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1 Introduction

Basic notions and properties concerning Nash manifolds are reviewed in Section 2. In this
introduction, we introduce some basic notions concerning Nash groups. See Section 3 for more
details.

A Nash group is a group which is simultaneously a Nash manifold so that all group operations
are Nash maps. A Nash homomorphism is a group homomorphism between two Nash groups
which is simultaneously a Nash map. If a Nash homomorphism is bijective, then its inverse
is also a Nash homomorphism. In this case, we say that the Nash homomorphism is a Nash
isomorphism. Two Nash groups are said to be Nash isomorphic to each other if there exists a
Nash isomorphism between them.

Given a subgroup of a Nash group G, if it is semialgebraic, then it is automatically a closed
Nash submanifold of G (see Proposition 3.1). In this case, we call it a Nash subgroup of G. A
Nash subgroup is canonically a Nash group.

As usual, all finite-dimensional real representations of Lie groups are assumed to be contin-
uous. A Nash representation is a finite-dimensional real representation of a Nash group such
that the action map is a Nash map.

Definition 1.1 A Nash group is said to be almost linear if it has a Nash representation
with a finite kernel.

Almost linear Nash groups form a nice class of mathematical objects. Their structures are
simpler than those of general Lie groups, and in the study of infinite-dimensional representation
theory, they are more flexible than linear algebraic groups. Although there is a vast literature
on Lie groups and linear algebraic groups, it seems that almost linear Nash groups have not
been systematically studied (see [17] for a brief introduction to Nash groups). The goal of this
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article is to provide a detailed study of structures of almost linear Nash groups, for possible
later reference. The structure theory of almost linear Nash groups is similar to that of linear
algebraic groups. However, we try to avoid the language of algebraic geometry to keep the
article as elementary as possible. In what follows, we summarize some basic results about
almost linear Nash groups which are either well-known or will be proved in this article.

It is clear that a Nash subgroup of an almost linear Nash group is an almost linear Nash
group. The product of two almost linear Nash groups is an almost linear Nash group. By
the following proposition, the quotient of an almost linear Nash group by a Nash subgroup is
canonically an affine Nash manifold, and the quotient by a normal Nash subgroup is canonically
an almost linear Nash group.

Proposition 1.1 Let G be an almost linear Nash group, and H be a Nash subgroup of
it. Then there exists a unique Nash structure on the quotient topological space G/H which
makes the quotient map G → G/H a submersive Nash map. With this Nash structure, G/H
becomes an affine Nash manifold, and the left translation map G×G/H → G/H is a Nash map.
Furthermore, if H is a normal Nash subgroup of G, then the topological group G/H becomes an
almost linear Nash group under this Nash structure.

For each normal Nash subgroup H of an almost linear Nash group G, the Nash group G/H
is called a Nash quotient group of G.

There are three classes of almost linear Nash groups which are basic to the general structure
theory, namely, elliptic Nash groups, hyperbolic Nash groups and unipotent Nash groups.

Definition 1.2 A Nash group is said to be elliptic if it is almost linear and compact. It
is said to be hyperbolic if it is Nash isomorphic to (R×

+)n for some n ≥ 0. It is said to be
unipotent if it has a faithful Nash representation such that all group elements act as unipotent
linear operators.

Here and as usual, R×
+ denotes the set of positive real numbers. It is a Nash group in the

obvious way. Recall that a linear operator x on a finite-dimensional vector space is said to be
unipotent if x− 1 is nilpotent.

There is no need to say that a Nash group is almost linear if it is elliptic, hyperbolic or
unipotent.

Definition 1.3 An element of an almost linear Nash group G is said to be elliptic, hyper-
bolic, or unipotent if it is contained in a Nash subgroup of G which is elliptic, hyperbolic, or
unipotent, respectively.

Definitions 1.2–1.3 are related as follows.

Proposition 1.2 An almost linear Nash group is elliptic, hyperbolic, or unipotent if and
only if all of its elements are elliptic, hyperbolic, or unipotent, respectively.

In general, we have the following proposition.

Proposition 1.3 Let G be an almost linear Nash group. If G is elliptic, hyperbolic or
unipotent, then all Nash subgroups and all Nash quotient groups of G are elliptic, hyperbolic or
unipotent, respectively. If G has a normal Nash subgroup H so that H and G/H are both elliptic,
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both hyperbolic or both unipotent, then G is elliptic, hyperbolic or unipotent, respectively.

Concerning elliptic Nash groups, we have the following theorem.

Theorem 1.1 The followings hold true:
(1) Every compact Lie group has a unique Nash structure on its underlying topological space

which makes it an almost linear Nash group.
(2) Every continuous homomorphism from an elliptic Nash group to an almost linear Nash

group is a Nash homomorphism.
(3) Every compact subgroup of an almost linear Nash group is a Nash subgroup.

Theorem 1.1 implies that the category of elliptic Nash groups is isomorphic to the category
of compact Lie groups.

Recall that a subgroup of a Lie group G is said to be analytic if it is equal to the image of an
injective Lie group homomorphism from a connected Lie group to G. Every analytic subgroup
is canonically a Lie group (this is implied by [18, Theorem 1.62]).

For unipotent Nash groups, we have the following theorem.

Theorem 1.2 The followings hold true:
(1) As a Lie group, every unipotent Nash group is connected, simply connected and nilpotent.
(2) Every connected, simply connected, nilpotent Lie group has a unique Nash structure on

its underlying topological space which makes it a unipotent Nash group.
(3) Every continuous homomorphism between two unipotent Nash groups is a Nash homo-

morphism.
(4) Every analytic subgroup of a unipotent Nash group is a Nash subgroup.

Theorem 1.2 implies that the category of unipotent Nash groups is isomorphic to the cat-
egory of connected, simply connected, nilpotent Lie groups. Recall that the later category is
equivalent to the category of finite-dimensional nilpotent real Lie algebras.

For every r ∈ Q, the map

R×
+ → R×

+, x �→ xr

is a Nash homomorphism from R×
+ to itself. Conversely, all Nash homomorphisms from R×

+ to
itself are of this form. We view the abelian group R×

+ as a right Q-vector space so that

the scalar multiplication x · r := xr

for all x ∈ R×
+ and r ∈ Q. Note that for every finite-dimensional left Q-vector space E, R×

+⊗QE

is obviously a hyperbolic Nash group. Moreover, we have the following theorem.

Theorem 1.3 The functor

A �→ Hom(R×
+, A)

establishes an equivalence from the category of hyperbolic Nash groups to the category of finite-
dimensional left Q-vector spaces. It has a quasi-inverse

E �→ R×
+ ⊗Q E.
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Here and henceforth, for any two Nash groups G1 and G2, Hom(G1, G2) denotes the set of
all Nash homomorphisms from G1 to G2. It is obviously an abelian group when G2 is abelian.
The abelian group Hom(R×

+, A) of Theorem 1.3 is a left Q-vector space as follows:

(r · φ)(x) := φ(xr), r ∈ Q, φ ∈ Hom(R×
+, A), x ∈ R×

+.

In a way similar to Jordan decompositions for linear algebraic groups, we have the following
theorem.

Theorem 1.4 Every element x of an almost linear Nash group G is uniquely of the form
x = ehu such that e ∈ G is elliptic, h ∈ G is hyperbolic, u ∈ G is unipotent, and they pairwise
commute with each other.

We call the equality x = ehu of Theorem 1.4 the Jordan decomposition of x. In Section 8,
Jordan decompositions at the Lie algebra level are also discussed.

Besides elliptic Nash groups, hyperbolic Nash groups and unipotent Nash groups, there are
two other classes of Nash groups which are important to the general structure theory, namely,
reductive Nash groups and exponential Nash groups.

Definition 1.4 A Nash group is said to be reductive if it has a completely reducible Nash
representation with a finite kernel. It is said to be exponential if it is almost linear and has no
non-trivial elliptic element.

Here and as usual, a representation is said to be completely reducible if it is a direct sum
of irreducible subrepresentations, or equivalently, if each subrepresentation of it has a comple-
mentary subrepresentation.

A general reductive Nash group is more or less the direct product of two reductive Nash
groups of the particular type, namely, a semisimple Nash group and a Nash torus.

Definition 1.5 A Nash group or a Lie group is said to be semisimple if its Lie algebra is
semisimple. A Nash torus is a Nash group which is Nash isomorphic to Sm × (R×

+)n for some
m,n ≥ 0.

Here S denotes the Nash group of complex numbers of modulus one.

Concerning semisimple Nash groups, we have the following theorem.

Theorem 1.5 The followings hold true:

(1) Every semisimple Nash group is almost linear.

(2) Every semisimple Nash group has finitely many connected components, and its identity-
connected component has a finite center.

(3) Let G be a semisimple Lie group which has finitely many connected components, and
whose identity connected component has a finite center. Then there exists a unique Nash struc-
ture on the underlying topological space of G which makes G a Nash group.

(4) Every continuous homomorphism from a semisimple Nash group to an almost linear
Nash group is a Nash homomorphism.

(5) Every semisimple analytic subgroup of an almost linear Nash group is a Nash subgroup.
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Theorem 1.5 implies that the category of semisimple Nash groups is isomorphic to the
category of semisimple Lie groups which have finitely many connected components, and whose
identity connected components have finite centers.

For every almost linear Nash group G, define its unipotent radical to be

UG := the identity connected component of
⋂
π

kerπ,

where π runs through all irreducible Nash representations of G. This is the largest normal
unipotent Nash subgroup of G (see Proposition 14.1).

We have the following theorem concerning reductive Nash groups.

Theorem 1.6 The followings are equivalent for an almost linear Nash group G:
(a) It is reductive.
(b) All Nash representations of G are completely reducible.
(c) The unipotent radical of G is trivial.
(d) For some Nash representations of G with a finite kernel, the attached trace form on the

Lie algebra of G is non-degenerate.
(e) For every Nash representation of G with a finite kernel, the attached trace form on the

Lie algebra of G is non-degenerate.
(f) The identity connected component of G is reductive.
(g) There exists a connected semisimple Nash group H, a Nash torus T , and a Nash homo-

morphism H × T → G with a finite kernel and open image.

Here, for every Nash representation V of a Nash group G, the attached trace form 〈 , 〉φ on
the Lie algebra g of G is defined by

〈x, y〉φ := tr(φ(x)φ(y)), x, y ∈ g,

where φ : g → gl(V ) denotes the differential of the representation V of G. Here and as
usual, gl(V ) denotes the algebra of all linear endomorphisms of V ; and as quite often, when no
confusion is possible, we do not distinguish a representation with its underlying vector space.

Denote by Bn(R) the Nash subgroup of GLn(R) consisting all upper-triangular matrices
with positive diagonal entries (n ≥ 0). It is obviously an exponential Nash group.

Theorem 1.7 The followings are equivalent for an almost linear Nash group G:
(a) It is exponential.
(b) It has no non-trivial compact subgroup.
(c) It has no proper co-compact Nash subgroup.
(d) The quotient G/UG is a hyperbolic Nash group.
(e) It is Nash isomorphic to a Nash subgroup of Bn(R) for some n ≥ 0.
(f) The exponential map from the Lie algebra of G to G is a diffeomorphism.
(g) Every Nash action of G on every non-empty compact Nash manifold has a fixed-point.

Here a Nash action means an action of a Nash group on a Nash manifold such that the
action map is Nash.

The following theorem makes the structure theory of almost linear Nash groups extremely
pleasant.
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Theorem 1.8 Let G be an almost linear Nash group. Then every elliptic (hyperbolic,
unipotent, reductive or exponential) Nash subgroup of G is contained in a maximal one, and
all maximal elliptic (hyperbolic, unipotent, reductive or exponential) Nash subgroups of G are
conjugate to each other in G.

A maximal reductive Nash subgroup of an almost linear Nash group G is called a Levi
component of G.

Theorem 1.9 Let L be a Levi component of an almost linear Nash group G. Then G =
L� UG.

The equality G = L� UG of Theorem 1.9 is called a Levi decomposition of G.

Theorem 1.10 Let G be an almost linear Nash group, K be a maximal elliptic Nash sub-
group of G, and B be a maximal exponential Nash subgroup of G. Then the multiplication map
K ×B → G is a Nash diffeomorphism.

Let G,K and B be as in Theorem 1.10. Let A be a Levi component of B, which is a
hyperbolic Nash group. Denote by N the unipotent radical of B. Then by Theorems 1.9–1.10,
we have G = KAN . This is called an Iwasawa decomposition of G.

The author thanks Masahiro Shiota for helpful email correspondences, and for confirming
Proposition 2.4.

2 Nash Manifolds

We begin with a review of basic concepts and properties of Nash manifolds which are
necessary for this article (see [2, 16] for more details). Recall that a subset of Rn (n ≥ 0) is
said to be semialgebraic if it is a finite union of the sets of the form

{x ∈ Rn | f1(x) > 0, f2(x) > 0, · · · , fr(x) > 0, g1(x) = g2(x) = · · · = gs(x) = 0},

where r, s ≥ 0, f1, f2, · · · , fr and g1, g2, · · · , gs are real polynomial functions on Rn. For n =
−∞, we define Rn to be the empty set, and its only subset is defined to be semialgebraic. It is
clear that the collection of semialgebraic sets in Rn (n ≥ 0 or n = −∞) is closed under taking
finite union, finite intersection, and complement.

