The Presentation Problem of the Conjugate Cone of the Hardy Space H^p (0

Jianyong WANG¹

Abstract The Hardy space H^p is not locally convex if 0 , even though its conjugate $space <math>(H^p)^*$ separates the points of H^p . But then it is locally *p*-convex, and its conjugate cone $(H^p)^*_p$ is large enough to separate the points of H^p . In this case, the conjugate cone can be used to replace its conjugate space to set up the duality theory in the *p*-convex analysis. This paper deals with the representation problem of the conjugate cone $(H^p)^*_p$ of H^p for $0 , and obtains the subrepresentation theorem <math>(H^p)^*_p \simeq L^{\infty}(T, \mathbb{C}^*_p)$.

Keywords Locally *p*-convex space, Hardy space, Normed conjugate cone, Shadow cone, Subrepresentation theorem
2000 MR Subject Classification 46A16, 46A20, 32A35, 42B30

1 Introduction

If X is a locally convex space, then its conjugate space X^* is large enough to separate the points of X. But a non-locally convex space may only have the trivial conjugate space $\{0\}$. $L^p(\mu)$ is just such an example if $0 and <math>\mu$ is a non-atomic measure (see [1-2]). For a Hardy space H^p ($0), though its conjugate space <math>(H^p)^* \neq \{0\}$ (see [3, p. 115]), it is still not locally convex (see [1, p. 37]). Motivated by the oddness of $L^p(\mu)$ and H^p , Simmons [4] and Jarchow [5, p. 108] introduced the concept of the locally *p*-convex space in the sixties of the last century. To remedy the shortcoming that the conjugate space X^* of a non-locally convex space X may be trivial, we first introduced in [6] the concept of the conjugate cone X_p^* , and proved that X_p^* is large enough to separate the points of X if X is locally *p*-convex. For a locally *p*-convex X, we can use the conjugate cone X_p^* to replace its conjugate space X^{*} (which may be trivial or very small) to set up the duality theory in the *p*-convex analysis. It is one of the most important problems to represent the conjugate cone X_p^* of a locally *p*-convex space. The main purpose of this paper is to represent the conjugate cone $(H^p)_p^*$ of the Hardy space H^p for 0 . The necessary basic theories of the*p* $-convex analysis is presented in Section 2, the subrepresentation theorem <math>(H^p)_p^* \simeq L^\infty(T, \mathbf{C}_p^*)$ is obtained in Section 3.

2 Some Basic Theories of *p*-Convex Analysis

The locally p-convex spaces and their conjugate cones are the main concepts in this paper, while the separating theorem and the Hahn-Banach extension theorem are the basic theorems

E-mail: jywang@cslg.edu.cn

Manuscript received February 12, 2012. Revised July 26, 2012.

¹Department of Mathematics, Changshu Institute of Technology, Changshu 215500, Jiangsu, China.

^{*}Project supported by the National Natural Science Foundation of China (No. 10871141).

of the *p*-convex analysis.

Let X be a vector space over the number field \mathbf{K} , Φ be the empty set, 0 be the zero vector, the zero functional or the number zero, and $0 be a constant. A set <math>A \subset X$ is called *p*-convex if $[x, y]_p \subset A$ for every $x, y \in A$, where

$$[x, y]_p = \{\lambda x + (1 - \lambda^p)^{\frac{1}{p}} y : \lambda \in [0, 1]\}$$

is the *p*-segment arc with the endpoints x and y. For a general set A, the smallest *p*-convex set $co_p A$ containing A is called the *p*-convex hull of A. It is easy to show that

A topological vector space X is called locally p-convex if there exists a 0-neighborhood basis consisting of p-convex sets (see [5, p. 108]). It is easy to see that any locally p-convex space has a 0-neighborhood basis consisting of circled open p-convex sets.

- A real-valued functional f on X is called a p-subseminorm if
- (a) $f(x) \ge 0, x \in X;$
- (b) $f(tx) = t^p f(x), t \ge 0, x \in X$ (positive *p*-homogeneity);

(c)
$$f(x+y) \le f(x) + f(y), x, y \in X$$
.

We use X'_p to denote the convex cone consisting of all *p*-subseminorms on *X*. If *X* is a topological vector space, then X^*_p is used to denote the subcone of X'_p consisting of continuous *p*-subseminorms, called the *p*-conjugate cone of *X*. A typical example of *p*-subseminorm is the *p*-Minkowski functional

$$P_{B_n}(x) = \inf\{t > 0 : x \in t^{\frac{1}{p}}B\}, \quad x \in X$$
(2.1)

generated by a *p*-convex algebraic 0-neighborhood *B*. It is easy to check that $P_{B_p} \in X_p^*$ if and only if $0 \in \text{int } B$ (see [5, p. 106]). The study of *p*-convexity is called the *p*-convex analysis.

If there is a nonnegative real-valued functional $\|\cdot\|_p$ on X satisfying

- (a') $||x||_p = 0 \Leftrightarrow x = 0;$
- (b') $||tx||_p = |t|^p ||x||_p, t \in \mathbf{K}, x \in X$ (absolute *p*-homogeneity);
- (c') $||x+y||_p \le ||x||_p + ||y||_p, x, y \in X,$

then $\|\cdot\|_p$ is called a *p*-norm and $(X, \|\cdot\|_p)$ a *p*-normed space. With the 0-neighborhood basis consisting of the *p*-convex sets

$$U_{\varepsilon} = \{ x \in X : \|x\|_p < \varepsilon \}, \quad \varepsilon > 0,$$

a *p*-normed space $(X, \|\cdot\|_p)$ is locally *p*-convex. A complete *p*-normed space is called a *p*-Banach space (see [1, p. 7]). The spaces $L^p(\mu)$, l^p and H^p (0) are three typical classes of*p*-Banach spaces.

The second separation theorem and the separating theorem given by [6] are the theoretical basis of the *p*-convex analysis. For the sake of completeness, let us give their proofs here.

Theorem 2.1 (The Second Separation Theorem in [6]) Let $0 , and <math>(X, \tau)$ be a locally p-convex space. Suppose that A is a nonempty closed p-convex subset of X (for p = 1,

still assume $0 \in A$), and that B is another nonempty closed subset of X with $A \cap B = \Phi$. If A or B is compact, then they can be strongly separated by some continuous p-subseminorm, i.e. there is $f \in X_p^*$ such that

(i) if A is compact, then

$$\max\{f(x) : x \in A\} < 1 \le \inf\{f(x) : x \in B\};\$$

(ii) if B is compact, then

$$\sup\{f(x) : x \in A\} \le 1 < \min\{f(x) : x \in B\}.$$

Proof Let $\mathcal{U}_{\theta} = \{U_{\lambda} : \lambda \in \Lambda\}$ be a 0-neighborhood basis in X consisting of circled open *p*-convex sets. Because A or B is compact, we assert that there is a $U_{\lambda_0} \in \mathcal{U}_{\theta}$ such that

$$(A + U_{\lambda_0}) \cap B = \Phi.$$

If the assertion is not true, then there exist $x_{\lambda} \in A$, $y_{\lambda} \in B$ and $z_{\lambda} \in U_{\lambda_0}$ such that $y_{\lambda} = x_{\lambda} + z_{\lambda}$ for any $\lambda \in \Lambda$. Under the set-theoretic relation $U_1 \prec U_2 \Leftrightarrow U_1 \supset U_2$, \mathcal{U}_{θ} is a semi-order set. As \prec is directed, $\{x_{\lambda}\}$, $\{y_{\lambda}\}$ and $\{z_{\lambda}\}$ turn into three nets and $z_{\lambda} \to 0$. If A is compact, there exists some convergent subnet of $\{x_{\lambda}\}$. Without loss of generality, suppose $x_{\lambda} \to x_0$, and then $y_{\lambda} = x_{\lambda} + z_{\lambda} \to x_0$. By the closeness of A and B, we have $x_0 \in A \cap B$. This is contrary to the fact that $B \cap A = \Phi$. If B is compact, with the same argument we can also find a $U_{\lambda_0} \in \mathcal{U}_{\theta}$ such that $A \cap (B + U_{\lambda_0}) = \Phi$. This is equivalent to $(A + U_{\lambda_0}) \cap B = \Phi$ as U_{λ_0} is circled.

