The Presentation Problem of the Conjugate Cone of the Hardy Space $H^{p}(0<p \leq 1)^{*}$

Jianyong WANG ${ }^{1}$

Abstract

The Hardy space H^{p} is not locally convex if $0<p<1$, even though its conjugate space $\left(H^{p}\right)^{*}$ separates the points of H^{p}. But then it is locally p-convex, and its conjugate cone $\left(H^{p}\right)_{p}^{*}$ is large enough to separate the points of H^{p}. In this case, the conjugate cone can be used to replace its conjugate space to set up the duality theory in the p-convex analysis. This paper deals with the representation problem of the conjugate cone $\left(H^{p}\right)_{p}^{*}$ of H^{p} for $0<p \leq 1$, and obtains the subrepresentation theorem $\left(H^{p}\right)_{p}^{*} \simeq L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$.

Keywords Locally p-convex space, Hardy space, Normed conjugate cone, Shadow cone, Subrepresentation theorem
2000 MR Subject Classification 46A16, 46A20, 32A35, 42B30

1 Introduction

If X is a locally convex space, then its conjugate space X^{*} is large enough to separate the points of X. But a non-locally convex space may only have the trivial conjugate space $\{0\}$. $L^{p}(\mu)$ is just such an example if $0<p<1$ and μ is a non-atomic measure (see [1-2]). For a Hardy space $H^{p}(0<p<1)$, though its conjugate space $\left(H^{p}\right)^{*} \neq\{0\}$ (see [3, p. 115]), it is still not locally convex (see [1, p. 37]). Motivated by the oddness of $L^{p}(\mu)$ and H^{p}, Simmons [4] and Jarchow [5, p. 108] introduced the concept of the locally p-convex space in the sixties of the last century. To remedy the shortcoming that the conjugate space X^{*} of a non-locally convex space X may be trivial, we first introduced in [6] the concept of the conjugate cone X_{p}^{*}, and proved that X_{p}^{*} is large enough to separate the points of X if X is locally p-convex. For a locally p-convex X, we can use the conjugate cone X_{p}^{*} to replace its conjugate space X^{*} (which may be trivial or very small) to set up the duality theory in the p-convex analysis. It is one of the most important problems to represent the conjugate cone X_{p}^{*} of a locally p-convex space. The main purpose of this paper is to represent the conjugate cone $\left(H^{p}\right)_{p}^{*}$ of the Hardy space H^{p} for $0<p \leq 1$. The necessary basic theories of the p-convex analysis is presented in Section 2, the subrepresentation theorem $\left(H^{p}\right)_{p}^{*} \simeq L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ is obtained in Section 3.

2 Some Basic Theories of p-Convex Analysis

The locally p-convex spaces and their conjugate cones are the main concepts in this paper, while the separating theorem and the Hahn-Banach extension theorem are the basic theorems

[^0]of the p-convex analysis.
Let X be a vector space over the number field \mathbf{K}, Φ be the empty set, 0 be the zero vector, the zero functional or the number zero, and $0<p \leq 1$ be a constant. A set $A \subset X$ is called p-convex if $[x, y]_{p} \subset A$ for every $x, y \in A$, where
$$
[x, y]_{p}=\left\{\lambda x+\left(1-\lambda^{p}\right)^{\frac{1}{p}} y: \lambda \in[0,1]\right\}
$$
is the p-segment arc with the endpoints x and y. For a general set A, the smallest p-convex set ${ }^{\mathrm{co}_{p} A}$ containing A is called the p-convex hull of A. It is easy to show that
$$
\operatorname{co}_{p} A=\left\{\sum_{k=1}^{n} \lambda_{k} x_{k}: x_{k} \in A, \lambda_{k} \geq 0, \sum_{k=1}^{n} \lambda_{k}^{p}=1, n \in \mathbf{N}\right\} .
$$

A topological vector space X is called locally p-convex if there exists a 0 -neighborhood basis consisting of p-convex sets (see [5, p. 108]). It is easy to see that any locally p-convex space has a 0 -neighborhood basis consisting of circled open p-convex sets.

A real-valued functional f on X is called a p-subseminorm if
(a) $f(x) \geq 0, x \in X$;
(b) $f(t x)=t^{p} f(x), t \geq 0, x \in X$ (positive p-homogeneity);
(c) $f(x+y) \leq f(x)+f(y), x, y \in X$.

We use X_{p}^{\prime} to denote the convex cone consisting of all p-subseminorms on X. If X is a topological vector space, then X_{p}^{*} is used to denote the subcone of X_{p}^{\prime} consisting of continuous p-subseminorms, called the p-conjugate cone of X. A typical example of p-subseminorm is the p-Minkowski functional

$$
\begin{equation*}
P_{B_{p}}(x)=\inf \left\{t>0: x \in t^{\frac{1}{p}} B\right\}, \quad x \in X \tag{2.1}
\end{equation*}
$$

generated by a p-convex algebraic 0 -neighborhood B. It is easy to check that $P_{B_{p}} \in X_{p}^{*}$ if and only if $0 \in \operatorname{int} B$ (see [5, p. 106]). The study of p-convexity is called the p-convex analysis.

If there is a nonnegative real-valued functional $\|\cdot\|_{p}$ on X satisfying
(a') $\|x\|_{p}=0 \Leftrightarrow x=0$;
(b') $\|t x\|_{p}=|t|^{p}\|x\|_{p}, t \in \mathbf{K}, x \in X$ (absolute p-homogeneity);
(c') $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}, x, y \in X$,
then $\|\cdot\|_{p}$ is called a p-norm and $\left(X,\|\cdot\|_{p}\right)$ a p-normed space. With the 0 -neighborhood basis consisting of the p-convex sets

$$
U_{\varepsilon}=\left\{x \in X:\|x\|_{p}<\varepsilon\right\}, \quad \varepsilon>0
$$

a p-normed space $\left(X,\|\cdot\|_{p}\right)$ is locally p-convex. A complete p-normed space is called a p-Banach space (see [1, p. 7]). The spaces $L^{p}(\mu), l^{p}$ and $H^{p}(0<p<1)$ are three typical classes of p-Banach spaces.

The second separation theorem and the separating theorem given by [6] are the theoretical basis of the p-convex analysis. For the sake of completeness, let us give their proofs here.

Theorem 2.1 (The Second Separation Theorem in [6]) Let $0<p \leq 1$, and (X, τ) be a locally p-convex space. Suppose that A is a nonempty closed p-convex subset of X (for $p=1$,
still assume $0 \in A$), and that B is another nonempty closed subset of X with $A \cap B=\Phi$. If A or B is compact, then they can be strongly separated by some continuous p-subseminorm, i.e. there is $f \in X_{p}^{*}$ such that
(i) if A is compact, then

$$
\max \{f(x): x \in A\}<1 \leq \inf \{f(x): x \in B\} ;
$$

(ii) if B is compact, then

$$
\sup \{f(x): x \in A\} \leq 1<\min \{f(x): x \in B\} .
$$

Proof Let $\mathcal{U}_{\theta}=\left\{U_{\lambda}: \lambda \in \Lambda\right\}$ be a 0 -neighborhood basis in X consisting of circled open p-convex sets. Because A or B is compact, we assert that there is a $U_{\lambda_{0}} \in \mathcal{U}_{\theta}$ such that