A map ϕ : X → X ′ from a semialgebraic set X ⊂ Rn to a semialgebraic set X ′ ⊂ Rm (m ≥ 0
or m = −∞) is said to be semialgebraic if its graph is semialgebraic in Rn+m. Tarski-Seidenberg
theorem asserts that the image of a semialgebraic set under a semialgebraic map is semialgebraic:
If ϕ : X → X ′ is semialgebraic, then ϕ(X0) is semialgebraic for each semialgebraic set X0 ⊂ X .
As an easy consequence of Tarski-Seidenberg theorem, we know that the composition of two
semialgebraic maps is also semialgebraic; and the inverse image of a semialgebraic set under a
semialgebraic map is semialgebraic.

Definition 2.1 A Nash structure on a topological space M is an element n ∈ {−∞, 0, 1,
2, · · · } together with a set N with the following properties:

(a) The set N is contained in N(Rn,M), where N(Rn,M) denotes the set of all triples
(φ,U, U ′) such that U is an open semialgebraic subset of Rn, U ′ is an open subset of M , and
φ : U → U ′ is a homeomorphism.
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(b) Every two elements (φ1, U1, U
′
1) and (φ2, U2, U

′
2) of N are Nash compatible, namely, the

homeomorphism
φ−1

2 ◦ φ1 : φ−1
1 (U ′

1 ∩ U ′
2) → φ−1

2 (U ′
1 ∩ U ′

2)

has a semialgebraic domain and a codomain, and is semialgebraic and smooth.
(c) There are finitely many elements (φi, Ui, U

′
i) of N , i = 1, 2, · · · , r (r ≥ 0), such that

M = U ′
1 ∪ U ′

2 ∪ · · · ∪ U ′
r.

(d) For every element of N(Rn,M), if it is Nash compatible with all elements of N , then it
is an element of N .

(e) If M is empty, then n = −∞.

The following lemma is routine to check.

Lemma 2.1 With the notation as in Definition 2.1, let

N0 = {(φi, Ui, U
′
i) | i = 1, 2, · · · , r}

be a finite subset of N(Rn,M), whose elements are pairwise Nash compatible with each other.
If M is non-empty and

M = U ′
1 ∪ U ′

2 ∪ · · · ∪ U ′
r,

then together with n, the set

{(φ,U, U ′) ∈ N(Rn,M) | (φ,U, U ′) is Nash compatible with all elements of N0}

is a Nash structure on M .

A Nash manifold is defined to be a Hausdorff topological space together with a Nash struc-
ture on it. The element n in Definition 2.1 of the Nash structure is called the dimension of the
Nash manifold, and an element of N in Definition 2.1 of the Nash structure is called a Nash
chart of the Nash manifold.

Definition 2.2 A continuous map ϕ : M → N between Nash manifolds is called a Nash
map if for all Nash charts (φ,U, U ′) of M and (ψ, V, V ′) of N , the set φ−1(U ′ ∩ ϕ−1(V ′)) is
semialgebraic, and the map

ψ−1 ◦ ϕ ◦ φ : φ−1(U ′ ∩ ϕ−1(V ′)) → V

is semialgebraic and smooth.

It is clear that every Nash manifold is a smooth manifold, and every Nash map is a smooth
map. The composition of two Nash maps is certainly a Nash map.

Definition 2.3 A subset X of a Nash manifold M is said to be semialgebraic if φ−1(X∩U ′)
is semialgebraic for every Nash chart (φ,U, U ′) of M .

As in the case of Rn, the collection of semialgebraic sets in a Nash manifold is closed
under taking finite union, finite intersection, and complement. Tarski-Seidenberg theorem easily
implies the following lemma.
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Lemma 2.2 Let ϕ : M → N be a Nash map of Nash manifolds. Then for each semialgebraic
subset X of M , the image ϕ(X) is a semialgebraic subset of N ; and for each semialgebraic subset
Y of N , the inverse image ϕ−1(Y ) is a semialgebraic subset of M .

The following proposition is a useful criterion for a continuous map to be a Nash map.

Proposition 2.1 Let ϕ : M → N be a continuous map of Nash manifolds. Then ϕ is a
Nash map if and only if

(1) for each semialgebraic open subset Y of N , the inverse image ϕ−1(Y ) is semialgebraic
in M ,

(2) for every x ∈ M , there are Nash charts (φ,U, U ′) of Mand (ψ, V, V ′) of N such that
x ∈ U ′, ϕ(U ′) ⊂ V ′, and the map

ψ−1 ◦ ϕ ◦ φ : U → V

is semialgebraic and smooth.

Proof This is an easy consequence of [2, Proposition 8.1.8].

The following lemma will be used for several times.

Lemma 2.3 Let ϕ : M →M ′ be a surjective submersive Nash map of Nash manifolds. Let
N be a Nash manifold and let ψ : M ′ → N be a map. Then ψ is a Nash map if and only if
ψ ◦ ϕ is a Nash map.

Proof The “only if ” part of the lemma is obvious. Using Proposition 2.1 and Lemma 2.2,
the “if ” part holds because the map ϕ has local Nash sections.

Given a Nash map, if it is a diffeomorphism as a map of smooth manifolds, then its inverse
is also a Nash map. In this case, we call the Nash map a Nash diffeomorphism. Two Nash
manifolds are said to be Nash diffeomorphic to each other if there exists a Nash diffeomorphism
between them.

Definition 2.4 A semialgebraic locally closed submanifold of a Nash manifold M is called
a Nash submanifold of M .

In this article, all locally closed submanifolds of a smooth manifold are assumed to be
equidimensional. By the following proposition, every Nash submanifold is automatically a
Nash manifold.

Proposition 2.2 Let X be a Nash submanifold of a Nash manifold M . Then there exists
a unique Nash structure on the topological space X which makes the inclusion X ↪→ M an
immersive Nash map.

We say that a Nash map ϕ : M → N is a Nash embedding if ϕ(M) is a Nash submanifold
of N , and the induced map ϕ : M → ϕ(M) is a Nash diffeomorphism.

By the following proposition, the product of two Nash manifolds is again a Nash manifold.

Proposition 2.3 Let M and N be two Nash manifolds. Then there exists a unique Nash
structure on the topological space M × N which makes the projections M × N → M and
M ×N → N submersive Nash maps.
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Both Propositions 2.2–2.3 are standard. We shall not go to their proofs.
The following lemma is obvious.

Lemma 2.4 Let ϕ : M → N be a smooth map of Nash manifolds. Then ϕ is a Nash map
if and only if its graph is semialgebraic in M ×N .

Lemmas 2.2 and 2.4, and the following basic result will be used without further explicit
mention.

Lemma 2.5 (see [7, Theorem 2.23]) Every semialgebraic subset of a Nash manifold has
only finitely many connected components and each of them is semialgebraic.

Recall the following lemma.

Lemma 2.6 (see [16, Remark I.5.12]) Every Nash manifold of dimension n (n ≥ 0) is
covered by finitely many open Nash submanifolds which are Nash diffeomorphic to Rn.

Using Lemmas 2.5–2.6, it is easy to prove the following lemma.

Lemma 2.7 Let ϕ : M → M ′ be a submersive Nash map of Nash manifolds. Assume that
ϕ is a finite-fold covering map as a map of topological spaces. Let N be a Nash manifold, and
ψ : N →M be a continuous map. Then ψ is a Nash map if and only if ϕ ◦ ψ is a Nash map.

By the following proposition, a finite-fold cover of a Nash manifold is a Nash manifold.

Proposition 2.4 Let N be a Nash manifold, M be a topological space, and ϕ : M → N be
a finite-fold covering map of topological spaces. Then there exists a unique Nash structure on
M which makes ϕ a submersive Nash map.

Proof This is known to experts. We sketch a proof for the lack of reference. First note
that M is Hausdorff, since N is Hausdorff. Since this proposition is trivial when M is an empty
set, we assume that M is non-empty. The uniqueness assertion of this proposition is a direct
consequence of Lemma 2.7. In what follows, we construct a Nash structure on M which makes
ϕ a submersive Nash map.

Write (n, NN ) for the Nash structure on N . Put

N ′
M :=

⋃
(φ,U,U′)∈NN ,

with U connected and simply connected

Nφ,

where
Nφ := {(ψ,U, U ′′) ∈ N(Rn,M) | ψ lifts the homeomorphism φ : U → U ′}.

One checks that all elements in N ′
M are pairwise Nash compatible. Lemma 2.6 implies that the

set N ′
M has property (c) of Definition 2.1. Denote by NM the set of all elements in N(Rn,M)

which are Nash compatible with all elements of N ′
M . Lemma 2.1 implies that (n,NM ) is a Nash

structure on M . With this Nash structure, ϕ is clearly a submersive Nash map.

Every finite-dimensional real vector space is obviously a Nash manifold. A Nash manifold
is said to be affine if it is Nash diffeomorphic to a Nash submanifold of some finite-dimensional
real vector spaces. It is known that every affine Nash manifold is actually Nash diffeomorphic to
a closed Nash submanifold of some finite-dimensional real vector spaces (see [17, Section 2.22]).
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It is clear that a Nash submanifold of an affine Nash manifold is an affine Nash manifold; the
product of two affine Nash manifolds is an affine Nash manifold. The following criterion implies
that a finite-fold cover of an affine Nash manifold is an affine Nash manifold.

Proposition 2.5 (see [16, Proposition III.1.7]) Let M be a Nash manifold of dimension
n ≥ 0. Then M is affine if and only if for every x ∈ M , there is a Nash map M → Rn which
is submersive at x.

Projective spaces form an important family of affine Nash manifolds: For each finite-
dimensional real vector space V , the set P(V ) of all one-dimensional subspaces of V is naturally
an affine Nash manifold (see [2, Theorem 3.4.4]).

For each semialgebraic subset X of a Nash manifold M , define its dimension

dimX := max
{
d ∈ {−∞, 0, 1, 2, · · · }

∣∣∣X contains a Nash submanifold
of M of dimension d

}
.

The following properties of the dimensions of semialgebraic sets are obvious (see [7, p. 56]): The
dimension of the union of finitely many semialgebraic sets is the maximum of the dimensions
of these semialgebraic sets, and the dimension of a finite product of semialgebraic sets is the
sum of their dimensions. The following basic facts concerning dimensions of semialgebraic sets
are well-known.

Proposition 2.6 (see [7, Proposition 3.16 and Theorem 3.20]) The followings hold true:
(1) The closure X of a semialgebraic set X in a Nash manifold is semialgebraic. Moreover,

dimX = dimX; and dimX \X < dimX whenever X is non-empty.
(2) Each semialgebraic subset of a finite-dimensional real vector space has the same dimen-

sion as its Zariski closure.

Note that all Zariski closed subsets of a finite-dimensional real vector space are semialgebraic.
For a semialgebraic set X of a Nash manifold M , an element x ∈ X is said to be smooth of

dimension d ≥ 0 if there is a semialgebraic open neighborhood U of x in M such that X ∩U is
a d-dimensional Nash submanifold of M . Note that X is a Nash submanifold of M if and only
if all points of it are smooth of dimension dimX .

Lemma 2.8 (see [1, Proposition 5.53]) Let X be a non-empty semialgebraic subset of a
Nash manifold M . Then X has a point which is smooth of dimension dimX.

3 Nash Groups and Almost Linear Nash Groups

In this section, we introduce some generalities on Nash groups and almost linear Nash
groups.

Definition 3.1 A Nash group is a Hausdorff topological group G, equipped with a Nash
structure on its underlying topological space so that both the multiplication map G×G→ G and
the inversion map G → G are Nash maps between Nash manifolds. A Nash homomorphism
between two Nash groups is a group homomorphism between them which is simultaneously a
Nash map.

The following basic result will be used freely without further explicit mention.
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Proposition 3.1 Every semialgebraic subgroup of a Nash group G is a closed Nash sub-
manifold of G.

Proof This is well-known. We sketch a proof for convenience of the reader. Let H be
a semialgebraic subgroup of G. Lemma 2.8 implies that H is a Nash submanifold of G. In
particular, H is locally closed, and thus is an open subgroup of its closure H. Therefore, H is
also closed in H. This proves this proposition (recall that every closed subgroup of a Lie group
is a submanifold).

In view of Proposition 3.1, a semialgebraic subgroup of a Nash group G is also called a Nash
subgroup of G.

By Lemma 2.2, we have the following proposition.

Proposition 3.2 The image of a Nash homomorphism ϕ : G → G′ is a Nash subgroup of
G′. In particular, it is closed in G′.

It is clear that a Nash subgroup of a Nash group is a Nash group, and the product of two
Nash groups is a Nash group. Proposition 2.4 implies that a finite-fold covering group of a Nash
group is a Nash group.

Proposition 3.3 Let G be a topological group, G′ be a Nash group, and G→ G′ be a group
homomorphism which is simultaneously a finite-fold topological covering map. Equip on G the
Nash structure which makes G→ G′ a submersive Nash map. Then G becomes a Nash group.

Proof Using Lemma 2.7, this is routine to check.

Note that there is no strictly decreasing infinite sequence of Nash subgroups of a Nash group.
Consequently, we have the following proposition.

Proposition 3.4 Let G be a Nash group, and {Gi}i∈I be a family of Nash subgroups of G.
Then ⋂

i∈I

Gi =
⋂
i∈I0

Gi

for some finite subset I0 of I. Consequently, the intersection of an arbitrary family of Nash
subgroups of G is again a Nash subgroup of G.

By a Nash action of a Nash group G on a Nash manifold M , we mean a group action
G ×M → M which is simultaneously a Nash map. Using Lemma 2.8, we know that each
G-orbit of a Nash action G×M →M is a Nash submanifold of M .

The analog of the following proposition for algebraic groups is proved in [3, Chapter I,
Proposition 1.8].

Proposition 3.5 Let G be a Nash group with a Nash action on a non-empty Nash manifold
M . Then each G-orbit in M of the minimal dimension is closed.