Now take a $U_{\lambda_0} \in \mathcal{U}_{\theta}$ such that $(A + U_{\lambda_0}) \cap B = \Phi$, and take a $U_{\lambda_1} \in \mathcal{U}_{\theta}$ such that $U_{\lambda_1} + U_{\lambda_1} \subset U_{\lambda_0}$. Then by $(A + U_{\lambda_1} + U_{\lambda_1}) \cap B = \Phi$ and the circled property of U_{λ_1} we have

$$(A+U_{\lambda_1}) \cap (B+U_{\lambda_1}) = \Phi \tag{2.2}$$

and

$$\overline{(A+U_{\lambda_1})} \cap B = \Phi.$$
(2.3)

As $A + U_{\lambda_1}$ is an open *p*-convex 0-neighborhood, the *p*-Minkowski functional generated by $A + U_{\lambda_1}$ is continuous, i.e. $f := P_{(A+U_{\lambda_1})_p} \in X_p^*$. The equality (2.3) implies

$$f(x) < f(y), \quad x \in A, \ y \in B.$$

$$(2.4)$$

If A is compact, assume that f takes its maximum at $x_0 \in A$, then

$$\max\{f(x) : x \in A\} = f(x_0) < 1 \le \inf\{f(x) : x \in B\}.$$

If B is compact, assume that f takes its minimum at $y_0 \in B$, then

$$\sup\{f(x) : x \in A\} \le 1 < f(y_0) = \min\{f(x) : x \in B\}.$$

This completes the proof.

Theorem 2.2 (Separating Theorem in [6]) Let 0 and X be a locally p-convex $Hausdorff space. Then the conjugate cone <math>X_p^*$ separates the points of X, i.e. for each pair of $x, y \in X, x \neq y$, there is $f \in X_p^*$ such that $f(x) \neq f(y)$.

Proof As $x \neq y$, we have $y \notin [\theta, x]$ or $x \notin [\theta, y]$. Without loss of generality assume $y \notin [\theta, x]$. As X is of Hausdorff, the sets $A = [\theta, x]$ and $B = \{y\}$ satisfy the conditions of Theorem 2.1, so there is $f \in X_p^*$ such that $f(x) \neq f(y)$.

The conjugate space X^* of a locally *p*-convex space X may be trivial, but by Theorem 2.2 the *p*-conjugate cone X_p^* of X is large enough to separate the points of X. In this case X_p^* is simply called the conjugate cone of X. We hope to use conjugate cone X_p^* to replace the conjugate space X^* to set up the duality theory in the *p*-convex analysis.

Let us recall the concept of normed cones and the further details can be found in [7].

Definition 2.1 Let Y be a proper cone with abstract addition and nonnegative scalar multiplication, i.e. $x + y \in Y$, $tx \in Y$ for every $x, y \in Y$ and $t \ge 0$, and $x + y = 0 \Leftrightarrow x = y = 0$. If there is a nonnegative real-valued functional $\|\cdot\|$ on Y satisfying

- $(\mathbf{n}_1) ||x|| = 0 \Leftrightarrow x = 0;$
- (n₂) $||tx|| = t||x||, x \in Y, t \ge 0;$
- (n₃) $||x||, ||y|| \le ||x+y|| \le ||x|| + ||y||, x, y \in Y$,
- then $\|\cdot\|$ is called a (conical) norm and $(Y, \|\cdot\|)$ a normed cone.

If $(Y, \|\cdot\|)$ is a normed cone, then it is not difficult to see that the equation

$$\rho(x,y) = \inf\{t > 0: \exists h, l \in Y, \|h\|, \|l\| \le t \text{ such that } x + h = y + l\}, \quad x, y \in Y$$
(2.5)

defines a translation invariant metric on Y. Thus $(Y, \|\cdot\|) = (Y, \rho)$ is called a normed topological cone. Two normed cones Y_1 and Y_2 are said to be norm-preserving isomorphic if there exists an algebra isomorphism $T: Y_1 \to Y_2$ such that $\|T(x)\| = \|x\|$ for all $x \in Y_1$.

The following is a basic proposition on normed topological cones.

Proposition 2.1 Let $(Y, \|\cdot\|) = (Y, \rho)$ be a normed topological cone and let $\{g_n\} \subset Y$ and $g \in Y$. Then

(i) $g_n \to 0 \Leftrightarrow ||g_n|| \to 0;$

(ii) $g_n \to g$ if and only if there are $\{h_n\}, \{l_n\} \subset Y$ with $h_n, l_n \to 0$ such that $g_n + h_n = g + l_n$ for every $n \in \mathbf{N}$;

(iii) the norm $\|\cdot\|$ is continuous on Y.

Proof Suppose $g_n \to 0$ in the conical topology. Then by $\rho(g_n, 0) \to 0$ and (2.5), there are $\{h_n\}, \{l_n\} \subset Y$ with $\|h_n\|, \|l_n\| \to 0$ such that $g_n + h_n = 0 + l_n$ for every n. By (n₃) we have

$$||g_n|| \le ||g_n + h_n|| = ||l_n|| \to 0.$$

Conversely if $||g_n|| \to 0$, then by $g_n + 0 = 0 + g_n$ and (2.5) we have

$$\rho(g_n, 0) \le ||g_n|| \to 0, \quad \text{i.e. } g_n \to 0.$$

Thus (i) holds. The result (ii) follows (i) and definition (2.5). Suppose $g_n \to g$. Then by (ii) there are $\{h_n\}, \{l_n\} \subset Y$ with $h_n \to 0, l_n \to 0$ such that $g_n + h_n = g + l_n$ for every n. By (n₃)

$$\begin{aligned} \|g_n\| - \|h_n\| &\leq \|g_n\| \leq \|g_n + h_n\| = \|g + l_n\| \leq \|g\| + \|l_n\|, \\ \|g\| - \|l_n\| &\leq \|g\| \leq \|g + l_n\| = \|g_n + h_n\| \leq \|g_n\| + \|h_n\|. \end{aligned}$$

and hence

$$|||g_n|| - ||g||| \le ||h_n|| + ||l_n|| \to 0.$$

This completes the proof.

If $(X, \|\cdot\|_p)$ is a *p*-normed space, then by Theorem 2.2 its conjugate cone X_p^* is large enough to separate the points of X. With the conical norm

$$||f|| = \sup_{||x||_p=1} f(x), \quad f \in X_p^*,$$
(2.6)

 $(X_p^*, \|\cdot\|)$ forms a normed topological cone, called the normed conjugate cone of X (see [7]). By definition, it is not difficult to verify the following proposition.