$$
\left(A+U_{\lambda_{0}}\right) \cap B=\Phi .
$$

If the assertion is not true, then there exist $x_{\lambda} \in A, y_{\lambda} \in B$ and $z_{\lambda} \in U_{\lambda_{0}}$ such that $y_{\lambda}=x_{\lambda}+z_{\lambda}$ for any $\lambda \in \Lambda$. Under the set-theoretic relation $U_{1} \prec U_{2} \Leftrightarrow U_{1} \supset U_{2}, \mathcal{U}_{\theta}$ is a semi-order set. As \prec is directed, $\left\{x_{\lambda}\right\},\left\{y_{\lambda}\right\}$ and $\left\{z_{\lambda}\right\}$ turn into three nets and $z_{\lambda} \rightarrow 0$. If A is compact, there exists some convergent subnet of $\left\{x_{\lambda}\right\}$. Without loss of generality, suppose $x_{\lambda} \rightarrow x_{0}$, and then $y_{\lambda}=x_{\lambda}+z_{\lambda} \rightarrow x_{0}$. By the closeness of A and B, we have $x_{0} \in A \cap B$. This is contrary to the fact that $B \cap A=\Phi$. If B is compact, with the same argument we can also find a $U_{\lambda_{0}} \in \mathcal{U}_{\theta}$ such that $A \cap\left(B+U_{\lambda_{0}}\right)=\Phi$. This is equivalent to $\left(A+U_{\lambda_{0}}\right) \cap B=\Phi$ as $U_{\lambda_{0}}$ is circled.

Now take a $U_{\lambda_{0}} \in \mathcal{U}_{\theta}$ such that $\left(A+U_{\lambda_{0}}\right) \cap B=\Phi$, and take a $U_{\lambda_{1}} \in \mathcal{U}_{\theta}$ such that $U_{\lambda_{1}}+U_{\lambda_{1}} \subset U_{\lambda_{0}}$. Then by $\left(A+U_{\lambda_{1}}+U_{\lambda_{1}}\right) \cap B=\Phi$ and the circled property of $U_{\lambda_{1}}$ we have

$$
\begin{equation*}
\left(A+U_{\lambda_{1}}\right) \cap\left(B+U_{\lambda_{1}}\right)=\Phi \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\left(A+U_{\lambda_{1}}\right)} \cap B=\Phi . \tag{2.3}
\end{equation*}
$$

As $A+U_{\lambda_{1}}$ is an open p-convex 0 -neighborhood, the p-Minkowski functional generated by $A+U_{\lambda_{1}}$ is continuous, i.e. $f:=P_{\left(A+U_{\lambda_{1}}\right)_{p}} \in X_{p}^{*}$. The equality (2.3) implies

$$
\begin{equation*}
f(x)<f(y), \quad x \in A, y \in B \tag{2.4}
\end{equation*}
$$

If A is compact, assume that f takes its maximum at $x_{0} \in A$, then

$$
\max \{f(x): x \in A\}=f\left(x_{0}\right)<1 \leq \inf \{f(x): x \in B\}
$$

If B is compact, assume that f takes its minimum at $y_{0} \in B$, then

$$
\sup \{f(x): x \in A\} \leq 1<f\left(y_{0}\right)=\min \{f(x): x \in B\}
$$

This completes the proof.

Theorem 2.2 (Separating Theorem in [6]) Let $0<p \leq 1$ and X be a locally p-convex Hausdorff space. Then the conjugate cone X_{p}^{*} separates the points of X, i.e. for each pair of $x, y \in X, x \neq y$, there is $f \in X_{p}^{*}$ such that $f(x) \neq f(y)$.

Proof As $x \neq y$, we have $y \notin[\theta, x]$ or $x \notin[\theta, y]$. Without loss of generality assume $y \notin[\theta, x]$. As X is of Hausdorff, the sets $A=[\theta, x]$ and $B=\{y\}$ satisfy the conditions of Theorem 2.1, so there is $f \in X_{p}^{*}$ such that $f(x) \neq f(y)$.

The conjugate space X^{*} of a locally p-convex space X may be trivial, but by Theorem 2.2 the p-conjugate cone X_{p}^{*} of X is large enough to separate the points of X. In this case X_{p}^{*} is simply called the conjugate cone of X. We hope to use conjugate cone X_{p}^{*} to replace the conjugate space X^{*} to set up the duality theory in the p-convex analysis.

Let us recall the concept of normed cones and the further details can be found in [7].
Definition 2.1 Let Y be a proper cone with abstract addition and nonnegative scalar multiplication, i.e. $x+y \in Y, t x \in Y$ for every $x, y \in Y$ and $t \geq 0$, and $x+y=0 \Leftrightarrow x=y=0$. If there is a nonnegative real-valued functional $\|\cdot\|$ on Y satisfying
$\left(\mathrm{n}_{1}\right) \quad\|x\|=0 \Leftrightarrow x=0 ;$
$\left(\mathrm{n}_{2}\right) \quad\|t x\|=t\|x\|, x \in Y, t \geq 0$;
$\left(\mathrm{n}_{3}\right) \quad\|x\|,\|y\| \leq\|x+y\| \leq\|x\|+\|y\|, x, y \in Y$,
then $\|\cdot\|$ is called a (conical) norm and $(Y,\|\cdot\|)$ a normed cone.
If $(Y,\|\cdot\|)$ is a normed cone, then it is not difficult to see that the equation

$$
\begin{equation*}
\rho(x, y)=\inf \{t>0: \exists h, l \in Y,\|h\|,\|l\| \leq t \text { such that } x+h=y+l\}, \quad x, y \in Y \tag{2.5}
\end{equation*}
$$

defines a translation invariant metric on Y. Thus $(Y,\|\cdot\|)=(Y, \rho)$ is called a normed topological cone. Two normed cones Y_{1} and Y_{2} are said to be norm-preserving isomorphic if there exists an algebra isomorphism $T: Y_{1} \rightarrow Y_{2}$ such that $\|T(x)\|=\|x\|$ for all $x \in Y_{1}$.

The following is a basic proposition on normed topological cones.
Proposition 2.1 Let $(Y,\|\cdot\|)=(Y, \rho)$ be a normed topological cone and let $\left\{g_{n}\right\} \subset Y$ and $g \in Y$. Then
(i) $g_{n} \rightarrow 0 \Leftrightarrow\left\|g_{n}\right\| \rightarrow 0$;
(ii) $g_{n} \rightarrow g$ if and only if there are $\left\{h_{n}\right\},\left\{l_{n}\right\} \subset Y$ with $h_{n}, l_{n} \rightarrow 0$ such that $g_{n}+h_{n}=g+l_{n}$ for every $n \in \mathbf{N}$;
(iii) the norm $\|\cdot\|$ is continuous on Y.