Proof For each non-closed G-orbit O in M , there is an orbit O′ in O \O, where O denotes
the closure of O in M . Then dimO′ < dimO by the first assertion of Proposition 2.6. Therefore,
O is not of the minimal dimension.
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A finite-dimensional real representation V of a Nash group G is called a Nash representation
if the action map G×V → V is a Nash map. This is equivalent to saying that the corresponding
homomorphism G → GL(V ) is a Nash homomorphism. Recall from the introduction that a
Nash group is said to be almost linear if it has a Nash representation with a finite kernel.

In this article, we use a superscript “ ◦ ” to indicate the identity connected component of a
Nash group.

Proposition 3.6 A Nash group G is almost linear if and only if G◦ is so.

Proof The “only if ” part is trivial. Assume that G◦ is almost linear. Let V0 be a Nash
representation of G◦ with a finite kernel. Put

V := IndG
G◦V0 := {f : G→ V0 | f(g0g) = g0.f(g), g0 ∈ G◦, g ∈ G}.

Under right translations, this is a Nash representation of G with a finite kernel.

To treat quotient spaces of almost linear Nash groups, recall the following proposition.

Proposition 3.7 Let G be an almost linear Nash group, and H be a Nash subgroup of it.
(1) There exists a Nash representation V of G, and a one-dimensional subspace V1 ⊂ V

such that the stabilizer
{g ∈ G | g.V1 = V1}

contains H as an open subgroup.
(2) If H is normal, then there exists a Nash representation of G whose kernel contains H

as an open subgroup.

Proof Using the second assertion of Proposition 2.6, this is an easy consequence of Cheval-
ley’s theorem (see [9, Theorem 11.1.13]).

Also recall the following well-known lemma.

Lemma 3.1 (see [18, Theorem 3.62]) Let G×M → M be a transitive smooth action of a
Lie group G on a smooth manifold M . Then for each x ∈M , the map

G/Gx →M, g �→ g.x

is a diffeomorphism. Here Gx := {g ∈ G | g.x = x}, and the quotient topological space G/Gx

is equipped with the manifold structure so that the quotient map G → G/Gx is smooth and
submersive. Consequently, all surjective Lie group homomorphisms are submersive.

Here and as usual, all Lie groups and smooth manifolds are assumed to be Hausdorff and
second countable as topological spaces.

Proposition 3.8 Let G be an almost linear Nash group, and H be a Nash subgroup of
it. Then there exists a unique Nash structure on the quotient topological space G/H which
makes the quotient map G → G/H a submersive Nash map. With this Nash structure, G/H
becomes an affine Nash manifold, and the left translation map G×G/H → G/H is a Nash map.
Furthermore, if H is a normal Nash subgroup of G, then the topological group G/H becomes an
almost linear Nash group under this Nash structure.
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Proof Uniqueness of such Nash structures is implied by Lemma 2.3. Let V and V1 be as
in the first assertion of Proposition 3.7. The projective space P(V ), which is naturally a Nash
manifold, carries the induced Nash action of G. The image of the map

ϕ : G/H → P(V ), gH �→ g.V1

is a G-orbit in P(V ), and thus is a Nash submanifold of P(V ). It is affine, since P(V ) is an
affine Nash manifold. Lemma 3.1 implies that the map

ϕ : G/H → ϕ(G/H), gH �→ g.V1 (3.1)

is a finite-fold topological covering map. Using Proposition 2.4, we equip on G/H the Nash
structure which makes the map (3.1) a submersive Nash map. Then by Proposition 2.5, G/H is
an affine Nash manifold, and Lemma 2.7 implies that the left translation map G×G/H → G/H

is a Nash map.
Now assume that H is normal. Using the second assertion of Proposition 3.7, we get a Nash

homomorphism

ψ : G→ GLn(R), n ≥ 0, (3.2)

whose kernel contains H as an open subgroup. Equip on G/H the aforementioned Nash struc-
ture. Then by Lemmas 2.3 and 3.1, the map (3.2) descends to a submersive Nash map

G/H → ψ(G). (3.3)

Since (3.3) is a group homomorphism as well as a finite-fold covering map of topological spaces,
Proposition 3.3 implies that G/H is a Nash group, which is obviously almost linear.

4 Elliptic Nash Groups

We first observe that every compact subgroup of an almost linear Nash group is a Nash
subgroup.

Lemma 4.1 Let G be an almost linear Nash group, and let K be a compact subgroup of it.
Then K is a Nash subgroup of G.

Proof Fix a Nash homomorphism ϕ : G→ GLn(R) with a finite kernel. Write K ′ := ϕ(K),
which is a compact subgroup of GLn(R). It is well-known that K ′ is semialgebraic in GLn(R)
(it is actually Zariski closed in GLn(R) (see [6, Lemma 3.3.1])). Note that ϕ−1(K ′) is a Nash
subgroup of G, and has the same dimension as that of K. Therefore, K is an open subgroup
of ϕ−1(K ′), and thus is semialgebraic in G.

Recall from Section 1 that an elliptic Nash group is defined to be an almost linear Nash
group which is compact as a topological space.

Lemma 4.2 Let G be an almost linear Nash group, and K be an elliptic Nash group. Then
every Lie group homomorphism ϕ : K → G is a Nash homomorphism. In particular, every
finite-dimensional real representation of K is a Nash representation.
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Proof The graph of ϕ is a compact subgroup of the almost linear Nash group K × G.
Therefore, it is semialgebraic by Lemma 4.1.

Lemma 4.3 Let K be a compact Lie group. Then there is a unique Nash structure on the
underlying topological space of K which makes K an almost linear Nash group.

Proof Uniqueness follows from Lemma 4.2. To prove the existence, fix an injective Lie
group homomorphism ϕ : K ↪→ GLn(R) (such a homomorphism always exists, see [6, Section
3.3.C]). By Lemma 4.1, ϕ(K) is a Nash group. The existence then follows by transferring the
Nash structure on ϕ(K) to K, through the topological group isomorphism ϕ : K ∼→ ϕ(K).

Combining Lemmas 4.1–4.3, we get Theorem 1.1. Moreover, we have proved the following
theorem.

Theorem 4.1 The category of elliptic Nash groups is isomorphic to the category of compact
Lie groups.

The following proposition is obvious.

Proposition 4.1 All Nash subgroups and Nash quotient groups of all elliptic Nash groups
are elliptic as Nash groups.

Recall that a linear operator x on a finite-dimensional vector space V is said to be semisimple
if every x-stable subspace of V has a complementary x-stable subspace. If V is defined over a
field k of characteristic zero, then for each field extension k′ of k, x is semisimple if and only if
the k′-linear operator

k′ ⊗k V → k′ ⊗k V, a⊗ v �→ a⊗ x(v)

is semisimple. If V is defined over an algebraically closed field, then x is semisimple if and only
if it is diagonalizable.

The following result concerning representations of compact Lie groups is well-known. We
provide a proof for completeness.

Proposition 4.2 Let V be a Nash representation of an elliptic Nash group G. Then each
element of G acts as a semisimple linear operator on V , and all its eigenvalues are complex
numbers of modulus 1.

Proof Since every element of G is contained in a compact abelian subgroup of G, we
assume without loss of generality that G is abelian. Then the complexification VC of V is a
direct sum of one-dimensional subrepresentations. By choosing an appropriate basis of VC, the
representation corresponds to a Nash homomorphism

G→ (C×)n, where n := dimV. (4.1)

Compactness of G implies that the image of (4.1) is contained in Sn (recall from the Intro-
duction that S denotes the Nash group of complex numbers of modulus one). This proves this
proposition.

The following important result is due to Cartan, Malcev and Iwasawa. For a proof, see [4,
Theorem 1.2] for example.
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Theorem 4.2 Let G be a Lie group with finitely many connected components. Then every
compact subgroup of G is contained in a maximal one, and all maximal compact subgroups of G
are conjugate to each other. Moreover, for each maximal compact subgroup K of G, there exists
a closed submanifold X of G which is diffeomorhpic to Rdim G−dim K such that the multiplication
map K ×X → G is a diffeomorphism.

5 Unipotent Nash Groups

We say that a Nash group is unipotent if it has a faithful Nash representation so that all
group elements act as unipotent linear operators. It is obvious that each Nash subgroup of a
unipotent Nash group is a unipotent Nash group.

First recall the following well-known result, which is basic to the study of unipotent Nash
groups.

Lemma 5.1 (see [8]) For each connected, simply connected, nilpotent Lie group N , the
exponential map

exp : LieN → N

is a diffeomorphism.

Here and henceforth, “Lie” indicates the Lie algebra of a Lie group.
Recall from Section 1 that a subgroup of a Lie group G is said to be analytic if it equals the

image of an injective Lie group homomorphism from a connected Lie group to G. Every analytic
subgroup is canonically a connected Lie group. We remark that in general, the topology on
a non-closed analytic subgroup does not coincide with the subspace topology. The set of all
analytic subgroups of G is in one-to-one correspondence with the set of all Lie subalgebras of
LieG.

Lemma 5.2 Let N be a connected, simply connected, nilpotent Lie group. Then each
analytic subgroup of N is closed in N , and is a connected, simply connected, nilpotent Lie
group.

Proof Let n0 be a Lie subalgebra of LieN . Let N0 be a connected, simply connected Lie
group with Lie algebra n0. Then N0 is nilpotent, and there is a commutative diagram

n0
⊂−−−−→ LieN

�
⏐⏐�exp �

⏐⏐�exp

N0
ϕ−−−−→ N

where ϕ is the Lie group homomorphism whose differential is the inclusion map n0 ↪→ LieN .
By Lemma 5.1, the two vertical arrows are diffeomorphisms. Since the top horizontal arrow is
a closed embedding, ϕ is also a closed embedding. Then this lemma follows, since ϕ(N0) is the
analytic subgroup of N corresponding to n0.

Lemma 5.3 Let V be a finite-dimensional real representation of a connected Lie group G.
If all elements of G act as unipotent linear operators on V , then G kills a full flag of V , namely,
there exists a sequence

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn (n := dimV )
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of subspaces of V , such that dimVi = i (i = 0, 1, 2, · · · , n), and

(g − 1).Vi ⊂ Vi−1 for all g ∈ G and all i = 1, 2, · · · , n.

Proof Taking the differential of the representation, LieG acts as nilpotent linear operators
on V . Therefore, this lemma is a direct consequence of Engel’s theorem.

Now we come to the study of unipotent Nash groups.

Lemma 5.4 Every unipotent Nash group is connected.

Proof Proposition 4.2 implies that a maximal compact subgroup of a unipotent Nash group
is trivial. Therefore, this lemma follows by Theorem 4.2.

Denote by Un(R) (n ≥ 0) the subgroup of GLn(R) consisting all unipotent upper-triangular
matrices. This is a unipotent Nash group. As a Lie group, it is connected, simply connected,
and nilpotent. The Lie algebra un(R) of Un(R) consists all nilpotent upper-triangular matrices
in gln(R).

Lemma 5.5 Every unipotent Nash group is Nash isomorphic to a Nash subgroup of Un(R)
for some n ≥ 0.

Proof This is a direct consequence of Lemmas 5.3–5.4.

Proposition 5.1 Every unipotent Nash group is connected, simply connected and nilpotent.

Proof This is implied by Lemmas 5.2 and 5.4–5.5.

Proposition 5.2 For each unipotent Nash group N , the exponential map

exp : LieN → N (5.1)

is a Nash diffeomorphism.

Proof Proposition 5.1 and Lemma 5.1 imply that (5.1) is a diffeomorphism. Using Lemma
5.5, we fix an injective Nash homomorphism ϕ : N → Un(R). Then we have a commutative
diagram

LieN
φ−−−−→ un(R)

�
⏐⏐�exp �

⏐⏐�exp

N
ϕ−−−−→ Un(R)

where φ denotes the differential of ϕ. Note that in the above diagram, the right vertical arrow
is a Nash diffeomorphism, and the two horizontal arrows are Nash embeddings. Therefore, the
left vertical arrow is a Nash diffeomorphism.

Proposition 5.3 Every analytic subgroup of a unipotent Nash group is a Nash subgroup.

Proof Let N0 be an analytic subgroup of a unipotent Nash group N . Then we have a
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commutative diagram

LieN0
⊂−−−−→ LieN

�
⏐⏐�exp �

⏐⏐�exp

N0
⊂−−−−→ N

(5.2)

By Proposition 5.2, the right vertical arrow of (5.2) is a Nash diffeomorphism. By Lemmas
5.1–5.2, the left vertical arrow of (5.2) is a diffeomorphism. Therefore, N0 is semialgebraic in
N , since LieN0 is semialgebraic in LieN .

Proposition 5.4 Let N , N ′ be two unipotent Nash groups. Then every Lie group homo-
morphism ϕ : N → N ′ is a Nash homomorphism.

Proof It easily follows from Proposition 5.2.

Proposition 5.5 Let N be a connected, simply connected, nilpotent Lie group. Then there
exists a unique Nash structure on the underlying topological space of N which makes N a
unipotent Nash group.

Proof The uniqueness assertion follows from Proposition 5.4. To prove the existence, it
suffices to show that there exists a unipotent Nash group which is isomorphic to N as a Lie
group. Since all unipotent Nash groups are connected and simply connected (see Proposition
5.1), it suffices to show that there exists a unipotent Nash group whose Lie algebra is isomorphic
to LieN .

As a special case of Ado’s theorem, LieN is isomorphic to a Lie subalgebra of un(R) for some
n ≥ 0 (see [14, Theorem 7.19]). Identify LieN with a Lie subalgebra of un(R). By Proposition
5.3, the corresponding analytic subgroup of Un(R) is a unipotent Nash group. Therefore, this
proposition follows.