Proposition 2.2 (see [5–6]) Let $0 , X be a topological vector space and <math>f \in X'_p$. Then the following conditions are equivalent:

- (i) $f \in X_p^*$ (i.e. f is continuous);
- (ii) f is continuous at 0;
- (iii) $0 \in \operatorname{int} U_f(\varepsilon)$ for all $\varepsilon > 0$, where

$$U_f(\varepsilon) = \{ x \in X : f(x) < \varepsilon \}$$

is the f-open ball of radius ε ;

(iv) $||f|| < \infty$ if X is a p-normed space, and then $f(x) \le ||f|| ||x||_p$ for all $x \in X$.

The Hahn-Banach type extension theorems of p-subseminorms given by [8] are the most important materials to set up the theoretical basis of the p-convex analysis. Considering that some people may not be able to read Chinese, let us prove them here.

Lemma 2.1 (Control Extension Theorem in [8]) Let $0 , and Y be a subspace of a linear space X. Suppose <math>f \in Y'_p$, $F \in X'_p$ with $f(x) \le F(x)$, $x \in Y$. Then there exists a $g \in X'_p$ such that

$$g(x) = f(x), \quad x \in Y; \quad g(x) \le F(x), \quad x \in X.$$

$$(2.7)$$

Proof As f, F are nonnegative, the functional

$$g(x) = \inf_{y \in Y} \{ F(x - y) + f(y) \}, \quad x \in X$$
(2.8)

is well-defined. For every $x \in X$, if t > 0, then

$$g(tx) = \inf_{y \in Y} \{ F(tx - y) + f(y) \} = t^p \inf_{y \in Y} \left\{ F\left(x - \frac{y}{t}\right) + f\left(\frac{y}{t}\right) \right\} = t^p g(x);$$

if t = 0, $g(tx) = t^p g(x) (= 0)$ is obvious, so g has positive p-homogeneity. If $x_1, x_2 \in X$, then for every $\varepsilon > 0$, there exist $y_1, y_2 \in Y$ such that

$$g(x_i) + \frac{\varepsilon}{2} \ge F(x_i - y_i) + f(y_i), \quad i = 1, 2.$$

Thus

$$g(x_1) + g(x_2) + \varepsilon \ge F((x_1 + x_2) - (y_1 + y_2)) + f(y_1 + y_2) \ge g(x_1 + x_2).$$

Letting $\varepsilon \to 0$, we have

$$g(x_1 + x_2) \le g(x_1) + g(x_2),$$

and hence $g \in X'_p$. If $x \in X$,

$$g(x) = \inf_{y \in Y} \{F(x-y) + f(y)\} \le F(x-0) + f(0) = F(x)$$

If $x \in Y$,

$$g(x) = \inf_{y \in Y} \{ F(x - y) + f(y) \} \le F(x - x) + f(x) = f(x).$$

On the other hand, by $f \leq F$ on Y and the subadditivity of f, we have

$$g(x) = \inf_{y \in Y} \{F(x - y) + f(y)\} \ge \inf_{y \in Y} \{f(x - y) + f(y)\} \ge f(x),$$

so (2.7) holds.

Theorem 2.3 (Norm-Preserving Extension Theorem in [8]) Let $0 , and Y be a subspace of a p-normed space <math>(X, \|\cdot\|_p)$. Then for every $f \in Y_p^*$, there exists a $g \in X_p^*$ such that

$$g(x) = f(x), \quad x \in Y; \quad ||g|| = ||f||.$$
 (2.9)

Proof Let $f \in Y_p^*$. By Proposition 2.2, $||f|| < \infty$. Define

$$F(x) = ||f|| ||x||_p, \quad x \in X_p$$

then $F \in X_p^*$, ||F|| = ||f|| and $f(x) \leq F(x)$, $x \in Y$. By Lemma 2.1, there exists a control extension $g \in X_p'$ of f such that

$$g(x) = f(x), \quad x \in Y; \quad g(x) \le F(x), \quad x \in X.$$

The facts $F \in X_p^*$ and $g(x) \leq F(x)$ imply that g is continuous at 0. For every $x, y \in X$, by the subadditivity of g

$$|g(x) - g(y)| \le \max\{g(x - y), g(y - x)\}.$$

Hence g is continuous on X or $g \in X_p^*$ and $||g|| \le ||F|| = ||f||$. On the other hand

$$\|g\| = \sup_{x \in X \atop \|x\|_p = 1} g(x) \ge \sup_{x \in Y \atop \|x\|_p = 1} g(x) = \sup_{x \in Y \atop \|x\|_p = 1} f(x) = \|f\|,$$

so ||g|| = ||f||.

3 The Subrepresentation Theorem of Conjugate Cones of Hardy Spaces

To represent the conjugate cone X_p^* of a *p*-normed space $(X, \|\cdot\|_p)$ is one of the most important problems in the *p*-convex analysis. Based on the theory of the above section, we are going to find out the specific representation of the conjugate cone $(H^p)_p^*$ of the Hardy space H^p for 0 in this section.

Let D be the open unit disk in the complex plane \mathbf{C} , T the unit circle and i the imaginary unit. Let (Σ, μ) be the Lebesgue measure ring on $[0, 2\pi]$. For a positive number 0 , $the Hardy space <math>H^p$ is the vector space of analytic functions $\varphi : D \to \mathbf{C}$ with

$$\|\varphi\|_p = \sup_{0 \le r < 1} \frac{1}{2\pi} \int_0^{2\pi} |\varphi(r e^{i\theta})|^p d\theta < \infty.$$

When $p \ge 1$, the Hardy space H^p is a Banach space with the norm $\|\cdot\|_p^{\frac{1}{p}}$. In this paper we are interested in the Hardy space H^p for 0 , which is a*p* $-normed space with <math>\|\cdot\|_p$. By Hardy's convexity theorem in [3, p. 9] we know that $\frac{1}{2\pi} \int_0^{2\pi} |\varphi(re^{i\theta})|^p d\theta$ is an increasing function of r, so

$$\|\varphi\|_{p} = \lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} |\varphi(re^{i\theta})|^{p} d\theta, \quad \varphi \in H^{p}.$$

$$(3.1)$$

Suppose $0 . Let <math>L^p(T)$ be the L_p -space of complex functions on T with the normalized Haar measure $\frac{d\theta}{2\pi}$, $\theta \in [0, 2\pi]$. Then $L^p(T)$ is a *p*-normed space with

$$\|\varphi\|_{p} = \frac{1}{2\pi} \int_{0}^{2\pi} |\varphi(\mathbf{e}^{\mathbf{i}\theta})|^{p} \mathrm{d}\theta, \quad \varphi \in L^{p}(T).$$
(3.2)

For 0 , abundant literature uses*F* $-norm <math>\|\cdot\| = \|\cdot\|_p^{\frac{1}{p}}$ to replace *p*-norm $\|\cdot\|_p$ in deducing the same topology (see [1–3]). We prefer $\|\cdot\|_p$ to $\|\cdot\|_p^{\frac{1}{p}}$ because the former satisfies the triangle inequality, but the latter does not.

For a function φ analytic in D and a point $e^{i\theta} \in T$, if $\varphi(z)$ tends to a unique limit, say $\varphi(e^{i\theta})$, as z tends to $e^{i\theta}$ inside D along any path not tangent to the circle T, then φ is said to have the nontangential limit at $e^{i\theta}$ (see [3, p. 6]). Summing up a few results located at different places of [3] we can obtain the following lemma.