Proof Suppose $g_{n} \rightarrow 0$ in the conical topology. Then by $\rho\left(g_{n}, 0\right) \rightarrow 0$ and (2.5), there are $\left\{h_{n}\right\},\left\{l_{n}\right\} \subset Y$ with $\left\|h_{n}\right\|,\left\|l_{n}\right\| \rightarrow 0$ such that $g_{n}+h_{n}=0+l_{n}$ for every n. By $\left(\mathrm{n}_{3}\right)$ we have

$$
\left\|g_{n}\right\| \leq\left\|g_{n}+h_{n}\right\|=\left\|l_{n}\right\| \rightarrow 0
$$

Conversely if $\left\|g_{n}\right\| \rightarrow 0$, then by $g_{n}+0=0+g_{n}$ and (2.5) we have

$$
\rho\left(g_{n}, 0\right) \leq\left\|g_{n}\right\| \rightarrow 0, \quad \text { i.e. } g_{n} \rightarrow 0 .
$$

Thus (i) holds. The result (ii) follows (i) and definition (2.5). Suppose $g_{n} \rightarrow g$. Then by (ii) there are $\left\{h_{n}\right\},\left\{l_{n}\right\} \subset Y$ with $h_{n} \rightarrow 0, l_{n} \rightarrow 0$ such that $g_{n}+h_{n}=g+l_{n}$ for every n. By $\left(\mathrm{n}_{3}\right)$

$$
\begin{aligned}
\left\|g_{n}\right\|-\left\|h_{n}\right\| & \leq\left\|g_{n}\right\| \leq\left\|g_{n}+h_{n}\right\|=\left\|g+l_{n}\right\| \leq\|g\|+\left\|l_{n}\right\| \\
\|g\|-\left\|l_{n}\right\| & \leq\|g\| \leq\left\|g+l_{n}\right\|=\left\|g_{n}+h_{n}\right\| \leq\left\|g_{n}\right\|+\left\|h_{n}\right\|
\end{aligned}
$$

and hence

$$
\left|\left\|g_{n}\right\|-\|g\|\right| \leq\left\|h_{n}\right\|+\left\|l_{n}\right\| \rightarrow 0
$$

This completes the proof.
If $\left(X,\|\cdot\|_{p}\right)$ is a p-normed space, then by Theorem 2.2 its conjugate cone X_{p}^{*} is large enough to separate the points of X. With the conical norm

$$
\begin{equation*}
\|f\|=\sup _{\|x\|_{p}=1} f(x), \quad f \in X_{p}^{*} \tag{2.6}
\end{equation*}
$$

$\left(X_{p}^{*},\|\cdot\|\right)$ forms a normed topological cone, called the normed conjugate cone of X (see [7]).
By definition, it is not difficult to verify the following proposition.
Proposition 2.2 (see [5-6]) Let $0<p \leq 1, X$ be a topological vector space and $f \in X_{p}^{\prime}$. Then the following conditions are equivalent:
(i) $f \in X_{p}^{*}$ (i.e. f is continuous);
(ii) f is continuous at 0 ;
(iii) $0 \in \operatorname{int} U_{f}(\varepsilon)$ for all $\varepsilon>0$, where

$$
U_{f}(\varepsilon)=\{x \in X: \quad f(x)<\varepsilon\}
$$

is the f-open ball of radius ε;
(iv) $\|f\|<\infty$ if X is a p-normed space, and then $f(x) \leq\|f\|\|x\|_{p}$ for all $x \in X$.

The Hahn-Banach type extension theorems of p-subseminorms given by [8] are the most important materials to set up the theoretical basis of the p-convex analysis. Considering that some people may not be able to read Chinese, let us prove them here.

Lemma 2.1 (Control Extension Theorem in [8]) Let $0<p \leq 1$, and Y be a subspace of a linear space X. Suppose $f \in Y_{p}^{\prime}, F \in X_{p}^{\prime}$ with $f(x) \leq F(x), x \in Y$. Then there exists a $g \in X_{p}^{\prime}$ such that

$$
\begin{equation*}
g(x)=f(x), \quad x \in Y ; \quad g(x) \leq F(x), \quad x \in X \tag{2.7}
\end{equation*}
$$

Proof As f, F are nonnegative, the functional

$$
\begin{equation*}
g(x)=\inf _{y \in Y}\{F(x-y)+f(y)\}, \quad x \in X \tag{2.8}
\end{equation*}
$$

is well-defined. For every $x \in X$, if $t>0$, then

$$
g(t x)=\inf _{y \in Y}\{F(t x-y)+f(y)\}=t^{p} \inf _{y \in Y}\left\{F\left(x-\frac{y}{t}\right)+f\left(\frac{y}{t}\right)\right\}=t^{p} g(x)
$$

if $t=0, g(t x)=t^{p} g(x)(=0)$ is obvious, so g has positive p-homogeneity. If $x_{1}, x_{2} \in X$, then for every $\varepsilon>0$, there exist $y_{1}, y_{2} \in Y$ such that

$$
g\left(x_{i}\right)+\frac{\varepsilon}{2} \geq F\left(x_{i}-y_{i}\right)+f\left(y_{i}\right), \quad i=1,2
$$

Thus

$$
g\left(x_{1}\right)+g\left(x_{2}\right)+\varepsilon \geq F\left(\left(x_{1}+x_{2}\right)-\left(y_{1}+y_{2}\right)\right)+f\left(y_{1}+y_{2}\right) \geq g\left(x_{1}+x_{2}\right)
$$

Letting $\varepsilon \rightarrow 0$, we have

$$
g\left(x_{1}+x_{2}\right) \leq g\left(x_{1}\right)+g\left(x_{2}\right)
$$

and hence $g \in X_{p}^{\prime}$. If $x \in X$,

$$
g(x)=\inf _{y \in Y}\{F(x-y)+f(y)\} \leq F(x-0)+f(0)=F(x)
$$

If $x \in Y$,

$$
g(x)=\inf _{y \in Y}\{F(x-y)+f(y)\} \leq F(x-x)+f(x)=f(x)
$$

On the other hand, by $f \leq F$ on Y and the subadditivity of f, we have

$$
g(x)=\inf _{y \in Y}\{F(x-y)+f(y)\} \geq \inf _{y \in Y}\{f(x-y)+f(y)\} \geq f(x)
$$

so (2.7) holds.
Theorem 2.3 (Norm-Preserving Extension Theorem in [8]) Let $0<p \leq 1$, and Y be a subspace of a p-normed space $\left(X,\|\cdot\|_{p}\right)$. Then for every $f \in Y_{p}^{*}$, there exists a $g \in X_{p}^{*}$ such that

$$
\begin{equation*}
g(x)=f(x), \quad x \in Y ; \quad\|g\|=\|f\| \tag{2.9}
\end{equation*}
$$

Proof Let $f \in Y_{p}^{*}$. By Proposition 2.2, $\|f\|<\infty$. Define

$$
F(x)=\|f\|\|x\|_{p}, \quad x \in X
$$

then $F \in X_{p}^{*},\|F\|=\|f\|$ and $f(x) \leq F(x), x \in Y$. By Lemma 2.1, there exists a control extension $g \in X_{p}^{\prime}$ of f such that

$$
g(x)=f(x), \quad x \in Y ; \quad g(x) \leq F(x), \quad x \in X
$$

The facts $F \in X_{p}^{*}$ and $g(x) \leq F(x)$ imply that g is continuous at 0 . For every $x, y \in X$, by the subadditivity of g

$$
|g(x)-g(y)| \leq \max \{g(x-y), g(y-x)\}
$$

Hence g is continuous on X or $g \in X_{p}^{*}$ and $\|g\| \leq\|F\|=\|f\|$. On the other hand

$$
\|g\|=\sup _{\substack{x \in X \\\|x\|_{p}=1}} g(x) \geq \sup _{\substack{x \in Y \\\|x\|_{p}=1}} g(x)=\sup _{\substack{x \in Y \\\|x\|_{p}=1}} f(x)=\|f\|
$$

so $\|g\|=\|f\|$.