Combining Propositions 5.1 and 5.3–5.5, we get Theorem 1.2. We have also proved the
following theorem.

Theorem 5.1 The category of unipotent almost linear Nash groups is isomorphic to the
category of connected, simply connected, nilpotent Lie groups.

The following lemma will be used later.

Lemma 5.6 Let N be a connected Nash group. If N has a Nash representation with a finite
kernel so that all group elements act as unipotent linear operators, then N is unipotent.

Proof Using Lemma 5.3, we get a Nash homomorphism ϕ : N → Un(R) with finite kernel.
By Proposition 5.1, ϕ(N) is connected and simply connected. This implies that ϕ : N → ϕ(N)
is a Nash isomorphism, and this lemma follows.

6 Hyperbolic Nash Groups

The group R×
+ of positive real numbers is an almost linear Nash group in the obvious way.

We define a hyperbolic Nash group to be a Nash group which is Nash isomorphic to (R×
+)n for

some n ≥ 0.
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As in Section 1, for every two Nash groups G and G′, write Hom(G,G′) for the set of all
Nash homomorphisms from G to G′. It is obviously an abelian group when G′ is abelian, and
is a ring when G = G′ and G′ is abelian.

We leave the proof of the following lemma to the interested reader.

Lemma 6.1 The map

Q → Hom(R×
+,R

×
+), r �→ (x �→ xr) (6.1)

is a ring isomorphism.

Using the isomorphism (6.1), we view R×
+ as a right Q-vector space as in Section 1. Then

for every hyperbolic Nash group A, the abelian group Hom(R×
+, A) is a left Q-vector space:

r · ϕ := ϕ ◦ (·)r, r ∈ Q, ϕ ∈ Hom(R×
+, A),

where (·)r denotes the endomorphism x �→ xr of R×
+. By Lemma 6.1, the dimension of

Hom(R×
+, A) equals that of A.

On the other hand, given a Q-vector space E of finite dimension k, the tensor product

R×
+ ⊗Q E

is obviously a hyperbolic Nash group of dimension k.

Proof of Theorem 1.3 This is an obvious consequence of Lemma 6.1.

Moreover, we have the following proposition.

Proposition 6.1 Every Nash subgroup of a hyperbolic Nash group is a hyperbolic Nash
group.

Proof Let H be a Nash subgroup of A1 × A2 × · · · × Ak, where k ≥ 0, and each Ai is
a Nash group which is Nash isomorphic to R×

+ (i = 1, 2, · · · , k). We want to show that H
is a hyperbolic Nash group. Assume without loss of generality that H �= A. Then Ai is not
contained in H for some i. Then Ai ∩H = {1}, and we get an injective Nash homomorphism
H ↪→ A/Ai. The lemma then follows by an inductive argument.

Similarly, we have the following proposition.

Proposition 6.2 Every Nash quotient group of a hyperbolic Nash group is a hyperbolic
Nash group.

Proof Let A0 be a Nash subgroup of a hyperbolic Nash group A. By Proposition 6.1, A0

is also a hyperbolic Nash group. Using Theorem 1.3, we get an exact sequence

0 → Hom(R×
+, A0) → Hom(R×

+, A) → Hom(R×
+, A)/Hom(R×

+, A0) → 0

of left Q-vector spaces. Tensoring with R×
+, we get an exact sequence

1 → A0 → A→ R×
+ ⊗Q (Hom(R×

+, A)/Hom(R×
+, A0)) → 1

of hyperbolic Nash groups and Nash homomorphisms. Therefore, the proposition follows.
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7 Disjointness of Elliptic, Hyperbolic and Unipotent Nash Groups

First recall the following well-known fact.

Lemma 7.1 The hyperbolic Nash group R×
+ is not Nash isomorphic to the unipotent Nash

group R.

Proof Note that the Nash endomorphism ring Hom(R,R) is isomorphic to R. By Lemma
6.1, the Nash endomorphism ring Hom(R×

+,R
×
+) is isomorphic to Q. Therefore, this lemma

holds.

The following is a useful fact about unipotent Nash groups.

Lemma 7.2 Every non-trivial element of a unipotent Nash group is contained in a Nash
subgroup which is Nash isomorphic to R.

Proof This is directly implied by Proposition 5.2.

Elliptic Nash groups, hyperbolic Nash groups and unipotent Nash groups are disjoint to
each other in the following sense.

Proposition 7.1 Let G and G′ be two Nash groups. If G is elliptic, and G′ is hyperbolic
or unipotent, then

Hom(G,G′) = {1}.
The same holds if G is hyperbolic, and G′ is elliptic or unipotent; or if G is unipotent, and G′

is elliptic or hyperbolic.

Proof Note that all hyperbolic Nash groups and all unipotent Nash groups have no non-
trivial compact subgroups. Therefore, Hom(G,G′) = {1} if G is elliptic, and G′ is hyperbolic
or unipotent.

Note that if G′ is elliptic, then

Hom(R×
+, G

′) = {1}, Hom(R, G′) = {1}. (7.1)

The first equality of (7.1) implies that Hom(G,G′) = {1}, if G is hyperbolic and G′ is elliptic.
By Lemma 7.2, the second equality of (7.1) implies that Hom(G,G′) = {1}, if G is unipotent
and G′ is elliptic.

Lemma 7.1 implies that
Hom(R×

+, G
′) = {1},

if G′ is unipotent. Therefore, Hom(G,G′) = {1}, if G is hyperbolic and G′ is unipotent. Lemma
7.1 also implies that

Hom(R, G′) = {1}, (7.2)

if G′ is hyperbolic. By Lemma 7.2, (7.2) implies that Hom(G,G′) = {1}, if G is unipotent and
G′ is hyperbolic. This finishes the proof of this proposition.

Proposition 7.2 Let H1, H2, H3 be three Nash subgroups of a Nash group G. If they are
respectively elliptic, hyperbolic and unipotent, then they have pairwise trivial intersections.
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Proof The Nash groupH1∩H2 is elliptic and hyperbolic, and is hence trivial by Proposition
7.1. Similarly, H1 ∩H3 and H2 ∩H3 are trivial.

Lemma 7.3 Let G1 be an elliptic Nash group, and let G2 be a hyperbolic Nash group. Then
all Nash subgroups of G1 × G2 are of the form H1 ×H2, where Hi is a Nash subgroup of Gi,
i = 1, 2.

Proof Let H be a Nash subgroup of G1 ×G2. We first claim that

if H ∩G2 = {1}, then H ⊂ G1. (7.3)

Consider the restriction to H of the projection map

G1 ×G2 → G1.

The condition H ∩ G2 = {1} implies that H is an elliptic Nash group. Then by Proposition
7.1, the projection map

G1 ×G2 → G2

has trivial restriction to H . Therefore, H ⊂ G1, and the claim is proved.
In general, put G′

2 := G2/(G2 ∩ H), which is a hyperbolic Nash group. Write H ′ for the
image of H under the Nash homomorphism

p : G1 ×G2 → G1 ×G′
2, (g1, g2) �→ (g1, g2(G2 ∩H)).

Inside the group G1 ×G′
2, we have

H ′ ∩G′
2 = {1},

and then (7.3) implies
H ′ ⊂ G1.

This lemma then follows as H = p−1(H ′).

Lemma 7.4 Let G1 be the direct product of an elliptic Nash group and a hyperbolic Nash
group, and let G2 be a unipotent Nash group. Then all Nash subgroups of G1 × G2 are of the
form H1 ×H2, where Hi is a Nash subgroup of Gi, i = 1, 2.

Proof Lemma 7.3 and its proof show Lemma 7.4 when G2 is abelian. In general, let H be
a Nash subgroup of G1 × G2, and let xy ∈ H , where x ∈ G1 and y ∈ G2. It suffices to show
that y ∈ G2. Replacing G2 by an abelian Nash subgroup G′

2 of G containing y, and replacing
H by H ∩ (G1 ×G′

2), this lemma is reduced to the case when G2 is abelian.

Combining Lemmas 7.3–7.4, we get the following proposition.

Proposition 7.3 Let G1, G2, G3 be three Nash groups which are respectively elliptic, hy-
perbolic and unipotent. Then every Nash subgroup of G1×G2×G3 is of the form H1×H2×H3,
where Hi is a Nash subgroup of Gi, i = 1, 2, 3.

As a direct consequence of Proposition 7.3, we have the following proposition.

Proposition 7.4 Let H1, H2, H3 be three Nash subgroups of a Nash group G which are
respectively elliptic, hyperbolic and unipotent. If they pairwise commute with each other, then
the multiplication map H1 ×H2 ×H3 → G is an injective Nash homomorphism.



Almost Linear Nash Groups 375

In the rest of this section, we draw some consequences of Proposition 7.1 on unipotent Nash
groups and hyperbolic Nash groups.

Proposition 7.5 Let V be a Nash representation of a unipotent Nash group G. Then each
element of G acts as a unipotent linear operator on V .

Proof Using Lemma 7.2, we assume without loss of generality that G = R. Let V1 be an
irreducible subquotient representatoin of the complexification VC of V . Since G is abelian, it is
one-dimensional and corresponds to a Nash homomorphism

G→ C×.

This homomorphism is trivial by Proposition 7.1. Therefore, this proposition follows.

As a consequence of Proposition 7.5, we have the following proposition.

Proposition 7.6 Every Nash quotient group of a unipotent Nash group is unipotent.

Proof Let N be a unipotent Nash group, and N ′ be a Nash quotient group of it. Fix a
Nash representation V of N ′ with finite kernel. Applying Proposition 7.5 to the inflation of the
representation V to N , we know that N ′ acts on V as unipotent linear operators. Then this
proposition follows by Lemma 5.6.

Proposition 7.7 All irreducible Nash representations of all unipotent Nash groups are
trivial.

Proof This is implied by Proposition 7.5 and Lemma 5.3.

Now we consider Nash representations of hyperbolic Nash groups.

Lemma 7.5 Let V be a Nash representation of a hyperbolic Nash group G. If each element
of G acts as a unipotent linear operator on V , then the representation V is trivial.

Proof By Lemma 5.3, the image of the attached homomorphism G→ GL(V ) is contained
in a unipotent Nash subgroup of GL(V ). Therefore, the homomorphism is trivial by Proposition
7.1.

Proposition 7.8 Let V be a Nash representation of a hyperbolic Nash group G. Then each
element of G acts as a semisimple linear operator on V , and all its eigenvalues are positive real
numbers.

Proof By Proposition 7.1, the image of every Nash homomorphism from G to C× is con-
tained in R×

+. This implies that for every g ∈ G, all eigenvalues of ϕ(g) are positive real
numbers, where ϕ : G → GL(V ) denotes the Nash homomorphism attached to the represen-
tation. Using the generalized eigenspace decomposition, we assume without loss of generality
that there is a Nash homomorphism χ : G → R×

+ such that for every g ∈ G, all eigenvalues of
ϕ(g) are equal to χ(g). Then G acts on V ⊗ χ−1 by unipotent linear operators. This action
is trivial by Lemma 7.5. Therefore, G acts on V via the character χ, and this proposition is
proved.

Proposition 7.8 clearly implies the following result.
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Proposition 7.9 Every Nash representation of a hyperbolic Nash group is a direct sum of
one-dimensional subrepresentations.

8 Jordan Decompositions

Let G be an almost linear Nash group throughout this section. For every x ∈ G, define
its replica 〈x〉 to be the smallest Nash subgroup of G containing x. This is well-defined by
Proposition 3.4. It is easy to see that 〈x〉 is abelian.

We say that x ∈ G is elliptic, hyperbolic or unipotent if it is contained in a Nash subgroup
of G which is elliptic, hyperbolic or unipotent, respectively. This is equivalent to saying that
the abelian Nash group 〈x〉 is respectively elliptic, hyperbolic or unipotent. Respectively write
Ge, Gh and Gu for the sets of all elliptic, hyperbolic and unipotent elements in G.

Lemma 8.1 An element in GLn(R) (n ≥ 0) is elliptic if and only if it is semisimple and
all its eigenvalues are complex numbers of modulus one; it is hyperbolic if and only if it is
semisimple and all its eigenvalues are positive real numbers; it is unipotent if and only if all its
eigenvalues are equal to 1.

Proof The “if ” parts of the three assertions of this lemma are obvious. The “only if ” parts
are implied by Propositions 4.2, 7.5 and 7.8.

Lemma 8.2 Let e, h, u ∈ G. Assume that they are respectively elliptic, hyperbolic and
unipotent, and they pairwise commute with each other. Then

〈ehu〉 ⊃ 〈e〉, 〈h〉, 〈u〉,

and the multiplication map
〈e〉 × 〈h〉 × 〈u〉 → 〈ehu〉

is an isomorphism of Nash groups.

Proof First note that the subgroups 〈e〉, 〈h〉, 〈u〉 are pairwise commutative to each other.
Using Proposition 7.4, we view 〈e〉 × 〈h〉 × 〈u〉 as a Nash subgroup G. Then 〈ehu〉 is a Nash
subgroup of 〈e〉 × 〈h〉 × 〈u〉, and Proposition 7.3 implies that

〈ehu〉 = 〈e〉 × 〈h〉 × 〈u〉.

This proves this lemma.

Here is the Jordan decomposition theorem for almost linear Nash groups as follows.

Theorem 8.1 Every element x of an almost linear Nash group G is uniquely of the form
x = ehu such that e ∈ Ge, h ∈ Gh, u ∈ Gu, and they pairwise commute with each other.