Lemma 3.1 Suppose $0 and <math>\varphi \in H^p$. Then

(i) the nontangential limit $\varphi(e^{i\theta})$ exists almost everywhere on T and $\varphi(e^{i\theta}) \in L^p(T)$ (see [3, p. 17]);

(ii) the boundary function $\varphi(e^{i\theta})$ satisfies (see [3, p. 21])

$$\lim_{r \to 1} \int_0^{2\pi} |\varphi(r \mathrm{e}^{\mathrm{i}\theta})|^p \mathrm{d}\theta = \int_0^{2\pi} |\varphi(\mathrm{e}^{\mathrm{i}\theta})|^p \mathrm{d}\theta$$
(3.3)

and

$$\lim_{r \to 1} \int_0^{2\pi} |\varphi(r \mathbf{e}^{\mathbf{i}\theta}) - \varphi(\mathbf{e}^{\mathbf{i}\theta})|^p \mathrm{d}\theta = 0.$$
(3.4)

If we use \mathcal{H}^p to denote the set of boundary functions $\varphi(e^{i\theta})$ of $\varphi \in H^p$, then \mathcal{H}^p is a closed subspace of $L^p(T)$ (see [3, p. 36]) and H^p is isometric to \mathcal{H}^p by (3.3)–(3.4). So H^p is a closed proper subspace of $L^p(T)$ in the sense of isometry.

If $0 , the Hardy space <math>H^p$ is a *p*-Banach space with the *p*-norm of (3.1). Theorem 2.2 means that its conjugate cone $(H^p)_p^*$ is very large to constitute a normed topological cone with

$$||f|| = \sup_{\|\varphi\|_p=1} f(\varphi), \quad f \in (H^p)_p^*.$$
 (3.5)

The main purpose of this paper is to represent the normed conjugate cone $((H^p)_p^*, \|\cdot\|)$. Every $f \in (H^p)_p^*$ has no linearity except 0, it is almost impossible to give $(H^p)_p^*$ a complete representation, so we need to introduce the concept of subrepresentation.

Definition 3.1 Let $0 , and <math>(X, \|\cdot\|_p)$ be a p-normed space. Let M be a subcone of X_p^* .

(s₁) If M separates the points of X, i.e. for each pair of $x, y \in X$, $x \neq y$, there is $F \in M$ such that $F(x) \neq F(y)$, then M is called a separating subcone of X_p^* .

(s₂) If M is a separating subcone of X_p^* and for each $f \in X_p^*$, there is $F \in M$ such that $f \leq F$ and ||f|| = ||F||, then M is called a shadow cone or the subrepresentation of X_p^* , denoted by $X_p^* \simeq M$.

If M is a shadow cone of X_p^* , it follows from (s_1) , (s_2) and Proposition 2.2 that the topological structure of X is determined completely by M. The condition (s_2) means that the metric structure of X_p^* is also determined by M to a great extent. So a shadow cone of X_p^* is very similar to its shadow carrying almost all its properties, and once we find a shadow cone and obtain its representation we shall grasp X_p^* itself to a great extent.

Let us recall some known results. Suppose that X is a Banach space. If $p \ge 1$ and (Ω, μ) is a finite measure space, then the X-valued function space $L^p(\mu, X)$ is a Banach space with the norm

$$\|\varphi\| = \left(\int_{\Omega} \|\varphi(t)\|^{p} \mathrm{d}\mu(t)\right)^{\frac{1}{p}}, \quad \varphi \in L^{p}(\mu, X).$$

Its conjugate space $[L^p(\mu, X)]^*$ can be represented as

$$[L^{p}(\mu, X)]^{*} = L^{q}(\mu, X^{*})$$

if X^* has the Radon-Nikodym property with respect to μ , where q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ (see [9, p. 98]). Thus for p = 1 we have

$$[L^{1}(\mu, X)]^{*} = L^{\infty}(\mu, X^{*}).$$
(3.6)

If 0 , then the*p* $-normed X-valued sequence space <math>l^p(X)$ is a *p*-Banach space with

$$||x||_p = \sum_{n=1}^{\infty} ||x_n||^p, \quad x = \{x_n\} \in l^p(X).$$

Its conjugate cone has the subrepresentation (see [10])

$$[l^{p}(X)]_{p}^{*} \simeq l^{\infty}(X_{p}^{*}). \tag{3.7}$$

If $0 , by separating Theorem 2.2 the conjugate cone <math>(H^p)_p^*$ of H^p is large enough to separate the points of H^p . Thus it is quite natural for us to ask:

Can the conjugate cone $(H^p)_p^*$ of H^p (0 be represented with the formula similar to (3.6) or (3.7)?

Let us find the shadow cone of $(H^p)_p^*$ for 0 now. Under the usual topology, the complex number field**C**is a*p* $-normed space with <math>|\cdot|^p$, and its conjugate cone \mathbf{C}_p^* forms a normed topological cone with the conical norm

$$\|f\| = \sup_{z \in T} f(z), \quad f \in \mathbf{C}_p^*.$$

Let $L^{\infty}(T, \mathbf{C}_{p}^{*})$ denote the positive cone formed by all \mathbf{C}_{p}^{*} -valued essentially norm-bounded measurable functions (equivalent classes) on the unit circle T. Then with the essential norm

$$||f||_{\infty} = \inf_{\mu(E)=0} \sup_{\theta \in [0,2\pi] \setminus E} ||f(\mathbf{e}^{\mathbf{i}\theta})||,$$

 $L^{\infty}(T, \mathbf{C}_{p}^{*})$ forms a normed cone. If we use $\langle f(e^{i\theta}), z \rangle$ to denote $f(e^{i\theta})(z)$ formally, then

$$||f||_{\infty} = \inf_{\mu(E)=0} \sup_{\theta \in [0,2\pi] \setminus E} \sup_{z \in T} \langle f(e^{i\theta}), z \rangle, \quad f \in L^{\infty}(T, \mathbf{C}_{p}^{*}).$$
(3.8)

We should note that the function $\langle f(e^{i\theta}), \cdot \rangle = f(e^{i\theta})(\cdot)$ is nonlinear and it is only a *p*-subseminorm on **C** for each $\theta \in [0, 2\pi]$. From the following theorems we shall see that $L^{\infty}(T, \mathbf{C}_p^*)$ is the shadow cone of $(H^p)_p^*$.

Theorem 3.1 Suppose $0 . For each <math>f \in L^{\infty}(T, \mathbf{C}_p^*)$, the equation

$$F_f(\varphi) = \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} \langle f(\mathbf{e}^{\mathbf{i}\theta}), \varphi(r\mathbf{e}^{\mathbf{i}\theta}) \rangle \mathrm{d}\theta, \quad \varphi \in H^p$$
(3.9)

defines a continuous p-subseminorm $F_f \in (H^p)_p^*$ with $||F_f|| \le ||f||_{\infty}$.