3 The SubrepresentationTheorem of Conjugate Cones of Hardy Spaces

To represent the conjugate cone X_{p}^{*} of a p-normed space $\left(X,\|\cdot\|_{p}\right)$ is one of the most important problems in the p-convex analysis. Based on the theory of the above section, we are going to find out the specific representation of the conjugate cone $\left(H^{p}\right)_{p}^{*}$ of the Hardy space H^{p} for $0<p \leq 1$ in this section.

Let D be the open unit disk in the complex plane \mathbf{C}, T the unit circle and ithe imaginary unit. Let (Σ, μ) be the Lebesgue measure ring on $[0,2 \pi]$. For a positive number $0<p<\infty$, the Hardy space H^{p} is the vector space of analytic functions $\varphi: D \rightarrow \mathbf{C}$ with

$$
\|\varphi\|_{p}=\sup _{0 \leq r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta<\infty
$$

When $p \geq 1$, the Hardy space H^{p} is a Banach space with the norm $\|\cdot\|_{p}^{\frac{1}{p}}$. In this paper we are interested in the Hardy space H^{p} for $0<p \leq 1$, which is a p-normed space with $\|\cdot\|_{p}$. By Hardy's convexity theorem in [3, p. 9] we know that $\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta$ is an increasing function of r, so

$$
\begin{equation*}
\|\varphi\|_{p}=\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta, \quad \varphi \in H^{p} \tag{3.1}
\end{equation*}
$$

Suppose $0<p \leq 1$. Let $L^{p}(T)$ be the L_{p}-space of complex functions on T with the normalized Haar measure $\frac{\mathrm{d} \theta}{2 \pi}, \theta \in[0,2 \pi]$. Then $L^{p}(T)$ is a p-normed space with

$$
\begin{equation*}
\|\varphi\|_{p}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta, \quad \varphi \in L^{p}(T) \tag{3.2}
\end{equation*}
$$

For $0<p<1$, abundant literature uses F-norm $\|\cdot\|=\|\cdot\|_{p}^{\frac{1}{p}}$ to replace p-norm $\|\cdot\|_{p}$ in deducing the same topology (see $[1-3])$. We prefer $\|\cdot\|_{p}$ to $\|\cdot\|_{p}^{\frac{1}{p}}$ because the former satisfies the triangle inequality, but the latter does not.

For a function φ analytic in D and a point $\mathrm{e}^{\mathrm{i} \theta} \in T$, if $\varphi(z)$ tends to a unique limit, say $\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)$, as z tends to $\mathrm{e}^{\mathrm{i} \theta}$ inside D along any path not tangent to the circle T, then φ is said to have the nontangential limit at $\mathrm{e}^{\mathrm{i} \theta}$ (see [3, p. 6]). Summing up a few results located at different places of [3] we can obtain the following lemma.

Lemma 3.1 Suppose $0<p \leq 1$ and $\varphi \in H^{p}$. Then
(i) the nontangential limit $\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)$ exists almost everywhere on T and $\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right) \in L^{p}(T)$ (see $[3$, p. 17]);
(ii) the boundary function $\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)$ satisfies (see [3, p. 21])

$$
\begin{equation*}
\lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|\varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta=\int_{0}^{2 \pi}\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|\varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)-\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta=0 \tag{3.4}
\end{equation*}
$$

If we use \mathcal{H}^{p} to denote the set of boundary functions $\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)$ of $\varphi \in H^{p}$, then \mathcal{H}^{p} is a closed subspace of $L^{p}(T)$ (see [3, p. 36]) and H^{p} is isometric to \mathcal{H}^{p} by (3.3)-(3.4). So H^{p} is a closed proper subspace of $L^{p}(T)$ in the sense of isometry.

If $0<p \leq 1$, the Hardy space H^{p} is a p-Banach space with the p-norm of (3.1). Theorem 2.2 means that its conjugate cone $\left(H^{p}\right)_{p}^{*}$ is very large to constitute a normed topological cone with

$$
\begin{equation*}
\|f\|=\sup _{\|\varphi\|_{p}=1} f(\varphi), \quad f \in\left(H^{p}\right)_{p}^{*} \tag{3.5}
\end{equation*}
$$

The main purpose of this paper is to represent the normed conjugate cone $\left(\left(H^{p}\right)_{p}^{*},\|\cdot\|\right)$. Every $f \in\left(H^{p}\right)_{p}^{*}$ has no linearity except 0 , it is almost impossible to give $\left(H^{p}\right)_{p}^{*}$ a complete representation, so we need to introduce the concept of subrepresentation.

Definition 3.1 Let $0<p \leq 1$, and $\left(X,\|\cdot\|_{p}\right)$ be a p-normed space. Let M be a subcone of X_{p}^{*}.
($\left.\mathrm{s}_{1}\right)$ If M separates the points of X, i.e. for each pair of $x, y \in X, x \neq y$, there is $F \in M$ such that $F(x) \neq F(y)$, then M is called a separating subcone of X_{p}^{*}.
(s_{2}) If M is a separating subcone of X_{p}^{*} and for each $f \in X_{p}^{*}$, there is $F \in M$ such that $f \leq F$ and $\|f\|=\|F\|$, then M is called a shadow cone or the subrepresentation of X_{p}^{*}, denoted by $X_{p}^{*} \simeq M$.

If M is a shadow cone of X_{p}^{*}, it follows from $\left(\mathrm{s}_{1}\right),\left(\mathrm{s}_{2}\right)$ and Proposition 2.2 that the topological structure of X is determined completely by M. The condition (s_{2}) means that the metric structure of X_{p}^{*} is also determined by M to a great extent. So a shadow cone of X_{p}^{*} is very similar to its shadow carrying almost all its properties, and once we find a shadow cone and obtain its representation we shall grasp X_{p}^{*} itself to a great extent.

Let us recall some known results. Suppose that X is a Banach space. If $p \geq 1$ and (Ω, μ) is a finite measure space, then the X-valued function space $L^{p}(\mu, X)$ is a Banach space with the norm

$$
\|\varphi\|=\left(\int_{\Omega}\|\varphi(t)\|^{p} \mathrm{~d} \mu(t)\right)^{\frac{1}{p}}, \quad \varphi \in L^{p}(\mu, X)
$$

Its conjugate space $\left[L^{p}(\mu, X)\right]^{*}$ can be represented as

$$
\left[L^{p}(\mu, X)\right]^{*}=L^{q}\left(\mu, X^{*}\right)
$$

if X^{*} has the Radon-Nikodym property with respect to μ, where $q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ (see [9, p. 98]). Thus for $p=1$ we have

$$
\begin{equation*}
\left[L^{1}(\mu, X)\right]^{*}=L^{\infty}\left(\mu, X^{*}\right) \tag{3.6}
\end{equation*}
$$

If $0<p<1$, then the p-normed X-valued sequence space $l^{p}(X)$ is a p-Banach space with

$$
\|x\|_{p}=\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}, \quad x=\left\{x_{n}\right\} \in l^{p}(X)
$$

Its conjugate cone has the subrepresentation (see [10])

$$
\begin{equation*}
\left[l^{p}(X)\right]_{p}^{*} \simeq l^{\infty}\left(X_{p}^{*}\right) \tag{3.7}
\end{equation*}
$$

If $0<p<1$, by separating Theorem 2.2 the conjugate cone $\left(H^{p}\right)_{p}^{*}$ of H^{p} is large enough to separate the points of H^{p}. Thus it is quite natural for us to ask:

Can the conjugate cone $\left(H^{p}\right)_{p}^{*}$ of $H^{p}(0<p \leq 1)$ be represented with the formula similar to (3.6) or (3.7)?