Proof Fix a Nash homomorphism ϕ : G→ GLn(R) with a finite kernel. Put y := ϕ(x) and
write y = yeyhyu for the usual Jordan decomposition of y in GLn(R), where ye is elliptic, yh is
hyperbolic, yu is unipotent and they pairwise commute with each other (see [10, pp. 430–431]).
Then Lemma 8.2 implies

ye, yh, yu ∈ ϕ(G).
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Denote by h the unique element in the identity connected component of ϕ−1(〈yh〉) which lifts
yh. Define u similarly, and put e := xu−1h−1. Then it is routine to check that (e, h, u) is the
unique triple which fulfills all the requirements of the theorem.

The equality x = ehu of Theorem 8.1 is called the Jordan decomposition of x ∈ G. We
respectively use xe, xh and xu to denote the elements e, h and u. They are respectively called
the elliptic, hyperbolic and unipotent parts of x ∈ G.

Proposition 8.1 Let ϕ : G→ G′ be a Nash homomorphism of almost linear Nash groups.
Then

ϕ(Ge) ⊂ G′
e, ϕ(Gh) ⊂ G′

h, ϕ(Gu) ⊂ G′
u. (8.1)

If ϕ is surjective, then the three inclusions in (8.1) become equalities.

Proof The three inclusions are respectively implied by Propositions 4.1, 6.2 and 7.6.
Now assume that ϕ is surjective, and let y ∈ G′

e. Pick x ∈ G so that ϕ(x) = y. Then
ϕ(xe)ϕ(xh)ϕ(xu) = y. By (8.1), the uniqueness of Jordan decompositions implies that ϕ(xe) =
y. This proves that ϕ(Ge) = G′

e. The same argument proves the other two equalities.

Proposition 8.1 obviously implies that Nash homomorphisms preserve Jordan decomposi-
tions:

Proposition 8.2 Let ϕ : G→ G′ be a Nash homomorphism of almost linear Nash groups.
Then for every x ∈ G, one has

(ϕ(x))e = ϕ(xe), (ϕ(x))h = ϕ(xh), (ϕ(x))u = ϕ(xu).

As one application of Jordan decompositions, we get the following result about structures
of abelian almost linear Nash groups.

Proposition 8.3 Let G be an abelian almost linear Nash group. Then Ge is an elliptic Nash
subgroup of G, Gh is a hyperbolic Nash subgroup of G, and Gu is a unipotent Nash subgroup of
G. Moreover, the multiplication map

Ge ×Gh ×Gu → G

is a Nash isomorphism.

Proof Let K be a maximal compact subgroup of G, which is unique since G is abelian.
Then clearly K = Ge. Let A be a hyperbolic Nash subgroup of G of the maximal dimension.
Then clearly A = Gh. Likewise, let U be a unipotent Nash subgroup of G of the maximal
dimension. Then U = Gu. The last assertion follows from Theorem 8.1.

In the rest of this section, denote by g the Lie algebra of the almost linear Nash group G.
For every x ∈ g, we define its replica 〈x〉 to be the smallest Nash subgroup of G containing
exp(Rx). It is connected and abelian. We said that x ∈ g is elliptic, hyperbolic or unipotent,
if the Nash group 〈x〉 is respectively elliptic, hyperbolic or unipotent. As in the group case,
respectively write ge, gh and gu for the sets of all elliptic, hyperbolic and unipotent elements in
g.

Lemma 8.1 easily implies the following lemma.
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Lemma 8.3 An element in the Lie algebra gln(R) of GLn(R) (n ≥ 0) is elliptic if and only
if it is semisimple and all its eigenvalues are purely imaginary; it is hyperbolic if and only if
it is semisimple and all its eigenvalues are real; it is unipotent if and only if it is a nilpotent
matrix.

The same proof as Lemma 8.2 shows the following lemma.

Lemma 8.4 Let e, h, u ∈ g. Assume that they are respectively elliptic, hyperbolic and
unipotent, and they pairwise commute with each other. Then

〈e+ h+ u〉 ⊃ 〈e〉, 〈h〉, 〈u〉,

and the multiplication map
〈e〉 × 〈h〉 × 〈u〉 → 〈e+ h+ u〉

is an isomorphism of Nash groups.

The following is the Jordan decomposition theorem at the Lie algebra level.

Theorem 8.2 Let G be an almost linear Nash group with Lie algebra g. Then every element
x ∈ g is uniquely of the form x = e+ h+ u such that e ∈ ge, h ∈ gh, u ∈ gu, and they pairwise
commute with each other.

Proof The proof is similar to that of Theorem 8.1. We omit the details.

We also call the equality x = e+ h+ u of Theorem 8.2 the Jordan decomposition of x ∈ g.
As in the group case, we respectively use xe, xh and xu to denote the elements e, h and u.
They are respectively called the elliptic, hyperbolic and unipotent parts of x ∈ g.

The same proof as Proposition 8.1 shows the following proposition.

Proposition 8.4 Let ϕ : G→ G′ be a Nash homomorphism of almost linear Nash groups.
Write φ : g → g′ for its differential, where g′ := LieG′. Then

φ(ge) ⊂ ge, φ(gh) ⊂ g′h and φ(gu) ⊂ g′u. (8.2)

If φ is surjective, then the three inclusions in (8.2) become equalities.

Similar to Proposition 8.2, the above proposition implies the following proposition.

Proposition 8.5 Let ϕ : G→ G′ be a Nash homomorphism of almost linear Nash groups.
Write φ : g → g′ for its differential, where g′ := LieG′. Then for every x ∈ g, one has

(φ(x))e = φ(xe), (φ(x))h = φ(xh), (φ(x))u = φ(xu).

9 Exponential Elements

Let G be an almost linear Nash group with Lie algebra g. The following lemma concerning
the exponential map is obvious.

Lemma 9.1 One has

exp(ge) ⊂ Ge, exp(gh) ⊂ Gh, exp(gu) ⊂ Gu.
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For each x ∈ Gh or Gu, define log(x) to be the unique element in the Lie algebra of 〈x〉 such
that exp(log(x)) = x. Then log(x) belongs to gh or gu, respectively. The maps

exp : gh → Gh and log : Gh → gh

are inverse to each other. Likewise, the maps

exp : gu → Gu and log : Gu → gu

are inverse to each other.

Lemma 9.2 Let x ∈ gh or gu. Then 〈x〉 = 〈exp(x)〉.
Proof The Nash subgroup 〈x〉 of G contains the Nash subgroup 〈exp(x)〉. Since x ∈ Lie 〈x〉

and exp(x) ∈ 〈exp(x)〉, using the commutative diagram

Lie 〈exp(x)〉 ⊂−−−−→ Lie 〈x〉
�
⏐⏐�exp �

⏐⏐�exp

〈exp(x)〉 ⊂−−−−→ 〈x〉
we know that x ∈ Lie 〈exp(x)〉. Therefore,

〈exp(x)〉 ⊃ exp(Rx),

and hence 〈exp(x)〉 = 〈x〉.
Lemma 9.3 Let x ∈ Gh and y ∈ Gu. If they commute with each other in G, then log(x)

and log(y) commute with each other in g.

Proof If x and y commute with each other, then Lemma 9.2 implies that the Nash subgroups
〈log(x)〉 and 〈log(y)〉 commute with each other. Therefore, 〈log(x)〉 〈log(y)〉 is an abelian Nash
subgroup of G. Then this lemma follows, since both log(x) and log(y) belong to the Lie algebra
of 〈log(x)〉 〈log(y)〉.

Definition 9.1 An element of an almost linear Nash group G or its Lie algebra g is said
to be exponential if its elliptic part is trivial.

Denote by Gex and gex the sets of all exponential elements in G and g, respectively. For
every exponential element x ∈ Gex, define

log(x) := log(xh) + log(xu).

By Lemma 9.3, this is an element of gex.

Proposition 9.1 The maps

exp : gex → Gex and log : Gex → gex

are inverse to each other.

Proof This is obvious.
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Proposition 9.2 Let x ∈ gex. Then 〈x〉 = 〈exp(x)〉.
Proof By Lemmas 9.2, 8.2 and 8.4, we have

〈exp(x)〉 = 〈exp(xh)〉 × 〈exp(xu)〉 = 〈xh〉 × 〈xu〉 = 〈x〉.

10 Semisimple Nash Groups

We say that a Lie group (or a Nash group) is semisimple if its Lie algebra is semisimple.

Lemma 10.1 Every semisimple Nash group is almost linear.

Proof Taking the adjoint representation, then this lemma follows.

Recall the following result.

Lemma 10.2 (see [12, Proposition 7.9]) Every semisimple analytic subgroup of GLn(R)
(n ≥ 0) has a finite center.

Using Cartan decompositions for semisimple Lie groups (see [12, Theorem 7.39]), we easily
get the following result.

Lemma 10.3 Let G be a connected semisimple Lie group with a finite center. Let K be a
maximal compact subgroup of G. Then there are analytic subgroups H1, H2, · · · , Hr (r ≥ 0) of
G such that

(1) G = KH1H2 · · ·HrK,
(2) the Lie algebra of Hi is isomorphic to sl2(R) (i = 1, 2, · · · , r).
Recall that every analytic subgroup of GLn(R) is isomorphic to either SL2(R) or

SL2(R)/{±1}, if its Lie algebra is isomorphic to sl2(R). The representation theory of SL2(R)
implies the following lemma.

Lemma 10.4 Every finite-dimensional real representation of SL2(R) or SL2(R)/{±1} is a
Nash representation.

As a direct consequence of Lemma 10.4, we have the following lemma.

Lemma 10.5 An analytic subgroup of GLn(R) is a Nash subgroup if its Lie algebra is
isomorphic to sl2(R).

Combining Lemmas 4.1, 10.2, 10.3 and 10.5, we have the following lemma.

Lemma 10.6 Every semisimple analytic subgroup of GLn(R) (n ≥ 0) is a Nash subgroup.

By Lemma 10.6, the same proof as that of Lemma 4.1 implies the following proposition.

Proposition 10.1 Every semisimple analytic subgroup of every almost linear Nash group
is a Nash subgroup.

In a way similar to the proof of Lemma 4.2, Proposition 10.1 implies the following proposi-
tion.
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Proposition 10.2 Every Lie group homomorphism from a semisimple Nash group to an
almost linear Nash group is a Nash homomorphism. In particular, every finite-dimensional
representation of a semisimple Nash group is a Nash representation.

Each semisimple Nash group has finitely many connected components, and its identity
connected component has a finite center. Conversely, we have the following proposition.

Proposition 10.3 Let G be a semisimple Lie group. If it has finitely many connected
components, and its identity connected component has a finite center, then there exists a unique
Nash structure on the underlying topological space of G which makes G a Nash group.

Proof Denote by g the Lie algebra of G. The automorphism group Aut(g) of g is obviously
a Nash group. The adjoint representation Ad : G → Aut(g) has an open image and a finite
kernel. Therefore, the existence follows by Proposition 3.3. The uniqueness is implied by
Proposition 10.2.

In conclusion, we have proved the following theorem.

Theorem 10.1 The category of semisimple Nash groups is isomorphic to the category of
semisimple Lie groups which have finitely many connected components, and whose identity
connected components have finite centers.

Recall the following famous result of Weyl.

Lemma 10.7 (see [11, Theorem 1]) Let g be a semisimple finite-dimensional Lie algebra
over a field k of characteristic zero. Then all of its finite-dimensional representations over k
are completely reducible.

Also recall the following elementary lemma.

Lemma 10.8 (see [15, Lemma 3.1]) Let H be a normal subgroup of a group G. Let V be a
representation of G over a field k.

(1) If V is finite-dimensional and completely reducible, then its restriction to H is completely
reducible.

(2) Assume that H has finite index in G, and k has characteristic zero. Then V is completely
reducible if its restriction to H is so.

Combining Lemma 10.7 and Lemma 10.8(2), we get the following lemma.

Lemma 10.9 Every Nash representation of a semisimple Nash group is completely re-
ducible.

11 Reductive Nash Groups

We say that a Nash group is reductive if it has a completely reducible Nash representation
with a finite kernel. Using induced representations as in the proof of Proposition 3.6, Lemma
10.8 easily implies the following lemma.

Lemma 11.1 A Nash group is reductive if and only if its identity connected component is
reductive.
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Recall from Introduction that a Nash torus is a Nash group which is Nash isomorphic to
Sm × (R×

+)n for some m,n ≥ 0. Every Nash torus is clearly a reductive Nash group. The main
result we will prove in this section is the following theorem.

Theorem 11.1 A connected Nash group G is reductive if and only if there exists a connected
semisimple Nash group H, a Nash torus T , and a surjective Nash homomorphism H × T → G

with a finite kernel.

Recall that a finite-dimensional Lie algebra is said to be reductive if its adjoint representation
is completely reducible, or equivalently, if it is the direct sum of an abelian Lie algebra and a
semisimple Lie algebra. Recall the following result of Jacobson.

Lemma 11.2 ([11, Theorem 1]) Let g be a finite-dimensional Lie algebra over a field k
of characteristic zero. If g has a faithful completely reducible finite-dimensional representation
over k, then g is reductive.

Combining Lemmas 11.1–11.2, we get the following lemma.

Lemma 11.3 The Lie algebra of every reductive almost linear Nash group is reductive.

Let G be a connected reductive Nash group with Lie algebra g. Write

g = s ⊕ z,

where s := [g, g] and z denotes the center of g. Respectively write S and Z for the analytic
subgroups of G corresponding to s and z. By Proposition 10.1, S is a Nash subgroup of G.
Since Z equals the identity connected component of the center of G, it is also a Nash subgroup
of G.

Lemma 11.4 The Nash group Z is a Nash torus.