Proof Suppose $f \in L^{\infty}(T, \mathbf{C}_p^*)$. By (3.8) there is a sequence of null sets E_n such that

$$\sup_{\theta \in [0,2\pi] \setminus E_n} \sup_{z \in T} \langle f(\mathbf{e}^{\mathbf{i}\theta}), z \rangle \le \|f\|_{\infty} + \frac{1}{n}$$

for every $n \in \mathbf{N}$. For the null set $E_0 = \bigcup_{n=1}^{\infty} E_n$,

$$||f||_{\infty} \leq \sup_{\theta \in [0,2\pi] \setminus E_0} \sup_{z \in T} \langle f(\mathbf{e}^{\mathbf{i}\theta}), z \rangle \leq ||f||_{\infty} + \frac{1}{n}, \quad n \in \mathbf{N},$$

 \mathbf{SO}

$$||f||_{\infty} = \sup_{\theta \in [0,2\pi] \setminus E_0} \sup_{z \in T} \langle f(\mathbf{e}^{\mathbf{i}\theta}), z \rangle.$$

If $\varphi \in H^p$,

$$\langle f(\mathbf{e}^{\mathrm{i}\theta}), \varphi(r\mathbf{e}^{\mathrm{i}\theta}) \rangle \le ||f||_{\infty} |\varphi(r\mathbf{e}^{\mathrm{i}\theta})|^p, \quad \theta \in [0, 2\pi] \setminus E_0, \quad r \in [0, 1),$$

so $\int_0^{2\pi} \langle f(e^{i\theta}), \varphi(re^{i\theta}) \rangle d\theta$ defines a function of r. By Lemma 3.1, the boundary function $\varphi(e^{i\theta}) \in L^p(T)$. From the nonnegativity of $\langle f(e^{i\theta}), \varphi(e^{i\theta}) \rangle$ and

$$\int_0^{2\pi} \langle f(\mathbf{e}^{\mathbf{i}\theta}), \varphi(\mathbf{e}^{\mathbf{i}\theta}) \rangle \mathrm{d}\theta \le \int_{[0,2\pi] \setminus E_0} \|f\|_{\infty} |\varphi(\mathbf{e}^{\mathbf{i}\theta})|^p \mathrm{d}\theta < \infty,$$

the integral $\int_0^{2\pi} \langle f(e^{i\theta}), \varphi(e^{i\theta}) \rangle d\theta$ is convergent. By (3.4)

$$\begin{split} & \left| \int_{0}^{2\pi} \langle f(\mathbf{e}^{\mathrm{i}\theta}), \varphi(r\mathbf{e}^{\mathrm{i}\theta}) \rangle \mathrm{d}\theta - \int_{0}^{2\pi} \langle f(\mathbf{e}^{\mathrm{i}\theta}), \varphi(\mathbf{e}^{\mathrm{i}\theta}) \rangle \mathrm{d}\theta \right| \\ & \leq \|f\|_{\infty} \int_{[0,2\pi] \setminus E_{0}} |\varphi(r\mathbf{e}^{\mathrm{i}\theta}) - \varphi(\mathbf{e}^{\mathrm{i}\theta})|^{p} \mathrm{d}\theta \to 0, \quad r \to 1, \end{split}$$

so $F_f(\varphi)$ is well-defined and

$$F_f(\varphi) = \frac{1}{2\pi} \int_0^{2\pi} \langle f(\mathbf{e}^{\mathbf{i}\theta}), \varphi(\mathbf{e}^{\mathbf{i}\theta}) \rangle \mathrm{d}\theta, \quad \varphi \in H^p.$$
(3.10)

As the boundary function $\varphi(e^{i\theta})$ is more abstract than the original one $\varphi(re^{i\theta})$, we would rather use (3.9) than (3.10) to define $F_f(\varphi)$. Because

$$\langle f(\mathbf{e}^{\mathrm{i}\theta}), \cdot \rangle = f(\mathbf{e}^{\mathrm{i}\theta})(\cdot) \in \mathbf{C}_p^* \text{ a.e.}, \quad \theta \in [0, 2\pi],$$

the positive p-homogeneity and the subadditivity of F_f are clear, i.e. $F_f \in (H^p)'_p$. For every $0 \neq \varphi \in H^p$, by (3.9)

$$F_f(\varphi) \le \lim_{r \to 1} \frac{1}{2\pi} \int_{[0,2\pi] \setminus E_0} |\varphi(re^{i\theta})|^p ||f||_{\infty} d\theta = ||f||_{\infty} ||\varphi||_p,$$

so $||F_f|| \leq ||f||_{\infty}$ and $F_f \in (H^p)_p^*$ by Proposition 2.2. This completes the proof.

By (3.9) we have $F_{f_1+f_2} = F_{f_1} + F_{f_2}$ and $F_{af_1} = aF_{f_1}$ for every $f_1, f_2 \in L^{\infty}(T, C_p^*)$, $a \in \mathbf{R}^+$ and $F_f = 0 \Leftrightarrow f = 0$. So the mapping $f \to F_f$ is an algebraic isomorphism between $L^{\infty}(T, C_p^*)$ and the subcone $\{F_f : f \in L^{\infty}(T, C_p^*)\}$ of $(H^p)_p^*$. If we endow $L^{\infty}(T, C_p^*)$ with another norm

$$||f|| = ||F_f||, \quad f \in L^{\infty}(T, C_p^*),$$
(3.11)

then $(L^{\infty}(T, C_p^*), \|\cdot\|)$ is a new normed topological cone. From now on, we always treat $L^{\infty}(T, C_p^*)$ as the normed cone with this norm, and make no distinction between each $f \in L^{\infty}(T, \mathbf{C}_p^*)$ and the corresponding functional $F_f \in (H^p)_p^*$. By Theorem 3.1 we have the following corollary.

Corollary 3.1 The normed topological cone $(L^{\infty}(T, C_p^*), \|\cdot\|)$ is a subcone of $(H^p)_p^*$ in the sense of norm-preserving isomorphism.

Theorem 3.2 Suppose $0 . Then <math>L^{\infty}(T, \mathbb{C}_p^*)$ is a separating subcone of $(H^p)_p^*$.

Proof Theorem 3.1 implies that $L^{\infty}(T, \mathbf{C}_p^*)$ is a subcone of $(H^p)_p^*$. Let $\varphi, \psi \in H^p, \ \varphi \neq \psi$. Then their boundary functions, still denoted by φ and ψ , respectively, belong to $L^p(T)$ and are not equal, i.e.

$$\mu(\{\theta \in [0, 2\pi]: \varphi(\mathbf{e}^{\mathrm{i}\theta}) \neq \psi(\mathbf{e}^{\mathrm{i}\theta})\}) > 0$$

We are going to construct $f \in L^{\infty}(T, \mathbf{C}_p^*)$ such that $F_f(\varphi) \neq F_f(\psi)$ in the following three cases. If $\|\varphi\|_p < \|\psi\|_p$, define $f \in L^{\infty}(T, \mathbf{C}_p^*)$ by

$$\langle f(\mathbf{e}^{\mathbf{i}\theta}), z \rangle = |z|^p, \quad \theta \in [0, 2\pi], \quad z \in \mathbf{C},$$

then by (3.10)

$$F_f(\varphi) = \|\varphi\|_p < \|\psi\|_p = F_f(\psi).$$

If $\|\varphi\|_p = \|\psi\|_p$ and there exists an $E_0 \in \Sigma$ with $\mu(E_0) > 0$ such that

$$|\varphi(\mathbf{e}^{\mathrm{i}\theta})| < |\psi(\mathbf{e}^{\mathrm{i}\theta})| \text{ a.e.}, \quad \theta \in E_0$$

then by [11, p. 104]

$$\int_{E_0} |\varphi(\mathbf{e}^{\mathbf{i}\theta})|^p \mathrm{d}\theta < \int_{E_0} |\psi(\mathbf{e}^{\mathbf{i}\theta})|^p \mathrm{d}\theta$$