Let us find the shadow cone of $\left(H^{p}\right)_{p}^{*}$ for $0<p \leq 1$ now. Under the usual topology, the complex number field \mathbf{C} is a p-normed space with $|\cdot|^{p}$, and its conjugate cone \mathbf{C}_{p}^{*} forms a normed topological cone with the conical norm

$$
\|f\|=\sup _{z \in T} f(z), \quad f \in \mathbf{C}_{p}^{*}
$$

Let $L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ denote the positive cone formed by all \mathbf{C}_{p}^{*}-valued essentially norm-bounded measurable functions (equivalent classes) on the unit circle T. Then with the essential norm

$$
\|f\|_{\infty}=\inf _{\mu(E)=0} \sup _{\theta \in[0,2 \pi] \backslash E}\left\|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\|
$$

$L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ forms a normed cone. If we use $\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), z\right\rangle$ to denote $f\left(\mathrm{e}^{\mathrm{i} \theta}\right)(z)$ formally, then

$$
\begin{equation*}
\|f\|_{\infty}=\inf _{\mu(E)=0} \sup _{\theta \in[0,2 \pi] \backslash E} \sup _{z \in T}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), z\right\rangle, \quad f \in L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right) \tag{3.8}
\end{equation*}
$$

We should note that the function $\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \cdot\right\rangle=f\left(\mathrm{e}^{\mathrm{i} \theta}\right)(\cdot)$ is nonlinear and it is only a p-subseminorm on \mathbf{C} for each $\theta \in[0,2 \pi]$. From the following theorems we shall see that $L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ is the shadow cone of $\left(H^{p}\right)_{p}^{*}$.

Theorem 3.1 Suppose $0<p<1$. For each $f \in L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$, the equation

$$
\begin{equation*}
F_{f}(\varphi)=\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right\rangle \mathrm{d} \theta, \quad \varphi \in H^{p} \tag{3.9}
\end{equation*}
$$

defines a continuous p-subseminorm $F_{f} \in\left(H^{p}\right)_{p}^{*}$ with $\left\|F_{f}\right\| \leq\|f\|_{\infty}$.
Proof Suppose $f \in L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$. By (3.8) there is a sequence of null sets E_{n} such that

$$
\sup _{\theta \in[0,2 \pi] \backslash E_{n}} \sup _{z \in T}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), z\right\rangle \leq\|f\|_{\infty}+\frac{1}{n}
$$

for every $n \in \mathbf{N}$. For the null set $E_{0}=\bigcup_{n=1}^{\infty} E_{n}$,

$$
\|f\|_{\infty} \leq \sup _{\theta \in[0,2 \pi] \backslash E_{0}} \sup _{z \in T}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), z\right\rangle \leq\|f\|_{\infty}+\frac{1}{n}, \quad n \in \mathbf{N}
$$

so

$$
\|f\|_{\infty}=\sup _{\theta \in[0,2 \pi] \backslash E_{0}} \sup _{z \in T}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), z\right\rangle
$$

If $\varphi \in H^{p}$,

$$
\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right\rangle \leq\|f\|_{\infty}\left|\varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p}, \quad \theta \in[0,2 \pi] \backslash E_{0}, \quad r \in[0,1),
$$

so $\int_{0}^{2 \pi}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right\rangle \mathrm{d} \theta$ defines a function of r. By Lemma 3.1, the boundary function $\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right) \in$ $L^{p}(T)$. From the nonnegativity of $\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\rangle$ and

$$
\int_{0}^{2 \pi}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\rangle \mathrm{d} \theta \leq \int_{[0,2 \pi] \backslash E_{0}}\|f\|_{\infty}\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta<\infty
$$

the integral $\int_{0}^{2 \pi}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\rangle \mathrm{d} \theta$ is convergent. By (3.4)

$$
\begin{aligned}
& \left|\int_{0}^{2 \pi}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right\rangle \mathrm{d} \theta-\int_{0}^{2 \pi}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\rangle \mathrm{d} \theta\right| \\
\leq & \|f\|_{\infty} \int_{[0,2 \pi] \backslash E_{0}}\left|\varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)-\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \rightarrow 0, \quad r \rightarrow 1
\end{aligned}
$$

so $F_{f}(\varphi)$ is well-defined and

$$
\begin{equation*}
F_{f}(\varphi)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\rangle \mathrm{d} \theta, \quad \varphi \in H^{p} \tag{3.10}
\end{equation*}
$$

As the boundary function $\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)$ is more abstract than the original one $\varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)$, we would rather use (3.9) than (3.10) to define $F_{f}(\varphi)$. Because

$$
\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \cdot\right\rangle=f\left(\mathrm{e}^{\mathrm{i} \theta}\right)(\cdot) \in \mathbf{C}_{p}^{*} \text { a.e., } \quad \theta \in[0,2 \pi]
$$

the positive p-homogeneity and the subadditivity of F_{f} are clear, i.e. $F_{f} \in\left(H^{p}\right)_{p}^{\prime}$. For every $0 \neq \varphi \in H^{p}$, by (3.9)

$$
F_{f}(\varphi) \leq \lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{[0,2 \pi] \backslash E_{0}}\left|\varphi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p}\|f\|_{\infty} \mathrm{d} \theta=\|f\|_{\infty}\|\varphi\|_{p}
$$

so $\left\|F_{f}\right\| \leq\|f\|_{\infty}$ and $F_{f} \in\left(H^{p}\right)_{p}^{*}$ by Proposition 2.2. This completes the proof.
By (3.9) we have $F_{f_{1}+f_{2}}=F_{f_{1}}+F_{f_{2}}$ and $F_{a f_{1}}=a F_{f_{1}}$ for every $f_{1}, f_{2} \in L^{\infty}\left(T, C_{p}^{*}\right), a \in \mathbf{R}^{+}$ and $F_{f}=0 \Leftrightarrow f=0$. So the mapping $f \rightarrow F_{f}$ is an algebraic isomorphism between $L^{\infty}\left(T, C_{p}^{*}\right)$ and the subcone $\left\{F_{f}: f \in L^{\infty}\left(T, C_{p}^{*}\right)\right\}$ of $\left(H^{p}\right)_{p}^{*}$. If we endow $L^{\infty}\left(T, C_{p}^{*}\right)$ with another norm

$$
\begin{equation*}
\|f\|=\left\|F_{f}\right\|, \quad f \in L^{\infty}\left(T, C_{p}^{*}\right) \tag{3.11}
\end{equation*}
$$

then $\left(L^{\infty}\left(T, C_{p}^{*}\right),\|\cdot\|\right)$ is a new normed topological cone. From now on, we always treat $L^{\infty}(T$, $\left.C_{p}^{*}\right)$ as the normed cone with this norm, and make no distinction between each $f \in L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ and the corresponding functional $F_{f} \in\left(H^{p}\right)_{p}^{*}$. By Theorem 3.1 we have the following corollary.

Corollary 3.1 The normed topological cone $\left(L^{\infty}\left(T, C_{p}^{*}\right),\|\cdot\|\right)$ is a subcone of $\left(H^{p}\right)_{p}^{*}$ in the sense of norm-preserving isomorphism.