Proof Note that Z is a normal subgroup of G. The first assertion of Lemma 10.8 implies
that Z is reductive. Similarly, Zu is reductive (Proposition 8.3 implies that Zu is a unipotent
Nash group). Then Proposition 7.7 implies that Zu = {1}, and hence Z is a Nash torus by
Proposition 8.3.

Since S × Z is a finite-fold cover of G, we prove the “only if ” part of Theorem 11.1.
On the other hand, let G′ be a connected Nash group with a surjective Nash group homo-

morphism H × T → G′ with a finite kernel, where H is a connected semisimple Nash group,
and T is a Nash torus. Then G′ is almost linear by Proposition 3.8.

Lemma 11.5 Every Nash representation of a Nash torus is completely reducible.

Proof By Weyl’s unitary trick, every Nash representation of an elliptic Nash group is
completely reducible. In particular, every Nash representation of a compact Nash torus is
completely reducible. Together with Proposition 7.9, this implies this lemma.

By Lemmas 11.5 and 10.9, every Nash representation of H × T is completely reducible.
Consequently, every Nash representation of G′ is also completely reducible. Therefore, G′ is
reductive. This proves the “if part” of Theorem 11.1.

By Lemma 10.8, the preceding arguments also show the following theorem.
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Theorem 11.2 Every Nash representation of every reductive almost linear Nash group is
completely reducible.

12 Trace Forms and Reductivity

Let G be an almost linear Nash group with Lie algebra g. Fix a Nash representation V of
G with a finite kernel, and write φ : g → gl(V ) for the attached differential. Put

〈x, y〉φ := tr(φ(x)φ(y)), x, y ∈ g.

This defines a G-invariant symmetric bilinear form on g, which is called the trace form attached
to the Nash representation V .

The main result of this section is the following theorem.

Theorem 12.1 The almost linear Nash group G is reductive if and only if the bilinear form
〈 , 〉φ is non-degenerate.

Theorem 12.1 has the following interesting consequence.

Proposition 12.1 Assume that G is reductive. Then for every reductive Nash subgroup H1

of G, its centralizer H2 in G is also a reductive Nash subgroup of G.

Proof By Theorem 12.1, 〈 , 〉φ is a non-degenerate symmetric bilinear form on g. It is
G-invariant, and hence H1-invariant. Since H1 is reductive, by Theorem 11.2, g is completely
reducible as a representation of H1. Taking the isotypic decomposition, we know that the space
gH1 of H1-fixed vectors in g is non-degenerate with respect to 〈 , 〉φ. Since gH1 equals the Lie
algebra of H2, this proposition follows by Theorem 12.1.

The rest of this section is devoted to a proof of Theorem 12.1.

Lemma 12.1 If G is elliptic, then the bilinear form 〈 , 〉φ is negative definite. If G is
hyperbolic, then the bilinear form 〈 , 〉φ is positive definite.

Proof This is implied by Lemma 8.3.

Lemma 12.2 Let x and y be two commuting elements in the Lie algebra gl(V ) of GL(V ).
If x is elliptic and y is hyperbolic, then tr(xy) = 0.

Proof Note that all eigenvalues of x are purely imaginary, and all eigenvalues of y are real.
Since x and y commute, all eigenvalues of xy are purely imaginary. Therefore, tr(xy) is purely
imaginary. It has to vanish since it is also real.

Lemma 12.3 If G is a Nash torus, then the bilinear form 〈 , 〉φ is non-degenerate.

Proof Write G = T×A, where T is a compact Nash torus, andA is a hyperbolic Nash group.
Lemma 12.2 implies that LieT and LieA are orthogonal to each other under the symmetric
bilinear form 〈 , 〉φ. The lemma then follows by Lemma 12.1.

Lemma 12.4 If G is a connected semisimple Nash group and 〈 , 〉φ is zero, then G is trivial.

Proof LetK be a maximal compact subgroup ofG, which is connected since G is connected.
Then Lemma 12.1 implies that K is trivial, which further implies that G is trivial (recall that
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every non-trivial connected semisimple Lie group with a finite center has a non-trivial maximal
compact subgroup).

We are now prepared to prove the “only if ” part of Theorem 12.1.

Proposition 12.2 If G is reductive, then the bilinear form 〈 , 〉φ is non-degenerate.

Proof Denote by n the kernel of the form 〈 , 〉φ. It is an ideal of the reductive Lie algebra g.
Lemma 12.3 implies that n ⊂ [g, g]. Therefore, n is semisimple. Denote by N the analytic sub-
group of G with Lie algebra n. It is a connected semisimple Nash subgroup of G by Proposition
10.1. Then Lemma 12.4 implies that N is trivial, and hence n = {0}.

To prove the “if ” part of Theorem 12.1, recall the following lemma.

Lemma 12.5 (see [5, Lemma 3.1 and Proposition 3.2]) Let V0 be a finite-dimensional vector
space over a field of characteristic zero. Let g0 be a Lie subalgebra of gl(V0) such that the trace
form is non-degenerate on g0. Then g0 is reductive, and no non-zero element in the center of
g0 is nilpotent as a linear operator on V0.

Now assume that 〈 , 〉φ is non-degenerate. We want to show that G is reductive. In view of
Lemma 11.1, we may (and do) assume that G is connected.

Lemma 12.5 implies that the Lie algebra g is reductive. Write

g = z ⊕ s,

where z denotes the center of g, and s := [g, g]. Denote by Z and S the analytic subgroups
of G respectively corresponding to z and s. As before, both Z and S are Nash subgroups of
G. Using Proposition 8.3, write Z = Ze × Zh × Zu. Then Lemma 12.5 implies that Zu = {1}.
Therefore, Z is a Nash torus. Since Z×S is a finite-fold cover of G, G is reductive by Theorem
11.1. This proves the “if ” part of Theorem 12.1.

13 Semisimple Elements

Let G be an almost linear Nash group with Lie algebra g.

Definition 13.1 An element of G or g is said to be semisimple if its unipotent part is
trivial.

We define a Nash quasi-torus to be an abelian almost linear Nash group without non-trivial
unipotent element. All Nash quasi-tori are reductive Nash groups. First, we have the following
lemma.

Lemma 13.1 An element x ∈ G is semisimple if and only if 〈x〉 is a Nash quasi-torus. An
element y ∈ g is semisimple if and only if 〈y〉 is a Nash torus.

Proof The “if ” part of the first assertion is obvious. To prove the “only if ” part of the
first assertion, assume that x is semisimple. Then 〈x〉 = 〈xe〉 × 〈xh〉 by Lemma 8.2. Therefore,
〈x〉 is a Nash quasi-torus. The proof of the second assertion is similar.

Write Gss and gss for the sets of all semisimple elements in G and g, respectively.
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Lemma 13.2 Let ϕ : G → G′ be a Nash homomorphism of almost linear Nash groups.
Then

ϕ(Gss) ⊂ G′
ss,

and the inclusion becomes an equality if ϕ is surjective. Write φ : g → g′ for the differential of
ϕ, where g′ denotes the Lie algebra of G′. Then

φ(gss) ⊂ g′ss,

and the inclusion becomes an equality if φ is surjective.

Proof The proof is similar to that of Proposition 8.1.

The rest of this section is to prove the following theorem.

Theorem 13.1 If G is reductive, then the set Gss is dense in G, and the set gss is dense
in g.

We begin with the following lemma.

Lemma 13.3 If G is connected and g is isomorphic to sl2(R), then Gss is dense in G.

Proof It is elementary to check that this lemma holds when G = SL2(R), which implies
that this lemma also holds when G = SL2(R)/{±1}. In general, there is a surjective Nash
homomorphism ϕ : G→ SL2(R)/{±1} with a finite kernel. The lemma then follows, since

Gss = ϕ−1((SL2(R)/{±1})ss).

Lemma 13.4 Let u be a unipotent element of a reductive Nash group G. Then every
neighborhood of u in G contains a semisimple element.

Proof The lemma is trivial when u = 1. So assume that u �= 1. Since every element of
the center of g is semisimple, log(u) belongs to the semisimple Lie algebra [g, g]. Since log(u)
is unipotent, the linear operator

adlog(u) : [g, g] → [g, g], x �→ [log(u), x]

is nilpotent. Therefore, by the Jacobson-Morozov theorem, there is a Lie subalgebra g0 of g

containing log(u) which is isomorphic to sl2(R). Denote by G0 the analytic subgroup of G with
Lie algebra g0. It is a Nash subgroup by Proposition 10.1. The lemma then follows by Lemma
13.3.

We are now ready to prove Theorem 13.1. Let x be an element of a reductive Nash group G.
The centralizer ZG(xexh) of xexh in G equals the centralizer of the Nash quasi-torus 〈xexh〉 in
G. Therefore, it is a reductive Nash subgroup of G by Proposition 12.1. Note that the product
of two commuting semisimple elements in an almost linear Nash group is again semisimple. By
Lemma 13.4, every neighborhood of xu in ZG(xexh) contains a semisimple element. Therefore,
every neighborhood of x = (xexh)xu in G contains a semisimple element. This finishes the
proof of Theorem 13.1 in the group case. The Lie algebra case is proved similarly.
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14 Levi Decompositions

Let G be an almost linear Nash group. Put

UG := the identity connected component of
⋂
π

kerπ,

where π runs through all irreducible Nash representations of G. By Proposition 3.4, UG is a
Nash subgroup of G.

Proposition 14.1 The group UG is the largest normal unipotent Nash subgroup of G.

Proof It is obvious that UG is a normal subgroup of G. Take a Nash representation V of
G with a finite kernel. Note that UG acts trivially on all irreducible Nash representations of
G. Therefore, by taking a Jordan-Hölder series of V , we know that UG acts on V as unipotent
linear operators. Then Lemma 5.6 implies that UG is a unipotent Nash group.

Let U be a normal unipotent Nash subgroup of G. It is connected by Proposition 5.1. For
every irreducible Nash representation π of G, the restriction π|U is completely reducible by the
first assertion of Lemma 10.8. Since U is unipotent, Proposition 7.7 implies that U acts trivially
on π. This shows that U ⊂ UG.

We call UG the unipotent radical of G.

Lemma 14.1 An almost linear Nash group is reductive if and only if its unipotent radical
is trivial.

Proof The “only if ” part of the lemma is obvious. The “if ” part is implied by Proposition
3.4.

Proposition 3.4 also implies that G/UG is a reductive Nash group.

Theorem 14.1 Every reductive Nash subgroup of G is contained in a maximal one, and all
maximal reductive Nash subgroups of G are conjugate to each other under UG. Moreover, for
each maximal reductive Nash subgroup L of G, one has that G = L� UG.

The equality G = L � UG of Theorem 14.1 is called a Levi decomposition of G, and a
maximal reductive Nash subgroup of G is called a Levi component of G.

The rest of this section is devoted to a proof of Theorem 14.1. We fist recall some results
of G. D. Mostow on linear Lie algebras.

For a finite-dimensional Lie algebra g over a field of characteristic zero, write Rad(g) for its
radical, namely, the largest solvable ideal of g. For a Lie subalgebra h of g, we define Ig(h) to
be the subgroup of the automorphism group Aut(g) generated by the set

{exp(adx) | x ∈ h, the linear operator adx : g → g, y �→ [x, y] is nilpotent}.

Given a finite-dimensional vector space V , we say that a subset R ⊂ gl(V ) is fully reducible
if each R-stable subspace of V has a complementary R-stable subspace. This generalizes the
notion of “semisimple linear operators”.

Lemma 14.2 (see [15, Theorems 4.1 and 5.1]) Let V be a finite-dimensional vector space
over a field of characteristic zero, and let g be a Lie subalgebra of gl(V ).
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(1) All maximal fully reducible Lie subalgebras of g are conjugate to each other under
Ig(Rad([g, g])).

(2) Let R be a fully reducible subgroup of GL(V ). If R normalizes g, then R normalizes a
maximal fully reducible Lie subalgebra of g.

Now let G be an almost linear Nash group as before. In the rest of this section, denote by
g and u the Lie algebras of G and UG, respectively.

Lemma 14.3 One has Rad([g, g]) ⊂ u.

Proof By Lemma 11.3, the Lie algebra g/u is reductive. Therefore,

[g, g]/([g, g] ∩ u) ∼= [g/u, g/u] (14.1)

is semisimple. Note that

(Rad([g, g]) + ([g, g] ∩ u))/([g, g] ∩ u) (14.2)

is a solvable ideal of the semisimple Lie algebra (14.1). Therefore, (14.2) is the zero ideal, and
this lemma follows.

Fix a Nash homomorphism ϕ : G → GL(V ) with a finite kernel, where V is a finite-
dimensional real vector space. Then g is identified with a Lie subalgebra of gl(V ).

Lemma 14.4 All maximal fully reducible Lie subalgebras of g are conjugate to each other
under UG.

Proof This is a direct consequence of Lemma 14.3 and the first assertion of Lemma 14.2.

Fix a pair (l,K), where l is a maximal fully reducible Lie subalgebra of g, and K is a
maximal compact subgroup of the normalizer L̃ of l in G. Lemma 14.4 and Theorem 4.2 imply
that all such pairs are conjugate to each other under G. Denote by L0 the analytic subgroup
of G with Lie algebra l.

Lemma 14.5 The subgroup L0 of G is a reductive Nash subgroup of G.

Proof Denote by L′
0 the smallest Nash subgroup of G containing L0. It is connected, since

L0 is so. Note that the set of L0-stable subspaces of V is the same as the set of L′
0-stable

subspaces. Therefore, V is completely reducible as a representation of L′
0. This implies that

L′
0 is reductive and its Lie algebra is fully reducible. The maximality of l then implies that

L0 = L′
0, and this lemma follows.