Take a sufficiently large number M > 0 such that

$$\int_{[0,2\pi]\setminus E_0} |\varphi(\mathbf{e}^{\mathrm{i}\theta})|^p \mathrm{d}\theta + M \int_{E_0} |\varphi(\mathbf{e}^{\mathrm{i}\theta})|^p \mathrm{d}\theta < \int_{[0,2\pi]\setminus E_0} |\psi(\mathbf{e}^{\mathrm{i}\theta})|^p \mathrm{d}\theta + M \int_{E_0} |\psi(\mathbf{e}^{\mathrm{i}\theta})|^p \mathrm{d}\theta.$$

Define $f \in L^{\infty}(T, \mathbf{C}_p^*)$ by

$$\langle f(\mathbf{e}^{\mathbf{i}\theta}), z \rangle = \begin{cases} |z|^p, & \theta \in [0, 2\pi] \backslash E_0, \ z \in \mathbf{C}, \\ M|z|^p, & \theta \in E_0, \ z \in \mathbf{C}, \end{cases}$$

then $F_f(\varphi) < F_f(\psi)$ by (3.10) and the above inequality.

Now suppose $\|\varphi\|_p = \|\psi\|_p$ and $|\psi(e^{i\theta})| = |\varphi(e^{i\theta})|$ a.e., $\theta \in [0, 2\pi]$. By $\varphi \neq \psi$, the set

$$E_0 = \{ \theta \in [0, 2\pi] : \varphi(\mathbf{e}^{\mathbf{i}\theta}) \neq \psi(\mathbf{e}^{\mathbf{i}\theta}), \ |\psi(\mathbf{e}^{\mathbf{i}\theta})| = |\varphi(\mathbf{e}^{\mathbf{i}\theta})| (>0) \}$$

has positive measure. For each $\theta \in E_0$, let

$$L(\theta) = \operatorname{span}\{\varphi(e^{i\theta}), \psi(e^{i\theta})\}\$$

be the real linear hull spanned by $\varphi(e^{i\theta})$ and $\psi(e^{i\theta})$. Then $L(\theta)$ is either the whole complex plane **C** or a line across 0 according to the real linear relationship between $\varphi(e^{i\theta})$ and $\psi(e^{i\theta})$. Let

$$B(\theta) = \operatorname{co}_p\Big((L(\theta) \cap \overline{D}) \cup \Big\{\frac{2^{\frac{1}{p}}\varphi(e^{\mathrm{i}\theta})}{|\varphi(e^{\mathrm{i}\theta})|}\Big\}\Big),$$

where \overline{D} is the closed unit disk in **C**. Then $B(\theta)$ is a *p*-convex 0-neighborhood in $L(\theta)$. By Proposition 2.2, the *p*-Minkowski functional $P_{B(\theta)_p}$ generated by $B(\theta)$ belongs to $[L(\theta)]_p^*$. The relation $L(\theta) \cap \overline{D} \subset B(\theta)$ means $P_{B(\theta)_p}(z) \leq 1$ for all $z \in L(\theta) \cap \overline{D}$. By the construction, $P_{B(\theta)_p}$ takes its minimum $\frac{1}{2}$ at the only point $\frac{\varphi(e^{i\theta})}{|\varphi(e^{i\theta})|}$ on the compact set $L(\theta) \cap T$, so

$$\frac{1}{2} = P_{B(\theta)_p} \left(\frac{\varphi(\mathbf{e}^{\mathrm{i}\theta})}{|\varphi(\mathbf{e}^{\mathrm{i}\theta})|} \right) < P_{B(\theta)_p} \left(\frac{\psi(\mathbf{e}^{\mathrm{i}\theta})}{|\psi(\mathbf{e}^{\mathrm{i}\theta})|} \right), \quad \theta \in E_0.$$

By Theorem 2.3, $P_{B(\theta)_p}$ can be extended to a continuous *p*-subseminorm $f(e^{i\theta}) \in \mathbf{C}_p^*$ with $||f(e^{i\theta})|| = ||P_{B(\theta)_p}|| \le 1$ for every $\theta \in E_0$.

Let ω be the mapping from $[0, 2\pi]$ to T defined by $w(\theta) = e^{i\theta}$. To verify the measurability of f on $\omega[E_0]$, let

$$\varphi_n = \sum_{j=1}^{m_n} z_j^{(n)} X_{\omega[E_j^{(n)}]}, \quad \psi_n = \sum_{j=1}^{m_n} w_j^{(n)} X_{\omega[E_j^{(n)}]} \in L^p(T)$$

be two sequences of simple functions such that

$$\varphi_n(\mathbf{e}^{\mathrm{i}\theta}) \to \varphi(\mathbf{e}^{\mathrm{i}\theta}), \quad \psi_n(\mathbf{e}^{\mathrm{i}\theta}) \to \psi(\mathbf{e}^{\mathrm{i}\theta}) \ (n \to \infty) \text{ a.e.}, \quad \theta \in E_0$$

where $\{E_j^{(n)}\}$ is a measurable partition of E_0 for each n, $X_{\omega[E_j^{(n)}]}$ is the the characteristic function of $\omega[E_j^{(n)}]$ and $z_j^{(n)}, w_j^{(n)} \in \mathbf{C}$ with $z_j^{(n)} \neq w_j^{(n)}, |z_j^{(n)}| = |w_j^{(n)}| > 0$. For each $n \in \mathbf{N}$ and $\theta \in E_j^{(n)}$, let

$$L_n(\theta) = \operatorname{span}\{z_j^{(n)}, w_j^{(n)}\}\$$

and

$$B_n(\theta) = \operatorname{co}_p\left(\left(L_n(\theta) \cap \overline{D}\right) \cup \left\{\frac{2^{\frac{1}{p}} z_j^{(n)}}{|z_j^{(n)}|}\right\}\right).$$

Then with the same argument we have $P_{B_n(\theta)_p} \in [L_n(\theta)]_p^*$ and its norm-preserving extension $f_n(e^{i\theta}) \in \mathbb{C}_p^*$. By the construction, f_n can be chosen to be the \mathbb{C}_p^* -valued simple functions on $\omega[E_0]$ such that $f_n(e^{i\theta}) \to f(e^{i\theta})(n \to \infty)$ a.e., $\theta \in E_0$, so f is measurable on $\omega[E_0]$.

If $\theta \in [0, 2\pi] \setminus E_0$, define $f(e^{i\theta}) = 0 \in \mathbf{C}_p^*$. Then $f \in L^{\infty}(T, \mathbf{C}_p^*)$ with $||f||_{\infty} \leq 1$. Now from $|\varphi(e^{i\theta})| = |\psi(e^{i\theta})|$ a.e., $\theta \in E_0$ and

$$\frac{1}{2} = \left\langle f(\mathbf{e}^{\mathrm{i}\theta}), \frac{\varphi(\mathbf{e}^{\mathrm{i}\theta})}{|\varphi(\mathbf{e}^{\mathrm{i}\theta})|} \right\rangle < \left\langle f(\mathbf{e}^{\mathrm{i}\theta}), \frac{\psi(\mathbf{e}^{\mathrm{i}\theta})}{|\psi(\mathbf{e}^{\mathrm{i}\theta})|} \right\rangle, \quad \theta \in E_0,$$

we have

$$F_{f}(\varphi) = \frac{1}{2\pi} \int_{E_{0}} |\varphi(\mathbf{e}^{\mathrm{i}\theta})|^{p} \left\langle f(\mathbf{e}^{\mathrm{i}\theta}), \frac{\varphi(\mathbf{e}^{\mathrm{i}\theta})}{|\varphi(\mathbf{e}^{\mathrm{i}\theta})|} \right\rangle \mathrm{d}\theta$$
$$< \frac{1}{2\pi} \int_{E_{0}} |\psi(\mathbf{e}^{\mathrm{i}\theta})|^{p} \left\langle f(\mathbf{e}^{\mathrm{i}\theta}), \frac{\psi(\mathbf{e}^{\mathrm{i}\theta})}{|\psi(\mathbf{e}^{\mathrm{i}\theta})|} \right\rangle \mathrm{d}\theta = F_{f}(\psi).$$

This completes the proof of $L^{\infty}(T, \mathbb{C}_p^*)$ separating the points of H^p . This completes the proof.

