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THE SAME n-TYPE FOR ALL n**
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Abstract

After reviewing the theory of phantom maps and SNT, the author gives several general
results which relate the theory of phantom maps and SNT and which extend that of Harper
and Roitberg.
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§1. Introduction

Let X be a connected CW complex and Xn denote its n-skeleton. A map f : X → Y

is called a phantom map if its restriction to each skeleton Xn is null homotopic. It is easy

to know that every phantom map from a finite CW complex or to a space with only finite

nontrivial homotopy groups is necessarily trivial up to homotopy. Hence essential phantom

map can occur only when the domain X is an infinite dimensional space or the target is

a space with infinite nontrivial homotopy groups. Such maps appear to be null homotopic

from a number of different points of view; e.g., they induce the trivial homomorphism on

homotopy groups, in homology, and in cohomology. How then do we detect them? In what

cases are they trivial? These and other questions are what phantom map theory concerns.

On the other hand, the phantom map is the obstruction to extend many homotopy results

from finite complexes to infinite complexes. For example, one of the fundamental results in

homotopy theory is

Theorem 1.1.[5] Let W be a finite CW complex and Y be a nilpotent CW complex.

Then the natural map

[W,Y ]→ Pullback
p∈I

{[W,Y(p)]→ [W,Y(0)]}

is a bijection.

In general, this theorem is false for infinite complexes, but we have the following:

Theorem 1.2.[9] Let W and Y be two CW complexes and Ph(W,Y ) denote the set of

homotopy classes of phantom maps from W to Y. If Ph(W,Y ) = ∗, then

[W,Y ]→ Pullback
p∈I

{[W,Y(p)]→ [W,Y(0)]}
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is a bijection.

Many other results generalize to infinite complexes under the condition that the only

phantom map is the trivial one. This is maybe the most interesting aspect of the theory.

Another interesting topic in homotopy theory is whether two spaces have the same n-type

for all n. Let X be a space and PnX be the nth section of the Postnikov tower. Let

SNT(X) = {Y : PnX ≃ PnY }/ ≃ .

The following is one of the fundamental results in this field[11].

Theorem 1.3. Let X be a connected CW complex. Then

SNT(X) ≈ lim←−
1Aut(PnX),

where Aut(PnX) is the group of homotopy classes of homotopy equivalences of PnX.

The computation of it remains hard since it is difficult to compute the Aut(PnX) and

lim←−
1G. But in [4], J. Harper and J. Roitberg observed an interesting relation between

Ph(−,−) and SNT(−). The object of this note is to extend their results to the general case.

Throughout this paper, a space will be a pointed CW complex of finite type. map(X,Y )

is the space of all maps from X to Y and map∗(X,Y ) is the subspace of map(X,Y ) which

consists of pointed maps from X to Y . For any nilpotent space X, l(p) : X → X(p) is the

p-localization of X and ê : X → X̂ is the Sullivan profinite completion. Lastly, denote by

PnX the nth section of the Postnikov tower of X and πn : X → PnX is the canonical map.

§2. A Review of Phantom Map

In this section we will review the necessary notions and results related to phantom maps

which are needed in the later part of the paper.

Definition 2.1. A tower of groups is an inverse sequence of groups and homomorphisms

G = {G1
f1←− G2

f2←− · · · }.
One gets such towers when one sets Gn = [ΣXn, Y ] and takes fn : Gn+1 → Gn to be

the homomorphism induced by the inclusion Xn → Xn+1. For such a tower of groups, two

natural notions appear.

Definition 2.2. Given a tower of groups, G = {G1
f1←− G2

f2←− · · · }, define

lim←−G = {(a1, a2, · · · ) | ai = fi(ai+1)},

lim←−
1G =

∏
n

Gn/
∏
n

Gn,

where
∏
n
Gn/

∏
n
Gn is the quotient space of the action of the group

∏
n
Gn acting on the set∏

n
Gn by

{gn} · {xn} = {gnxn(fn(gn+1))
−1}.

In their book, Bousfield and Kan[2] showed

Theorem 2.1. For any pointed complexes X and Y, there is a short exact sequence of

pointed sets

∗ −→ lim←−
1[ΣXn, Y ] −→ [X,Y ] −→ lim←−[Xn, Y ] −→ ∗.
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Remark 2.1. For a sequence of pointed sets S1
i−→ S2

j−→ S3, one says that the sequence

is exact at S2 if every f ∈ S2 which maps under j to the given distinguised element in S3 is

in the image of i.

Corollary 2.1. For any complexes X and Y , we have Ph(X,Y ) ≈ lim←−
1[ΣXn, Y ].