Put L := KL0, which is a Nash subgroup of G. We want to show that

G = L� UG. (14.3)

Lemma 14.6 One has L◦ = L0.

Proof Since L0 is reductive, the unipotent radical UL of L has trivial intersection with L0.
Then the quotient homomorphism

L→ L/L0
∼= K/(K ∩ L0)
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is restricted to an injective Nash homomorphism from UL to an elliptic Nash group. Therefore,
UL is trivial and L is reductive. Then the Lie algebra of L is fully reducible and contains l, and
hence equals l by the maximality of l. This proves this lemma.

Since we have proved that L is reductive, we know

L ∩ UG = {1}. (14.4)

Lemma 14.7 One has l + u = g.

Proof Let s be a semisimple element of g. By Lemma 13.1, the replica 〈s〉 is a Nash torus.
Therefore, its Lie algebra Lie 〈s〉 is fully reducible. By Lemma 14.4, there is an element u ∈ UG

such that
s ∈ Lie 〈s〉 ⊂ Adu(l) ⊂ Adu(l + u) = l + u.

This proves that l + u ⊃ gss. Then Lemma 13.2 implies that (l + u)/u ⊃ (g/u)ss. Since (g/u)ss
is dense in g/u by Theorem 13.1, one knows that (l + u)/u ⊃ g/u. Therefore, l + u = g.

Combining (14.4) and Lemma 14.7, we get

G◦ = L0 � UG, g = l � u. (14.5)

Recall that L̃ denotes the normalizer of l in G. Write l̃ for its Lie algebra, and put u0 :=
l̃ ∩ u. Then

l̃ = l × u0

is a direct product of Lie algebras. Consequently, we have

(L̃)◦ = L0 × U0, where U0 := L̃ ∩ UG. (14.6)

Lemma 14.8 Every connected reductive Nash subgroup of L̃ is contained in L0.

Proof In view of (14.6), this lemma holds because every Nash homomorphism from a
reductive Nash group to a unipotent Nash group is trivial.

Lemma 14.9 One has G = L� UG.

Proof By (14.4)–(14.5), it suffices to show that every connected component of G meets
K. Since K meets every connected component of L̃, it suffices to show that every connected
component of G meets L̃. Let g ∈ G. Then by Lemma 14.4, Adg(l) = Adu(l) for some u ∈ UG.
Therefore, u−1g ∈ L̃, and this lemma follows.

Lemma 14.9 implies that L is a maximal reductive Nash subgroup of G.

Lemma 14.10 Every reductive Nash subgroup R of G is contained in a conjugation of L.

Proof By Lemma 14.2, we assume without loss of generality that R ⊂ L̃. Then Lemma
14.8 implies that R◦ ⊂ L0. Let K ′ be a maximal compact subgroup of R. Then Theorem 4.2
implies that K ′ ⊂ gKg−1 for some g ∈ L̃. Therefore,

R = K ′R◦ ⊂ gKg−1L0 = gKL0g
−1 = gLg−1.
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Lemma 14.10 implies that all maximal reductive Nash subgroups of G are conjugate to
L (since G = LUG, they are actually conjugate to L under UG). This finishes the proof of
Theorem 14.1.

15 Cartan Decompositions and Iwasawa Decompositions

We first recall some basic results concerning Cartan decompositions in the setting of con-
nected semisimple Lie groups with finite centers.

Proposition 15.1 (see [12, Theorems 6.31, 6.51 and Proposition 6.40]) Let G be a connected
semisimple Lie group with a finite center. Denote by g its Lie algebra. Let K be a maximal
compact subgroup of G. Then the followings hold:

(1) There exists a unique continuous involution θK of G such that GθK = K.
(2) Denote by p the (−1)-eigenspace in g of the differential of θK , and then the map

K × p → G, k, x �→ k exp(x)

is a diffeomorphism.
(3) All maximal abelian subspaces of p are conjugate to each other under the adjoint action

of K.
(4) For every x ∈ p, the linear operator

adx : g → g, y �→ [x, y]

is semisimple and all its eigenvalues are real.

Here “involution” means an automorphism of order 1 or 2; and GθK denotes the fixed-point
set of θK in G (the similar notation will be used without further explanation).

In this section, we investigate Cartan involutions for all reductive Nash groups. Let G be a
reductive Nash group in the rest of this section.

Definition 15.1 A Cartan involution of G is a Nash involution of G whose fixed-point set
is a maximal compact subgroup of G.

Here “Nash involution” means an involution which is simultaneously a Nash map. The first
result of this section we intend to prove is the following theorem.

Theorem 15.1 The map

{Cartan involution of G} → {maximal compact subgroup of G},
θ �→ Gθ

(15.1)

is bijective.

We begin with the following lemma.

Lemma 15.1 Theorem 15.1 holds if G is a connected semisimple Nash group or a Nash
torus.
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Proof If G is a connected semisimple Nash group, then all Lie group automorphisms of G
are Nash automorphisms. Therefore, this lemma is implied by the first assertion of Proposition
15.1. If G is a Nash torus, then G = Ge×Gh, and Ge is the unique maximal compact subgroup
of G. Moreover,

Ge ×Gh → Ge ×Gh, (x, y) �→ (x, y−1)

is the unique Cartan involution of G. Therefore, this lemma also holds.

Denote by g the Lie algebra of G, and write

g = z ⊕ s,

where z denotes the center of g, and s := [g, g]. As before, denote by Z and S the analytic
subgroups of G with Lie algebras z and s, respectively. Then Z is a Nash torus, and S is a
connected semisimple Nash group. Let K be a maximal compact subgroup of G, and put

K0 := K ∩ S.

Lemma 15.2 One has K ∩ Z = Ze, which is the unique maximal compact subgroup of Z;
K0 is a maximal compact subgroup of S; and K◦ = K0Ze.

Proof The equality K ∩ Z = Ze is obvious. Denote by ϕ : S × Z → G◦ the multiplication
map. It is a finite-fold covering homomorphism. Note that K◦ is a maximal compact subgroup
of G◦. Therefore, ϕ−1(K◦) is a maximal compact subgroup of S × Z, which has the form
K ′

0 × Ze, where K ′
0 is a maximal compact subgroup of S. We have

K◦ = ϕ(ϕ−1(K◦)) = K ′
0Ze,

which implies that K0 ⊃ K ′
0. Since K ′

0 is already a maximal compact subgroup of S, we have
that K0 = K ′

0. This proves this lemma.

Lemma 15.3 The map (15.1) is injective.

Proof Let θ and θ′ be two Cartan involutions of G such that Gθ = Gθ′
. Then Sθ = Sθ′

and Zθ = Zθ′
. Therefore, Lemmas 15.1–15.2 imply that

θ|S = θ′|S and θ|Z = θ′|Z .

The lemma then follows as G = GθSZ.

Using Lemmas 15.1–15.2, write θS for the unique Cartan involution of S with a fix-point
set K0. Write θZ for the unique Cartan involution of Z.

Lemma 15.4 There exists a unique Cartan involution of G◦ extending both θS and θZ .

Proof Uniqueness holds as G◦ = SZ. Note that S ∩ Z is contained in both K0 and
Ze. Hence θS and θZ have a common extension to an involution of G◦. One checks that this
involution has K◦ as its fixed-point set, and hence it is a Cartan involution.
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Denote by θ◦ the Cartan involution of G◦ of Lemma 15.4. Define a map

G→ G, kg �→ k θ◦(g) (k ∈ K, g ∈ G◦). (15.2)

It is routine to check that (15.2) is a well-defined Nash involution of G whose fixed-point set
equals K. This finishes the proof of Theorem 15.1.

Now let θ be the Cartan involution of G so that Gθ = K. Still denote by θ : g → g its
differential. Denote by p the (−1)-eigenspace of θ in g.

Proposition 15.2 The map

K × p → G,

(k, x) �→ k exp(x)
(15.3)

is a diffeomorphism.

Proof Without loss of generality, assume that G is connected. The second assertion of
Proposition 15.1 as well as its analog for Nash tori implies that the map

K0 × Ze × (p ∩ s) × (p ∩ z) → S × Z,

(k, t, x, y) �→ (k exp(x), t exp(y))
(15.4)

is a diffeomorphism. This descends to a deffeomorphism

∇\(K0 × Ze) × (p ∩ s) × (p ∩ z) → ∇\(S × Z), (15.5)

where

∇ := {(t, t−1) | t ∈ K0 ∩ Ze = S ∩ Z}.

The lemma then follows since the smooth map (15.3) is obviously identified with (15.5).

Lemma 15.5 One has p ⊂ gh.

Proof Without loss of generality, assume that G is connected and semisimple. Let x ∈ p.
By uniqueness of Jordan decompositions, the quality

(−xe) + (−xh) + (−xu) = −x = θ(x) = θ(xe) + θ(xh) + θ(xe)

implies that θ(xe) = −xe, that is, xe ∈ p. Likewise, xh ∈ p and xu ∈ p. Therefore, it suffices
to show that p ∩ ge = {0} and p ∩ gu = {0}. Note that for every y ∈ ge, the linear operator
ady : g → g is semisimple and all its eigenvalues are purely imaginary. Together with the last
assertion of Proposition 15.1, this implies that p∩ge = {0}. The equality p∩gu = {0} is proved
similarly.

Proposition 15.3 Each θ-stable Nash subgroup G1 of G is reductive and equals K1 exp(p1),
where

K1 := G1 ∩K and p1 := (LieG1) ∩ p.
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Proof Let g = k exp(x) ∈ G1, where k ∈ K and x ∈ p. Then

exp(2x) = (exp(x))2 = (exp(x)k−1)(k exp(x)) = θ(g−1)g ∈ G1.

Then Lemma 15.5 and Proposition 9.2 imply that exp(Rx) ⊂ G1. Consequently,

x ∈ LieG1, exp(x) ∈ G1 and k ∈ G1.

Therefore,
G1 = K1 exp(p1).

Denote by U1 the unipotent radical of G1. Then it is also a θ-stable Nash subgroup of G.
Therefore,

U1 = K ′
1 exp(p′1), where K ′

1 := U1 ∩K, p′1 := (LieU1) ∩ p.

It is clear that K ′
1 = {1} and p′1 = {0}. Therefore, U1 is trivial and G1 is reductive.

The following result is an obvious consequence of the third assertion of Proposition 15.1.

Proposition 15.4 All maximal abelian subspaces of p are conjugate to each other under
K.

Let a be a maximal abelian subspace of p. Denote by A the analytic subgroup of G with
Lie algebra a.

Proposition 15.5 The analytic subgroup A is a hyperbolic Nash subgroup of G.

Proof Denote by G1 the centralizer of a in G, which is a θ-stable Nash subgroup of G.
Note that (LieG1) ∩ p = a, since a is maximal abelian in p. Therefore, by Proposition 15.3,

G1 = K1 exp(a) = K1 ×A, where K1 := G1 ∩K.
Denote by Z1 the center of G1, and then A equals the identity connected component of the
Nash subgroup

{x ∈ Z1 | θ(x) = x−1}.
Therefore, A is a Nash subgroup.

Note that A is abelian and all elements of A are hyperbolic. Therefore, A is hyperbolic by
Proposition 8.3.

Lemma 15.6 The set exp(p) is a close Nash submanifold of G.

Proof The set exp(p) is a closed submanifold of G by Proposition 15.2. It is semialgebraic,
since it is equal to the image of the Nash map

K ×A→ G, (k, a) �→ kak−1.

Combining Propositions 15.2, 15.4 and Lemma 15.6, we obtain the following proposition.

Proposition 15.6 One has G = KAK, and the multiplication map

K × exp(p) → G

is a Nash diffeomorphism.
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Write
g =

⊕
α∈a∗

gα,

where a∗ denotes the space of all real valued linear functionals on a, and

gα := {x ∈ g | [a, x] = α(a)x, for all a ∈ a}.

Then the set
Δ(g, a) := {α ∈ a∗ | α �= 0, gα �= {0}}

is a root system in a∗. Fix a positive system Δ(g, a)+ ⊂ Δ(g, a), and put

n :=
⊕

α∈Δ(g,a)+

gα.

Then n is a Lie subalgebra of g. Denote by N the analytic subgroup of G with Lie algebra n.

Proposition 15.7 The analytic subgroup N is a unipotent Nash subgroup of G.

Proof Without loss of generality, assume that G is semisimple and connected. Denote by
a0 the element of a such that α(a0) = 1 for all simple roots α in Δ(g, a)+. For every integer i,
denote

gi := {x ∈ g | [a0, x] = ix}.
Put

ñ :=
{
g ∈ gl(g)

∣∣∣ g(⊕
j≥i

gj

)
⊂

⊕
j≥i+1

gj for all i ∈ Z

}
,

Ñ :=
{
g ∈ GL(g)

∣∣∣ (g − 1)
( ⊕

j≥i

gj

)
⊂

⊕
j≥i+1

gj for all i ∈ Z

}
.

Then Ñ is a unipotent Nash subgroup of GL(g) with Lie algebra ñ.
Consider the adjoint representation

Ad : G→ GL(g)

and its differential
ad : g → GL(g).

Note that ad−1(ñ) = n. Therefore, the Nash subgroup Ad−1(Ñ) of G has the Lie algebra n.
Hence N equals the identity connected component of Ad−1(Ñ), which is a Nash subgroup of G.
Since G is assumed to be semisimple, the adjoint representation of N on g has a finite kernel.
Then Lemma 5.6 implies that N is unipotent.