Let us make a preparation for the next theorem.

The Presentation Problem of the Conjugate Cone of the Hardy Space $H^p \ (0$

Lemma 3.2 Let $0 and <math>f \in [L^p(T)]_p^*$. Define

$$q(z) = \begin{cases} 0, & z = 0, \\ \sup_{\|l\|_{p} \le \frac{1}{|z|^{p}}} f(lz), & z \ne 0 \end{cases}$$
(3.12)

and

$$Q(z) = q(z)|z|^p, \quad z \in \mathbf{C},\tag{3.13}$$

where $l \in L^p(T)$ is a nonnegative real-valued function on T. Then

- (i) q(tz) = q(z) for all t > 0 and $z \in \mathbf{C}$;
- (ii) $q(z) \leq ||f||$ for all $z \in \mathbf{C}$;
- (iii) $Q \in \mathbf{C}_p^*$ and $||Q|| \le ||f||$.

Proof The conclusions (i)–(ii) can be obtained directly from (3.12) and (2.6). The positive *p*-homogeneity of *Q* follows (i). Suppose that *Q* satisfies the subadditivity. Then the result (ii) means $||Q|| \leq ||f||$ and $Q \in \mathbf{C}_p^*$ by Proposition 2.2.

Now nothing remains but to check the subadditivity of Q, i.e.

$$q(z+w)|z+w|^{p} \le q(z)|z|^{p} + q(w)|w|^{p}, \quad z,w \in \mathbf{C}.$$
(3.14)

If z = 0, w = 0 or z + w = 0, the inequality (3.14) is clear. Suppose $z \neq 0$, $w \neq 0$ and $z + w \neq 0$. Let α be the included angle between z and z + w, and β be that between w and z + w. If $\alpha = 0$, then there is a t > 0 such that z + w = tz and q(z + w) = q(z). By $w \neq 0$ we know $t \neq 1$. If 0 < t < 1, then |z + w| < |z| and (3.14) is clear; if t > 1, then

$$w = (t-1)z, \quad q(z) = q(w) = q(z+w),$$

and thus we have (3.14) by $|z + w|^p \le |z|^p + |w|^p$. If $\alpha = \pi$, without loss of generality, assume that |w| > |z|. Thus we have (3.14) by |z + w| < |w| and q(z + w) = q(w). If $\beta = 0$ or π . Then (3.14) also holds with the same argument. If $\alpha, \beta \in (0, \pi)$, then by the Sine theorem

$$|z| = \frac{\sin\beta}{\sin(\alpha+\beta)}|z+w|$$

and

$$|w| = \frac{\sin \alpha}{\sin(\alpha + \beta)} |z + w|.$$

Then (3.14) is equivalent to

$$q(z+w) \le \left(\frac{\sin\beta}{\sin(\alpha+\beta)}\right)^p q(z) + \left(\frac{\sin\alpha}{\sin(\alpha+\beta)}\right)^p q(w).$$
(3.15)

By

$$\frac{z+w}{|z+w|} = \frac{\sin\beta}{\sin(\alpha+\beta)} \frac{z}{|z|} + \frac{\sin\alpha}{\sin(\alpha+\beta)} \frac{w}{|w|},$$

we have

$$\begin{aligned} q(z+w) &= q\Big(\frac{z+w}{|z+w|}\Big) = \sup_{\|l\|_{p} \le 1} f\Big(l\frac{z+w}{|z+w|}\Big) \\ &\leq \sup_{\|l\|_{p} \le 1} f\Big(l\frac{\sin\beta}{\sin(\alpha+\beta)}\frac{z}{|z|}\Big) + \sup_{\|l\|_{p} \le 1} f\Big(l\frac{\sin\alpha}{\sin(\alpha+\beta)}\frac{w}{|w|}\Big) \\ &= \Big(\frac{\sin\beta}{\sin(\alpha+\beta)}\Big)^{p}q\Big(\frac{z}{|z|}\Big) + \Big(\frac{\sin\alpha}{\sin(\alpha+\beta)}\Big)^{p}q\Big(\frac{w}{|w|}\Big) \\ &= \Big(\frac{\sin\beta}{\sin(\alpha+\beta)}\Big)^{p}q(z) + \Big(\frac{\sin\alpha}{\sin(\alpha+\beta)}\Big)^{p}q(w). \end{aligned}$$

Thus we have shown the inequalities (3.14)–(3.15) and the conclusion (iii).

Theorem 3.3 Suppose $0 . Then for each <math>f \in (H^p)_p^*$, there is $F \in L^{\infty}(T, \mathbb{C}_p^*)$ such that $f \le F$ and ||F|| = ||f||.

Proof Suppose $f \in (H^p)_p^*$. As H^p is a closed subspace of $L^p(T)$, by Theorem 2.3 f can be extended norm-preservingly to a continuous p-subseminorm on $L^p(T)$, still denoted by f. Use the function $Q \in \mathbf{C}_p^*$ in Lemma 3.2 to define a \mathbf{C}_p^* -valued constant function g on T by

$$\langle g(\mathbf{e}^{\mathrm{i}\theta}), z \rangle = g(\mathbf{e}^{\mathrm{i}\theta})(z) = Q(z), \quad \theta \in [0, 2\pi], \ z \in \mathbf{C}.$$

Then $g \in L^{\infty}(T, \mathbf{C}_p^*)$, $\|g\|_{\infty} = \|Q\| \le \|f\|$ and

$$\frac{1}{2\pi}Q(z)\mu(E) = \frac{1}{2\pi}\int_E \langle g(e^{i\theta}), z\rangle d\theta, \quad E \in \Sigma, \ z \in \mathbf{C}.$$
(3.16)

By Theorem 3.1, the equation

$$F_g(\varphi) = \frac{1}{2\pi} \int_0^{2\pi} \langle g(\mathbf{e}^{\mathbf{i}\theta}), \varphi(\mathbf{e}^{\mathbf{i}\theta}) \rangle \mathrm{d}\theta, \quad \varphi \in H^p$$
(3.17)

defines a functional $F_g \in L^{\infty}(T, \mathbb{C}_p^*) \subset (H^p)_p^*$ with $||F_g|| \leq ||g||_{\infty} \leq ||f||$. Now if we can verify the inequality of $f \leq F_g$ on H^p , then we have the equality $||F_g|| = ||f||$, and this completes the proof.