The first published account of an essential phantom map was due to J. F. Adams and

G. Walker[1]. It is a map from ΣCP∞ to
∞∨
1
S4. But most important advances in this area

appear after the Sullivan Conjecture was verified by H. Miller[10]. The two fundamental

results in the theory of phantom maps are the following[6]:

Theorem 2.2. Let X and Y be connected nilpotent complexes of finite type. A map

f : X → Y is a phantom map if and only if

(1) the composition X
f−→ Y

ê−→ Ŷ is null homotopic, or

(2) there is a diagram

X
f−−−−→ Y

l(0)

y yid

X(0)
f̃−−−−→ Y

which commutes up to homotopy.

Theorem 2.3. Let X and Y be 1-connected CW complexes of finite type. If the mapping

space map∗(X, Ŷ ) is weakly contractible, then for every k ≥ 0,

[X,ΩkY ] = Ph(X,ΩkY ) ≈ [X(0),Ω
kY ].

Thus the problem in this case reduces to the computation of map∗(X, Ŷ ). For this we

have the following:

Theorem 2.4. Let Y be a 1-connected finite complex. If

(1) X is a 1-connected Postnikov space (i.e., πn(X) = 0 for n sufficiently large) of finite

type, or

(2) X = BG, where G is a connected Lie group, or

(3) X is a 1-connected infinite loop space,

then the map∗(X, Ŷ ) is weakly contractible.

The first part of this theorem is due to Zabrodsky[12], the second part is a special case

of a result of Friedlander and Mislin[3] and the last part is a special case of a result of

McGibbon[7]. All these results are consequences of H. Miller’s celebrated theorem[10]:

Theorem 2.5. If G is a locally finite group and Y is a finite dimensional complex, then

map∗(BG, Y ) is weakly contractible.

§3. Phantom Maps and SNT

For a map f : X → Y between 1-connected spaces X and Y , let Ff denote the homotopy

fiber of f and Cf the mapping cone of f . As X and Y are 1-connected, Ff is path connected

and Cf is 1-connected. Then we have the following:

Theorem 3.1. There are (pointed) functions

F : Ph(X,Y )→ SNT(X × ΩY ), C : Ph(X,Y )→ SNT(Y ∨ ΣX),
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defined by F (f) = Ff , C(f) = Cf , where “pointed” means F (∗) = X×ΩY , C(∗) = Y ∨ΣX.

Proof. For the proof of the theorem, it is sufficient to prove the following: for all n,

PnFf ≃ PnX × PnΩY = Pn(X × ΩY ), PnCf = Pn(Y ∨ ΣX).

We will only prove the first homotopy equivalence, the proof of the other is similar. Note a

well-known fact that a map f : X → Y is a phantom map if and only if its nth Postnikov

approximation Pnf : PnX → PnY is trivial for all n.

Consider now a phantom map f : X → Y , the maps Pnf : PnX → PnY are trivial for all

n. It follows that πn ◦ f ≃ Pnf ◦ πn ≃ ∗ for all n, and the following diagram commutes

up to homotopy

PnFf −−−−→ X
f−−−−→ Yy y y

PnX × ΩPn+1Y −−−−→ PnX
∗−−−−→ Pn+1Y.

It follows from the homotopy exact sequence of the homotopy fibration sequence that the

map PnFf → PnX × ΩPn+1Y is a homotopy equivalence.

As noted by Harper and Roitberg[4], the functions F and C are far from being surjective.

Our aim here is to find conditions on X and Y ensuring that F and C have nontrivial

images, which extends Harper and Roitberg’s results.

3.1. Results on F

Let Y = ΩkW , where W is a 1-connected finite CW complex and X be a CW complex

satisfying the following:

(1) Ph(X,ΩY ) = [X,ΩY ],

(2) Any map t : X → X is either trivial or rational homotopy equivalence.

Then we have the following:

Theorem 3.2. If f : X → Y is a nontrivial phantom map, then Ff ̸= X × ΩY.

Proof. It is enough to prove that any map between Ff andX×ΩY cannot be a homotopy

equivalence. Let h : X × ΩY → Ff be any map and j : X → X × ΩY the embedding into

the first factor and consider the following diagram

· · · −−−−→ ΩY
k−−−−→ Ff

i−−−−→ X
f−−−−→ Yxh

X × ΩYxj

X
Denote d = i ◦ h ◦ j. We have f ◦ d = f ◦ i ◦ h ◦ j ≃ ∗, since f ◦ i ≃ ∗. By Theorem 2.3 and

Theorem 2.4, we have f ≃ f̃ ◦ l(0), where f̃ : X(0) → Y is uniquely determined by f . There

is a commutative diagram up to homotopy

X
l(0)−−−−→ X(0)

d

y d(0)

y
X

l(0)−−−−→ X(0)
f̃−−−−→ Y



No.3 I. DO PHANTOM MAPS AND SPACES OF THE SAME n-TYPE FOR ALL n 335

It follows from this diagram that

0 = f ◦ d = f̃ ◦ l(0) ◦ d = f̃ ◦ d(0) ◦ l(0).