Theorem 3.2 Suppose $0<p \leq 1$. Then $L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ is a separating subcone of $\left(H^{p}\right)_{p}^{*}$.

Proof Theorem 3.1 implies that $L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ is a subcone of $\left(H^{p}\right)_{p}^{*}$. Let $\varphi, \psi \in H^{p}, \varphi \neq \psi$. Then their boundary functions, still denoted by φ and ψ, respectively, belong to $L^{p}(T)$ and are not equal, i.e.

$$
\mu\left(\left\{\theta \in[0,2 \pi]: \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right) \neq \psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}\right)>0 .
$$

We are going to construct $f \in L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ such that $F_{f}(\varphi) \neq F_{f}(\psi)$ in the following three cases. If $\|\varphi\|_{p}<\|\psi\|_{p}$, define $f \in L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ by

$$
\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), z\right\rangle=|z|^{p}, \quad \theta \in[0,2 \pi], \quad z \in \mathbf{C},
$$

then by (3.10)

$$
F_{f}(\varphi)=\|\varphi\|_{p}<\|\psi\|_{p}=F_{f}(\psi) .
$$

If $\|\varphi\|_{p}=\|\psi\|_{p}$ and there exists an $E_{0} \in \Sigma$ with $\mu\left(E_{0}\right)>0$ such that

$$
\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|<\left|\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \text { a.e., } \quad \theta \in E_{0}
$$

then by [11, p. 104]

$$
\int_{E_{0}}\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta<\int_{E_{0}}\left|\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta
$$

Take a sufficiently large number $M>0$ such that

$$
\int_{\left[0,2 \pi \backslash \backslash E_{0}\right.}\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta+M \int_{E_{0}}\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta<\int_{[0,2 \pi] \backslash E_{0}}\left|\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta+M \int_{E_{0}}\left|\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta .
$$

Define $f \in L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ by

$$
\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), z\right\rangle= \begin{cases}|z|^{p}, & \theta \in[0,2 \pi] \backslash E_{0}, z \in \mathbf{C}, \\ M|z|^{p}, & \theta \in E_{0}, z \in \mathbf{C}\end{cases}
$$

then $F_{f}(\varphi)<F_{f}(\psi)$ by (3.10) and the above inequality.
Now suppose $\|\varphi\|_{p}=\|\psi\|_{p}$ and $\left|\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|=\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|$ a.e., $\theta \in[0,2 \pi]$. By $\varphi \neq \psi$, the set

$$
E_{0}=\left\{\theta \in[0,2 \pi]: \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right) \neq \psi\left(\mathrm{e}^{\mathrm{i} \theta}\right),\left|\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|=\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|(>0)\right\}
$$

has positive measure. For each $\theta \in E_{0}$, let

$$
L(\theta)=\operatorname{span}\left\{\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right), \psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}
$$

be the real linear hull spanned by $\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)$ and $\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)$. Then $L(\theta)$ is either the whole complex plane \mathbf{C} or a line across 0 according to the real linear relationship between $\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)$ and $\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)$. Let

$$
B(\theta)=\operatorname{co}_{p}\left((L(\theta) \cap \bar{D}) \cup\left\{\frac{2^{\frac{1}{p}} \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|}\right\}\right)
$$

where \bar{D} is the closed unit disk in \mathbf{C}. Then $B(\theta)$ is a p-convex 0 -neighborhood in $L(\theta)$. By Proposition 2.2, the p-Minkowski functional $P_{B(\theta)_{p}}$ generated by $B(\theta)$ belongs to $[L(\theta)]_{p}^{*}$. The
relation $L(\theta) \cap \bar{D} \subset B(\theta)$ means $P_{B(\theta)_{p}}(z) \leq 1$ for all $z \in L(\theta) \cap \bar{D}$. By the construction, $P_{B(\theta)_{p}}$ takes its minimum $\frac{1}{2}$ at the only point $\frac{\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{\left|\varphi\left(\mathrm{e}^{i \theta}\right)\right|}$ on the compact set $L(\theta) \cap T$, so

$$
\frac{1}{2}=P_{B(\theta)_{p}}\left(\frac{\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|}\right)<P_{B(\theta)_{p}}\left(\frac{\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{\left|\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|}\right), \quad \theta \in E_{0}
$$

By Theorem 2.3, $P_{B(\theta)_{p}}$ can be extended to a continuous p-subseminorm $f\left(\mathrm{e}^{\mathrm{i} \theta}\right) \in \mathbf{C}_{p}^{*}$ with $\left\|f\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\|=\left\|P_{B(\theta)_{p}}\right\| \leq 1$ for every $\theta \in E_{0}$.

Let ω be the mapping from $[0,2 \pi]$ to T defined by $w(\theta)=\mathrm{e}^{\mathrm{i} \theta}$. To verify the measurability of f on $\omega\left[E_{0}\right]$, let

$$
\varphi_{n}=\sum_{j=1}^{m_{n}} z_{j}^{(n)} X_{\omega\left[E_{j}^{(n)}\right]}, \quad \psi_{n}=\sum_{j=1}^{m_{n}} w_{j}^{(n)} X_{\omega\left[E_{j}^{(n)}\right]} \in L^{p}(T)
$$

be two sequences of simple functions such that

$$
\varphi_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right) \rightarrow \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right), \quad \psi_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right) \rightarrow \psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)(n \rightarrow \infty) \text { a.e., } \quad \theta \in E_{0}
$$

where $\left\{E_{j}^{(n)}\right\}$ is a measurable partition of E_{0} for each $n, X_{\omega\left[E_{j}^{(n)}\right]}$ is the the characteristic function of $\omega\left[E_{j}^{(n)}\right]$ and $z_{j}^{(n)}, w_{j}^{(n)} \in \mathbf{C}$ with $z_{j}^{(n)} \neq w_{j}^{(n)},\left|z_{j}^{(n)}\right|=\left|w_{j}^{(n)}\right|(>0)$. For each $n \in \mathbf{N}$ and $\theta \in E_{j}^{(n)}$, let

$$
L_{n}(\theta)=\operatorname{span}\left\{z_{j}^{(n)}, w_{j}^{(n)}\right\}
$$

and

$$
B_{n}(\theta)=\operatorname{co}_{p}\left(\left(L_{n}(\theta) \cap \bar{D}\right) \cup\left\{\frac{2^{\frac{1}{p}} z_{j}^{(n)}}{\left|z_{j}^{(n)}\right|}\right\}\right)
$$

Then with the same argument we have $P_{B_{n}(\theta)_{p}} \in\left[L_{n}(\theta)\right]_{p}^{*}$ and its norm-preserving extension $f_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right) \in \mathbf{C}_{p}^{*}$. By the construction, f_{n} can be chosen to be the \mathbf{C}_{p}^{*}-valued simple functions on $\omega\left[E_{0}\right]$ such that $f_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right) \rightarrow f\left(\mathrm{e}^{\mathrm{i} \theta}\right)(n \rightarrow \infty)$ a.e., $\theta \in E_{0}$, so f is measurable on $\omega\left[E_{0}\right]$.