As $H^p \subset L^p(T)$, and f and F_g (being extended norm-preservingly to $L^p(T)$) are continuous on $L^p(T)$, let us verify the inequality $f(\varphi) \leq F_g(\varphi)$ for all $\varphi \in L^p(T)$ in the following three cases. If $\varphi = \sum_{j=1}^n z_j X_{\omega[E_j]} \in L^p(T)$ is a simple function, then by the equalities (3.16)–(3.17),

$$f(\varphi) \leq \sum_{j=1}^{n} f(z_{j} X_{\omega[E_{j}]}) \leq \sum_{j=1}^{n} \sup_{\|l\|_{p} \leq \frac{1}{|z_{j}|^{p}}} f(lz_{j}) \|z_{j} X_{\omega[E_{j}]}\|_{p}$$

= $\frac{1}{2\pi} \sum_{j=1}^{n} Q(z_{j}) \mu(E_{j}) = \frac{1}{2\pi} \int_{0}^{2\pi} \langle g(e^{i\theta}), \varphi(e^{i\theta}) \rangle d\theta = F_{g}(\varphi).$

If $\varphi \in L^p(T)$ is bounded, then there exists a sequence of uniformly bounded simple functions $\{\varphi_n\}$ on T such that

$$\varphi_n(\mathbf{e}^{\mathbf{i}\theta}) \to \varphi(\mathbf{e}^{\mathbf{i}\theta})(n \to \infty), \quad \text{a.e. } \theta \in [0, 2\pi].$$

The Presentation Problem of the Conjugate Cone of the Hardy Space H^p (0

By Egoroff's theorem in [9, p. 41], $\{\varphi_n\}$ also converges in mean to φ , i.e.

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_0^{2\pi} |\varphi_n(\mathbf{e}^{\mathbf{i}\theta}) - \varphi(\mathbf{e}^{\mathbf{i}\theta})| d\theta = 0$$

By the Hölder's inequality

$$\begin{aligned} \|\varphi_n - \varphi\|_p &= \frac{1}{2\pi} \int_0^{2\pi} |\varphi_n(\mathbf{e}^{\mathbf{i}\theta}) - \varphi(\mathbf{e}^{\mathbf{i}\theta})|^p \mathrm{d}\theta \\ &\leq \frac{1}{(2\pi)^p} \Big(\int_0^{2\pi} |\varphi_n(\mathbf{e}^{\mathbf{i}\theta}) - \varphi(\mathbf{e}^{\mathbf{i}\theta})| \mathrm{d}\theta \Big)^p \to 0, \end{aligned}$$

i.e. $\{\varphi_n\}$ converges in the *p*-norm to φ . We have already shown $f(\varphi_n) \leq F_g(\varphi_n)$ for all *n*, so by the continuity of *f* and F_g we have

$$f(\varphi) = \lim_{n \to \infty} f(\varphi_n) \le \lim_{n \to \infty} F_g(\varphi_n) = F_g(\varphi).$$

If $\varphi \in L^p(T)$ is a general complex function on T, then the measure ν defined by the indefinite integral

$$\nu(E) = \frac{1}{2\pi} \int_E |\varphi(\mathbf{e}^{\mathbf{i}\theta})|^p \mathrm{d}\theta, \quad E \in \Sigma$$

is absolutely continuous with respect to the Lebesgue measure μ , and the series

$$\sum_{n=1}^{\infty} \mu(\{\theta \in [0, 2\pi] : |\varphi(\mathbf{e}^{\mathbf{i}\theta})|^p > n\})$$

is convergent (see [11, p. 115]). So $\mu(\{\theta \in [0, 2\pi] : |\varphi(e^{i\theta})|^p > n\}) \to 0(n \to \infty)$. Let

$$\varphi_n(\mathbf{e}^{\mathbf{i}\theta}) = \begin{cases} \varphi(\mathbf{e}^{\mathbf{i}\theta}), & |\varphi(\mathbf{e}^{\mathbf{i}\theta})|^p \le n, \\ 0, & |\varphi(\mathbf{e}^{\mathbf{i}\theta})|^p > n, \end{cases} \quad \theta \in [0, 2\pi].$$

Then φ_n is bounded and

$$\begin{split} \|\varphi_n - \varphi\|_p &= \frac{1}{2\pi} \int_0^{2\pi} |\varphi_n(\mathbf{e}^{\mathbf{i}\theta}) - \varphi(\mathbf{e}^{\mathbf{i}\theta})|^p \mathrm{d}\theta \\ &= \frac{1}{2\pi} \int_{\{\theta \in [0,2\pi] : |\varphi(\mathbf{e}^{\mathbf{i}\theta})|^p > n\}} |\varphi(\mathbf{e}^{\mathbf{i}\theta})|^p \mathrm{d}\theta \to 0. \end{split}$$

Thus by the continuity of f and F_g , we have

$$f(\varphi) = \lim_{n \to \infty} f(\varphi_n) \le \lim_{n \to \infty} F_g(\varphi_n) = F_g(\varphi).$$

This completes the proof of Theorem 3.3.

Now we are in the position to show the main result of this paper.

Theorem 3.4 (The Subrepresentation Theorem) Suppose $0 . Then <math>L^{\infty}(T, C_p^*)$ is a shadow cone of $(H^p)_p^*$ in the sense of norm-preserving isomorphism, or $(H^p)_p^*$ has the subrepresentation

$$(H^p)_p^* \simeq L^\infty(T, \mathbf{C}_p^*). \tag{3.18}$$

Proof By Theorems 3.1–3.2, $L^{\infty}(T, \mathbf{C}_p^*)$ is a separating subcone of $(H^p)_p^*$. By Theorem 3.3 for each $f \in (H^p)_p^*$, there exists an $F \in L^{\infty}(T, \mathbf{C}_p^*)$ such that $f(\varphi) \leq F(\varphi)$ for all $\varphi \in H^p$ and ||f|| = ||F||. Thus by Definition 3.1, $L^{\infty}(T, \mathbf{C}_p^*)$ is a shadow cone of $(H^p)_p^*$. So we have the subrepresentation (3.18).

References

- Kalton, N. J., Peck, N. T. and Roberts, J. W., An F-space Sampler, Cambridge University Press, London, 1984.
- [2] Rolewicz, S., Metric Linear Spaces, Polish Scientific Publishers, Warszawa, 1985.
- [3] Duren, P. L., Theory of H^p Spaces, Academic Press, New York, 1970.
- [4] Simmons, S., Boundness in linear topological spaces, Trans. Amer. Math. Soc., 113, 1964, 169–180.
- [5] Jarchow, H., Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.
- [6] Wang, J. Y. and Ma, Y. M., The second separation theorem in locally β-convex space and the boundedness theorem in its conjugate cone, J. Math. Res. Exposition, 22(1), 2002, 25–34.
- [7] Wang, J. Y., Quasi-translation invariant topological cones and the conjugate cones of locally β-convex spaces, Math. Practice Theory, 33(1), 2003, 89–97 (in Chinese).
- [8] Wang, J. Y., The Hahn-Banach theorems about β -subseminorms in locally β -convex spaces and their applications, *Journal of Changshu Institue of Technology*, **20**(4), 2006, 19–24 (in Chinese).
- [9] Diestel, J. and Uhl, J. J., Vector Measures, Mathematical Surveys, 15, Amer. Math. Soc., Providence, Rhode Island, 1977.
- [10] Wang, J. Y., The subrepresentation theorem of the conjugate cone of $l^p(X)$ (0 39(6), 2010, 709–718.
- [11] Halmos, P. R., Measure Theory, Van Nostrand, New York, 1950.