be))|Fi) = oal€4(2 - (Bigayn — Be)lF)];
that is, P-a.s.,
EyN= - (Buprjm — BOIF 2 NE,(= - (Busnjn — BOIF, (48)
By (3.8), we know that there exists a subsequence {ny}7> ; such that
P-as., kliHr{.lo nk[Eg( Az - (Big1/m, — Bt)Ft)] = g(t, Az),
P-as., klirr;o A [Eg(2 - (Big1/m, — Bt)|Ft] = Ag(t, 2).

Thus for each ¢ € [0,T[, z € R%, A\ >0, it follows from (4.8) that
P-as., g(t,\z) > A\g(t, 2). (4.9)
(A4) and (4.9) imply that
P-as., ¢g(T,\z) = lim ¢g(T —e,Az) > lim A\g(T —¢,2) = A\g(T, 2).

e—0* e—0t

Hence (ii) implies (i). The proof is complete.
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Corollary 4.1. Given p > 0, let the generator g(t,z) = —pu|z|, ¥ (¢,2) € [0,T] x R%.
Then Jensen’s inequality for g-expectation holds for increasing convez function .

Similarly we can get the following

Theorem 4.2. Let g satisfy (Al), (A3) and (A4). Then the following two conditions
are equivalent:

(i) P-a.s., YA <0, (t,2) € [0,T] x R4, g(t, A\2) > Ag(t, 2);

(ii) Jensen’s inequality for g-expectation holds for decreasing convex function, i.e., for
each € € L*(Q, Fr, P) and decreasing convex function ¢ : R — R, if (&) € L*(Q, Fr, P),
then for each t € [0,T], P-a.s.,

Eglp()F] = @l€q(E]F2)]-
Proof. The proof of Theorem 4.2 is similar to that of Theorem 4.1. We omit it.
By Theorem 4.2, we can obtain the following corollary immediately.

Corollary 4.2. Let g satisfy (A1) and (A3). If P-a.s.,V (t,2) € [0,T]xR%, g(t,z) >0,
then Jensen’s inequality for g-expectation holds for decreasing convex function .
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