If $\theta \in[0,2 \pi] \backslash E_{0}$, define $f\left(\mathrm{e}^{\mathrm{i} \theta}\right)=0 \in \mathbf{C}_{p}^{*}$. Then $f \in L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ with $\|f\|_{\infty} \leq 1$. Now from $\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|=\left|\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|$ a.e., $\theta \in E_{0}$ and

$$
\frac{1}{2}=\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \frac{\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|}\right\rangle<\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \frac{\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{\left|\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|}\right\rangle, \quad \theta \in E_{0}
$$

we have

$$
\begin{aligned}
F_{f}(\varphi) & =\frac{1}{2 \pi} \int_{E_{0}}\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \frac{\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|}\right\rangle \mathrm{d} \theta \\
& <\frac{1}{2 \pi} \int_{E_{0}}\left|\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p}\left\langle f\left(\mathrm{e}^{\mathrm{i} \theta}\right), \frac{\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)}{\left|\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|}\right\rangle \mathrm{d} \theta=F_{f}(\psi)
\end{aligned}
$$

This completes the proof of $L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ separating the points of H^{p}. This completes the proof.
Let us make a preparation for the next theorem.

Lemma 3.2 Let $0<p \leq 1$ and $f \in\left[L^{p}(T)\right]_{p}^{*}$. Define

$$
q(z)= \begin{cases}0, & z=0 \tag{3.12}\\ \sup _{\|l\|_{p} \leq \frac{1}{|z| p^{p}}} f(l z), & z \neq 0\end{cases}
$$

and

$$
\begin{equation*}
Q(z)=q(z)|z|^{p}, \quad z \in \mathbf{C} \tag{3.13}
\end{equation*}
$$

where $l \in L^{p}(T)$ is a nonnegative real-valued function on T. Then
(i) $q(t z)=q(z)$ for all $t>0$ and $z \in \mathbf{C}$;
(ii) $q(z) \leq\|f\|$ for all $z \in \mathbf{C}$;
(iii) $Q \in \mathbf{C}_{p}^{*}$ and $\|Q\| \leq\|f\|$.

Proof The conclusions (i)-(ii) can be obtained directly from (3.12) and (2.6). The positive p-homogeneity of Q follows (i). Suppose that Q satisfies the subadditivity. Then the result (ii) means $\|Q\| \leq\|f\|$ and $Q \in \mathbf{C}_{p}^{*}$ by Proposition 2.2.

Now nothing remains but to check the subadditivity of Q, i.e.

$$
\begin{equation*}
q(z+w)|z+w|^{p} \leq q(z)|z|^{p}+q(w)|w|^{p}, \quad z, w \in \mathbf{C} \tag{3.14}
\end{equation*}
$$

If $z=0, w=0$ or $z+w=0$, the inequality (3.14) is clear. Suppose $z \neq 0, w \neq 0$ and $z+w \neq 0$. Let α be the included angle between z and $z+w$, and β be that between w and $z+w$. If $\alpha=0$, then there is a $t>0$ such that $z+w=t z$ and $q(z+w)=q(z)$. By $w \neq 0$ we know $t \neq 1$. If $0<t<1$, then $|z+w|<|z|$ and (3.14) is clear; if $t>1$, then

$$
w=(t-1) z, \quad q(z)=q(w)=q(z+w)
$$

and thus we have (3.14) by $|z+w|^{p} \leq|z|^{p}+|w|^{p}$. If $\alpha=\pi$, without loss of generality, assume that $|w|>|z|$. Thus we have (3.14) by $|z+w|<|w|$ and $q(z+w)=q(w)$. If $\beta=0$ or π. Then (3.14) also holds with the same argument. If $\alpha, \beta \in(0, \pi)$, then by the Sine theorem

$$
|z|=\frac{\sin \beta}{\sin (\alpha+\beta)}|z+w|
$$

and

$$
|w|=\frac{\sin \alpha}{\sin (\alpha+\beta)}|z+w|
$$

Then (3.14) is equivalent to

$$
\begin{equation*}
q(z+w) \leq\left(\frac{\sin \beta}{\sin (\alpha+\beta)}\right)^{p} q(z)+\left(\frac{\sin \alpha}{\sin (\alpha+\beta)}\right)^{p} q(w) \tag{3.15}
\end{equation*}
$$

By

$$
\frac{z+w}{|z+w|}=\frac{\sin \beta}{\sin (\alpha+\beta)} \frac{z}{|z|}+\frac{\sin \alpha}{\sin (\alpha+\beta)} \frac{w}{|w|}
$$

we have

$$
\begin{aligned}
q(z+w) & =q\left(\frac{z+w}{|z+w|}\right)=\sup _{\|l\|_{p} \leq 1} f\left(l \frac{z+w}{|z+w|}\right) \\
& \leq \sup _{\|l\|_{p} \leq 1} f\left(l \frac{\sin \beta}{\sin (\alpha+\beta)} \frac{z}{|z|}\right)+\sup _{\|l\|_{p} \leq 1} f\left(l \frac{\sin \alpha}{\sin (\alpha+\beta)} \frac{w}{|w|}\right) \\
& =\left(\frac{\sin \beta}{\sin (\alpha+\beta)}\right)^{p} q\left(\frac{z}{|z|}\right)+\left(\frac{\sin \alpha}{\sin (\alpha+\beta)}\right)^{p} q\left(\frac{w}{|w|}\right) \\
& =\left(\frac{\sin \beta}{\sin (\alpha+\beta)}\right)^{p} q(z)+\left(\frac{\sin \alpha}{\sin (\alpha+\beta)}\right)^{p} q(w) .
\end{aligned}
$$

Thus we have shown the inequalities (3.14)-(3.15) and the conclusion (iii).
Theorem 3.3 Suppose $0<p \leq 1$. Then for each $f \in\left(H^{p}\right)_{p}^{*}$, there is $F \in L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ such that $f \leq F$ and $\|F\|=\|f\|$.

Proof Suppose $f \in\left(H^{p}\right)_{p}^{*}$. As H^{p} is a closed subspace of $L^{p}(T)$, by Theorem $2.3 f$ can be extended norm-preservingly to a continuous p-subseminorm on $L^{p}(T)$, still denoted by f. Use the function $Q \in \mathbf{C}_{p}^{*}$ in Lemma 3.2 to define a \mathbf{C}_{p}^{*}-valued constant function g on T by

$$
\left\langle g\left(\mathrm{e}^{\mathrm{i} \theta}\right), z\right\rangle=g\left(\mathrm{e}^{\mathrm{i} \theta}\right)(z)=Q(z), \quad \theta \in[0,2 \pi], z \in \mathbf{C} .
$$

Then $g \in L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right),\|g\|_{\infty}=\|Q\| \leq\|f\|$ and

$$
\begin{equation*}
\frac{1}{2 \pi} Q(z) \mu(E)=\frac{1}{2 \pi} \int_{E}\left\langle g\left(\mathrm{e}^{\mathrm{i} \theta}\right), z\right\rangle \mathrm{d} \theta, \quad E \in \Sigma, z \in \mathbf{C} . \tag{3.16}
\end{equation*}
$$

By Theorem 3.1, the equation

$$
\begin{equation*}
F_{g}(\varphi)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle g\left(\mathrm{e}^{\mathrm{i} \theta}\right), \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\rangle \mathrm{d} \theta, \quad \varphi \in H^{p} \tag{3.17}
\end{equation*}
$$

defines a functional $F_{g} \in L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right) \subset\left(H^{p}\right)_{p}^{*}$ with $\left\|F_{g}\right\| \leq\|g\|_{\infty} \leq\|f\|$. Now if we can verify the inequality of $f \leq F_{g}$ on H^{p}, then we have the equality $\left\|F_{g}\right\|=\|f\|$, and this completes the proof.