Then Theorem 2.3 and Theorem 2.4 imply that f̃ ◦d(0) = 0. By the condition (2), d is either

trivial or rational homotopy equivalence. If d ̸= 0, then d(0) is a homotopy equivalence and

the equation above implies that f̃ = 0 and thus f = 0, which is a contradiction.

We conclude therefore that d = 0, i.e., i ◦ h ◦ j = 0. Thus there is a map g : X → ΩY

such that h ◦ j = k ◦ g. By condition (1), g is a phantom map and thus g induces the trivial

homomorphism on homotopy groups. It follows that the homomorphism

π∗(h) : π∗(X × ΩY )→ π∗(ΩY )

must be trivial on the first factor π∗(X) of π∗(X × ΩY ) = π∗(X) ⊕ π∗(ΩY ) and hence h

cannot be a homotopy equivalence.

Corollary 3.1. Let Y = ΩkW where k ≥ 0 and W is a 1-connected finite CW complex.

Let X = K(Z, n) or BG where G is a 1-connected compact Lie group. Then the conclusion

of Theorem 3.2 is true.

Remark 3.1. Corollary 3.1 extends the corresponding result of Harper and Roitberg[4].

The previous result shows that a nontrivial phantom map corresponds to a nontrivial

element under the map F . Actually we can say something more as in [4] as follows:

Theorem 3.3. If X and Y are as in Theorem 3.2 but k ≥ 1, then the image of F :

Ph(X,Y )→ SNT(X × ΩY ) is an uncountable subset of SNT(X × ΩY ).

3.2. Results on C

In the following we turn to the study of map C which is in certain sense dual to the map

F .

Let X = ΣkW where W is a CW complex and k ≥ 1. Let Y be a CW complex satisfying

the following:

(1) Ph(ΣX,Y ) = [ΣX,Y ] = [ΣX(0), Y ],

(2) Any map t : Y → Y is either trivial or rational homotopy equivalence.

Then we have

Theorem 3.4. If f : X → Y is a nontrivial phantom map, then Cf ̸= Y ∨ ΣX.

Proof. Let h : Cf → Y ∨ΣX be any map and j′ : Y ∨ΣX → Y the canonical map. Let

d = j′ ◦ h ◦ i, then d ◦ f = j′ ◦ h ◦ i ◦ f = 0 since i ◦ f = 0. Now by Theorem 2.2, there

is a map f̃ : X(0) → Y such that f = f̃ ◦ l(0) since f is a phantom map. It follows that

d ◦ f̃ ◦ l(0) = 0 and thus d ◦ f̃ = 0 by the condition (1).

Let j : Y → Ȳ be an integral approximation of Y . This means that the homotopy groups

of Ȳ are torsion free and finitely generated, the loop space ΩȲ is homotopy equivalent

to a product of Eilenberg-MacLane spaces and the map j is a rational equivalence. Such

approximation exists by [12]. Since the fiber of j has finite groups, it follows that j induces

a bijection

j∗ : [X(0), Y ]→ [X(0), Ȳ ].

If d ̸= 0, then d(0) is a homotopy equivalence by the condition (2). Since ΩȲ is a product

of Eilenberg-MacLane spaces, there is a map d̄ : ΩȲ → ΩȲ such that the following diagram
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commutes up to homotopy

ΩY
j−−−−→ ΩȲ

Ωd

y d̄

y
ΩY −−−−→ ΩȲ

Since d and thus d(0) is a rational homotopy equivalence, it follows that d̄ is a rational

homotopy equivalence.

From the commutative diagram

[Σ(k−1)W(0),ΩY ]
j∗−−−−→ [Σ(k−1)W(0),ΩȲ ] −−−−→ [Σ(k−1)W(0),ΩȲ(0)]

Ωd∗

y d̄∗

y d̄(0)∗

y
[Σ(k−1)W(0),ΩY ]

j∗−−−−→ [Σ(k−1)W(0),ΩȲ ] −−−−→ [Σ(k−1)W(0),ΩȲ(0)]

It follows from d ◦ f̃ = 0 that f̃ = 0 and thus f = f̃ ◦ l(0) = 0, which is a contradiction.

Thus we have d = 0 and the same argument as in Theorem 3.2 shows that f cannot be a

homotopy equivalence.

Remark 3.2. Our proof is dual to that of Theorem 3.2, while in [4] Harper and Roitberg

have to use a different argument which does not extend to the general case.

Corollary 3.2. If X is as in Theorem 3.4 and

(1) Y = Sn or

(2) Y = BG where G is a 1-connected compact Lie group,

then the conclusion of Theorem 3.4 remains true.
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