Theorem 15.2 The multiplication map

K ×A×N → G (15.6)

is a Nash diffeomorphism.
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Proof Without loss of generality, assume that G is connected. The map (15.6) is clearly
a Nash map. We only need to show that it is a diffeomorphism. This is known when G is
semisimple (see [12, Theorem 6.46]). The same argument as in Proposition 15.2 reduces the
general case to the case when G is semisimple.

As a corollary of Theorem 15.2, we have the following proposition.

Proposition 15.8 An almost linear Nash group is elliptic if it consists elliptic elements
only.

Proof If an almost linear Nash group consists only elliptic elements, then its unipotent
radical is trivial, and is thus reductive. Then Theorem 15.2 implies that it is compact.

The same proof as Proposition 15.8 shows the following proposition.

Proposition 15.9 An almost linear Nash group is hyperbolic if it consists hyperbolic ele-
ments only.

16 Exponential Nash Groups

Recall from Section 1 that an almost linear Nash group G is said to be exponential if
Ge = {1}. The following lemma is obvious.

Lemma 16.1 An almost linear Nash group is exponential if and only if all its elements are
exponential.

Proposition 8.1 implies the following lemma.

Lemma 16.2 All Nash quotient groups of exponential Nash groups are exponential Nash
groups.

Let G be an almost linear Nash group, and let K be a maximal compact subgroup of G.

Lemma 16.3 The almost linear Nash group G is exponential if and only if K is trivial.

Proof The lemma is clear, since

Ge =
⋃
g∈G

gKg−1.

Lemma 16.4 If G is reductive and exponential, then G is hyperbolic.

Proof The lemma follows by Lemma 16.3 and Proposition 15.6.

Lemma 16.5 The almost linear Nash group G is exponential if and only if G/UG is a
hyperbolic Nash group.

Proof In view of Lemma 16.2, the “only if ” part is implied by Lemma 16.4. To prove the
“if ” part, assume that G/UG is a hyperbolic Nash group. Then under the quotient map

G→ G/UG,
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the image of Ge is contained in

(G/UG)e = {1}.
Therefore, Ge ⊂ UG, which implies that Ge = {1} as (UG)e = {1}.

Using Levi decompositions, Lemma 16.5 implies that every exponential Nash group is con-
nected, simply connected and solvable.

Lemma 16.6 If G is unipotent or hyperbolic, then there is no proper co-compact Nash
subgroup of G.

Proof The hyperbolic case is obvious. Assume that G is unipotent. We prove this lemma
by induction on dimG. It is trivial when dimG = 0. Assume that dimG > 0 and this lemma
holds for unipotent Nash groups of smaller dimensions.

Let H be a co-compact Nash subgroup of G. Denote by Z the center of G. It is a Nash
subgroup of G of positive dimension. Note that ZH is a Nash subgroup of G, and ZH/H is a
closed subset of G/H . Therefore,

Z/(Z ∩H) = ZH/H

is compact. Since the lemma obviously holds for abelian unipotent Nash groups, we have that
Z∩H = Z, or equivalently, H ⊃ Z. Then H/Z is a co-compact Nash subgroup of the unipotent
Nash group G/Z. Since dimG/Z < dimG, by the induction hypothesis, we have H/Z = G/Z,
in other words, H = G.

Lemma 16.7 If G is exponential, then there is no proper co-compact Nash subgroup of G.

Proof Let H be a co-compact Nash subgroup of G. Using Proposition 3.5, we get a closed
orbit O ⊂ G/H under left translations by UG. Since O is compact, Lemma 16.6 implies that
O has only one point, say g0H . Then UGg0H ⊂ g0H , which implies that UG ⊂ H as UG is
a normal subgroup of G. Now H/UG is a co-compact Nash subgroup of the hyperbolic Nash
group G/UG. Lemma 16.6 implies that H/UG = G/UG, in other words, H = G.

The following is the Borel fixed-point theorem in the setting of Nash groups.

Theorem 16.1 Let G ×M → M be a Nash action of G on a non-empty Nash manifold
M . If G is exponential and M is compact, then the action has a fixed-point.

Proof Using Proposition 3.5, we get a closed G-orbit O ⊂ M . Then O is compact and
Lemma 16.7 implies that O has only one point.

Lemma 16.8 There exists an exponential Nash subgroup B of G such that the multiplication
map K ×B → G is a Nash diffeomorphism.

Proof Without loss of generality, assume that G is reductive (otherwise, take a Levi
component of G containing K). Then the group AN of Theorem 15.2 fulfills the requirement
of this lemma.

Lemma 16.9 If G is not exponential, then G has a proper co-compact Nash subgroup.
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Proof The group B of Lemma 16.8 is a proper co-compact Nash subgroup of G.

Recall the following lemma.

Lemma 16.10 (see [13, Section I.1, Theorem 1]) Let H be a connected, simply connected,
solvable Lie group with Lie algebra h. If the exponential map exp : h → H is either injective or
surjective, then it is a diffeomorphism.

Denote by g the Lie algebra of G.

Proposition 16.1 The almost linear Nash group G is exponential if and only if the expo-
nential map

exp : g → G (16.1)

is a diffeomorphism.

Proof The “only if ” part is implied by Proposition 9.1 and Lemma 16.10. To prove the
“if ” part of the proposition, assume that (16.1) is a diffeomorphism. Then G is connected.
Therefore, K is connected and the exponential map

exp : k → K (16.2)

is injective, where k denotes the Lie algebra of K. This forces K to be trivial. Therefore, G is
exponential by Lemma 16.3.

Lemma 16.11 For each co-compact Nash subgroup H of G, one has that dimH≥dimG/K.

Proof Let B be as in Lemma 16.8. By Theorem 16.1, the left translation action of B on
G/H has a fixed point, say g0H . Then Bg0H ⊂ g0H , which implies that

dimH ≥ dimB = dimG/K.

Denote by Bn(R) the Nash subgroup of GLn(R) consisting all upper-triangular matrices
with positive diagonal entries (n ≥ 0). Its Lie algebra bn(R) consists all upper-triangular
matrices in gln(R). It is obvious that Bn(R) and all its Nash subgroups are exponential Nash
groups. Conversely, we have the following lemma.

Lemma 16.12 Every exponential Nash group H is Nash isomorphic to a Nash subgroup of
Bn(R) for some n ≥ 0.

Proof Fix a Nash representation V of H with a finite kernel. By Lemma 16.3, the represen-
tation is actually faithful. Consider the induced action ofH on the compact Nash manifold of all
full flags in V . Then Theorem 16.1 implies that the action has a fixed-point, that is, H stabilizes
a full flag in V . Therefore, there exists an injective Nash homomorphism ϕ : H → B′

n(R), where
n := dim V , and B′

n(R) denotes the Nash subgroup of GLn(R) of upper-triangular matrices.
Since H is connected, ϕ(H) is contained in Bn(R) and this lemma follows.

Theorem 16.2 Every exponential Nash subgroup of G is contained in a maximal one, and
all maximal exponential Nash subgroups of G are conjugate to each other in G.
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Proof Let B be as in Lemma 16.8. Let H be an exponential Nash subgroup of G. By
Theorem 16.1, the left translation action of H on G/B has a fixed-point, say, g0B. Then
Hg0B ⊂ g0B, and consequently, H is contained in a conjugation of B. Therefore, B has the
largest dimension among all exponential Nash subgroups of G. In particular, B is a maximal
exponential Nash subgroup of G (since all exponential Nash groups are connected). This proves
this theorem.

Theorem 16.3 A Nash subgroup B of G is a maximal exponential Nash subgroup if and
only if the multiplication map K ×B → G is a Nash diffeomorphism.

Proof Let B be a Nash subgroup of G. We first prove the “if ” part of the theorem.
So assume that the multiplication map K × B → G is a Nash diffeomorphism. Then B is
connected. Let K ′ be a maximal compact subgroup of B. Applying Lemma 16.8 to B, we get
an exponential Nash subgroup B′ of B so that the multiplication map K ′ ×B′ → B is a Nash
diffeomorphism. Then B′ is co-compact in G. Hence, by Lemma 16.11,

dimB′ ≥ dimG/K = dimB.

Therefore, B′ = B, and B is an exponential Nash subgroup of G. Then the proof of Theorem
16.2 shows that B is a maximal exponential Nash subgroup of G.

To prove the “only if ” part of the theorem, assume that B is a maximal exponential Nash
subgroup of G. Using Lemma 16.9, we take an exponential Nash subgroup B0 of G so that the
multiplication map

K ×B0 → G is a Nash diffeomorphism. (16.3)

The proof of Theorem 16.2 shows that B0 is a maximal exponential Nash subgroup of G. By
Theorem 16.2,

B = g0B0g
−1
0 for some g0 ∈ G.

Write g0 = k0b0, where k0 ∈ K and b0 ∈ B0. Note that (16.3) implies that the multiplication
map

K × k0B0k
−1
0 → G

is a Nash diffeomorphism. The “only if ” part of the theorem then follows as k0B0k
−1
0 = B.

Theorem 16.4 Every hyperbolic Nash subgroup of G is contained in a maximal one, and
all maximal hyperbolic Nash subgroups of G are conjugate to each other in G.

Proof Fix a maximal exponential Nash subgroup B of G, and fix a Levi component A of
B. Let H be a hyperbolic Nash subgroup of G. Then by Theorem 16.2, a conjugation of H is
contained in B. Theorem 14.1 further implies that a conjugation of H is contained in A. As in
the proof of Theorem 16.2, we know that A is a maximal hyperbolic Nash subgroup by reason
of dimension. This proves the theorem.

Lemma 16.13 If G is exponential, then every unipotent Nash subgroup of G is contained
in UG.
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Proof Let U be a unipotent Nash subgroup of G. Then the quotient homomorphism

G→ G/UG

has trivial restriction to U . Therefore, U ⊂ UG.

In view of Lemma 16.13, a similar argument as Theorem 16.4 implies the following theorem.

Theorem 16.5 Every unipotent Nash subgroup of G is contained in a maximal one, and
all maximal unipotent Nash subgroups of G are conjugate to each other in G.

By the preceding arguments, we know that for each maximal exponential Nash subgroup
B of G, its unipotent radical UB is a maximal unipotent Nash subgroup of G, and each Levi
component of B is a maximal hyperbolic Nash subgroup of G.

17 About Proofs of the Results in Section 1

In this last section, we collect some results of the previous sections to explain the proofs of
those propositions and theorems which occur in Section 1.

Proposition 1.1 is a restatement of Proposition 3.8.
Recall that Proposition 1.2 asserts the following: An almost linear Nash group is elliptic,

hyperbolic or unipotent if and only if all of its elements are elliptic, hyperbolic or unipotent,
respectively. The “only if ” part of Proposition 1.2 is trivial. The elliptic case and the hyperbolic
case of the “if ” part are proved in Propositions 15.8–15.9, respectively. To prove the “if ” part
in the unipotent case, let G be an almost linear Nash group consisting unipotent elements only.
Then G is exponential. Hence, a Levi component of G is a hyperbolic Nash group, which has
to be trivial. Therefore, G is unipotent. This finishes the proof of Proposition 1.2.

Proposition 1.3 consists two assertions. The first one is the following proposition.

Proposition 17.1 Let G be an almost linear Nash group which is elliptic, hyperbolic or
unipotent. Then all of its Nash subgroups and Nash quotient groups are elliptic, hyperbolic or
unipotent, respectively.

Proof The assertion for Nash subgroups is obvious. The assertion for Nash quotient groups
appears in Propositions 4.1, 6.2 and 7.6.

The second assertion of Proposition 1.3 is the following proposition.

Proposition 17.2 Let G be an almost linear Nash group. If G has a normal Nash subgroup
H so that H and G/H are both elliptic, both hyperbolic or both unipotent, then G is elliptic,
hyperbolic or unipotent, respectively.

Assume that both H and G/H are elliptic. The image of Gh under the quotient map

G→ G/H

is contained in (G/H)h = {1}. Therefore, Gh ⊂ H , which implies that Gh = {1}. Similarly,
Gu = {1}. Therefore, G = Ge, and Proposition 1.2 implies that G is elliptic.
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The same argument proves this proposition in the hyperbolic and unipotent cases.

As already mentioned, Theorem 1.1 is a combination of Lemmas 4.1–4.3, and Theorem 1.2
is a combination of Propositions 5.1, 5.3–5.5. Theorem 1.3 is a restatement of Theorem 1.3.
Theorem 1.4 is the same as Theorem 8.1.

Theorem 1.5 consists of five assertions. The second one is obvious. The others are respec-
tively proved in Lemma 10.1, Propositions 10.3, 10.2 and 10.1.

For Theorem 1.6, it is obvious that (b) ⇒ (a), and Theorem 11.2 asserts that (a) ⇒ (b).
Lemma 14.1 asserts that (a) ⇔ (c). Theorem 12.1 implies that

(d) ⇔ (a) ⇔ (e).

The equivalence (a) ⇔ (f) is proved in Lemma 11.1, and (a) ⇔ (g) is proved in Theorem 11.1.
Therefore, Theorem 1.6 holds.

For Theorem 1.7, (a) ⇔ (b) is implied by Lemma 16.3, and (a) ⇔ (c) is implied by Lemmas
16.7 and 16.9. The equivalence (a) ⇔ (d) is proved in Lemma 16.5, (a) ⇔ (e) is implied by
Lemma 16.12, and (a) ⇔ (f) is proved in Proposition 16.1. By Theorem 16.1, (a) ⇒ (g), and
by Lemma 16.9, (g) ⇒ (a). In conclusion, Theorem 1.7 holds.

Theorem 1.8 is contained in Theorems 4.2, 14.1, 16.2, 16.4–16.5.
Finally, Theorem 1.9 is contained in Theorem 14.1, and Theorem 1.10 is contained in The-

orem 16.3.
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