As $H^{p} \subset L^{p}(T)$, and f and F_{g} (being extended norm-preservingly to $L^{p}(T)$) are continuous on $L^{p}(T)$, let us verify the inequality $f(\varphi) \leq F_{g}(\varphi)$ for all $\varphi \in L^{p}(T)$ in the following three cases. If $\varphi=\sum_{j=1}^{n} z_{j} X_{\omega\left[E_{j}\right]} \in L^{p}(T)$ is a simple function, then by the equalities (3.16)-(3.17),

$$
\begin{aligned}
f(\varphi) & \leq \sum_{j=1}^{n} f\left(z_{j} X_{\omega\left[E_{j}\right]}\right) \leq \sum_{j=1}^{n} \sup _{\|l\|_{p} \leq \frac{1}{\mid z_{j} p^{p}}} f\left(l z_{j}\right)\left\|z_{j} X_{\omega\left[E_{j}\right]}\right\|_{p} \\
& =\frac{1}{2 \pi} \sum_{j=1}^{n} Q\left(z_{j}\right) \mu\left(E_{j}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle g\left(\mathrm{e}^{\mathrm{i} \theta}\right), \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\rangle \mathrm{d} \theta=F_{g}(\varphi) .
\end{aligned}
$$

If $\varphi \in L^{p}(T)$ is bounded, then there exists a sequence of uniformly bounded simple functions $\left\{\varphi_{n}\right\}$ on T such that

$$
\varphi_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right) \rightarrow \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)(n \rightarrow \infty), \quad \text { a.e. } \theta \in[0,2 \pi] .
$$

By Egoroff's theorem in [9, p. 41], $\left\{\varphi_{n}\right\}$ also converges in mean to φ, i.e.

$$
\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\varphi_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \mathrm{d} \theta=0
$$

By the Hölder's inequality

$$
\begin{aligned}
\left\|\varphi_{n}-\varphi\right\|_{p} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\varphi_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \\
& \leq \frac{1}{(2 \pi)^{p}}\left(\int_{0}^{2 \pi}\left|\varphi_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \mathrm{d} \theta\right)^{p} \rightarrow 0
\end{aligned}
$$

i.e. $\left\{\varphi_{n}\right\}$ converges in the p-norm to φ. We have already shown $f\left(\varphi_{n}\right) \leq F_{g}\left(\varphi_{n}\right)$ for all n, so by the continuity of f and F_{g} we have

$$
f(\varphi)=\lim _{n \rightarrow \infty} f\left(\varphi_{n}\right) \leq \lim _{n \rightarrow \infty} F_{g}\left(\varphi_{n}\right)=F_{g}(\varphi)
$$

If $\varphi \in L^{p}(T)$ is a general complex function on T, then the measure ν defined by the indefinite integral

$$
\nu(E)=\frac{1}{2 \pi} \int_{E}\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta, \quad E \in \Sigma
$$

is absolutely continuous with respect to the Lebesgue measure μ, and the series

$$
\sum_{n=1}^{\infty} \mu\left(\left\{\theta \in[0,2 \pi]:\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p}>n\right\}\right)
$$

is convergent (see [11, p. 115]). So $\mu\left(\left\{\theta \in[0,2 \pi]:\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p}>n\right\}\right) \rightarrow 0(n \rightarrow \infty)$. Let

$$
\varphi_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right)=\left\{\begin{array}{ll}
\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right), & \left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \leq n, \\
0, & \left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p}>n,
\end{array} \quad \theta \in[0,2 \pi]\right.
$$

Then φ_{n} is bounded and

$$
\begin{aligned}
\left\|\varphi_{n}-\varphi\right\|_{p} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\varphi_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right)-\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \\
& =\frac{1}{2 \pi} \int_{\left\{\theta \in[0,2 \pi]:\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p}>n\right\}}\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \rightarrow 0
\end{aligned}
$$

Thus by the continuity of f and F_{g}, we have

$$
f(\varphi)=\lim _{n \rightarrow \infty} f\left(\varphi_{n}\right) \leq \lim _{n \rightarrow \infty} F_{g}\left(\varphi_{n}\right)=F_{g}(\varphi)
$$

This completes the proof of Theorem 3.3.
Now we are in the position to show the main result of this paper.
Theorem 3.4 (The Subrepresentation Theorem) Suppose $0<p \leq 1$. Then $L^{\infty}\left(T, C_{p}^{*}\right)$ is a shadow cone of $\left(H^{p}\right)_{p}^{*}$ in the sense of norm-preserving isomorphism, or $\left(H^{p}\right)_{p}^{*}$ has the subrepresentation

$$
\begin{equation*}
\left(H^{p}\right)_{p}^{*} \simeq L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right) \tag{3.18}
\end{equation*}
$$

Proof By Theorems 3.1-3.2, $L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ is a separating subcone of $\left(H^{p}\right)_{p}^{*}$. By Theorem 3.3 for each $f \in\left(H^{p}\right)_{p}^{*}$, there exists an $F \in L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ such that $f(\varphi) \leq F(\varphi)$ for all $\varphi \in H^{p}$ and $\|f\|=\|F\|$. Thus by Definition $3.1, L^{\infty}\left(T, \mathbf{C}_{p}^{*}\right)$ is a shadow cone of $\left(H^{p}\right)_{p}^{*}$. So we have the subrepresentation (3.18).

References

[1] Kalton, N. J., Peck, N. T. and Roberts, J. W., An F-space Sampler, Cambridge University Press, London, 1984.
[2] Rolewicz, S., Metric Linear Spaces, Polish Scientific Publishers, Warszawa, 1985.
[3] Duren, P. L., Theory of H^{p} Spaces, Academic Press, New York, 1970.
[4] Simmons, S., Boundness in linear topological spaces, Trans. Amer. Math. Soc., 113, 1964, 169-180.
[5] Jarchow, H., Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.
[6] Wang, J. Y. and Ma, Y. M., The second separation theorem in locally β-convex space and the boundedness theorem in its conjugate cone, J. Math. Res. Exposition, $22(1)$, 2002, 25-34.
[7] Wang, J. Y., Quasi-translation invariant topological cones and the conjugate cones of locally β-convex spaces, Math. Practice Theory, 33(1), 2003, 89-97 (in Chinese).
[8] Wang, J. Y., The Hahn-Banach theorems about β-subseminorms in locally β-convex spaces and their applications, Journal of Changshu Institue of Technology, 20(4), 2006, 19-24 (in Chinese).
[9] Diestel, J. and Uhl, J. J., Vector Measures, Mathematical Surveys, 15, Amer. Math. Soc., Providence, Rhode Island, 1977.
[10] Wang, J. Y., The subrepresentation theorem of the conjugate cone of $l^{p}(X)(0<p<1)$, Adv. Math., $39(6), 2010,709-718$.
[11] Halmos, P. R., Measure Theory, Van Nostrand, New York, 1950.

[^0]: Manuscript received February 12, 2012. Revised July 26, 2012.
 ${ }^{1}$ Department of Mathematics, Changshu Institute of Technology, Changshu 215500, Jiangsu, China.
 E-mail: jywang@cslg.edu.cn
 *Project supported by the National Natural Science Foundation of China (No. 10871141).

