Boundedness of Commutators with Lipschitz Functions in Non-homogeneous Spaces****

Xiaoli FU* Yan MENG** Dachun YANG***

Abstract Under the assumption that the underlying measure is a non-negative Radon measure which only satisfies some growth condition, the authors prove that for a class of commutators with Lipschitz functions which include commutators generated by Calderón-Zygmund operators and Lipschitz functions as examples, their boundedness in Lebesgue spaces or the Hardy space $H^1(\mu)$ is equivalent to some endpoint estimates satisfied by them. This result is new even when the underlying measure μ is the *d*-dimensional Lebesgue measure.

Keywords Commutator, Lipschitz function, Lebesgue space, Hardy space, RBMO space, Non-doubling measure
 2000 MR Subject Classification 47B47, 42B20

1 Introduction

Let μ be a non-negative measure on \mathbb{R}^d which only satisfies the following growth condition that there exists a positive constant C_0 such that

$$\mu(B(x,r)) \le C_0 r^n \tag{1.1}$$

for all $x \in \mathbb{R}^d$ and r > 0, where $B(x, r) = \{y \in \mathbb{R}^d : |y-x| < r\}$, n is a fixed number and $0 < n \le d$. We call the Euclidean space \mathbb{R}^d endowed with the usual Euclidean distance and the measure satisfying (1.1) a non-homogeneous space, since the measure μ is not necessary to satisfy the doubling condition which is a key assumption in the analysis on spaces of homogeneous type. Here, we recall that μ is said to satisfy the doubling condition if there exists some positive constant C such that $\mu(B(x, 2r)) \le C\mu(B(x, r))$ for all $x \in \text{supp } \mu$ and r > 0. Recently, considerable attention has been paid to Calderón-Zygmund operator theory in non-homogeneous spaces (see [2, 6–11]). The motivation for developing the analysis on non-homogeneous spaces and some examples of non-doubling measures can be found in [16]. We only point out that the analysis

Manuscript received July 15, 2005.

^{*}School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China.

E-mail: xiaoli7925@163.com

^{**}School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China; School of Information, Renmin University, Beijing 100872, China. E-mail: mengyan77@126.com

^{***} Corresponding author. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China. E-mail: dcyang@bnu.edu.cn

^{****} Project supported by the National Natural Science Foundation of China (No. 10271015) and the Program for New Century Excellent Talents in Universities of China (No. NCET-04-0142).

on non-homogeneous spaces played an essential role in solving the long-standing Painlevé's problem by Tolsa in [14].

The purpose of this paper is to investigate the relation between the boundedness of commutators with Lipschitz functions, which include commutators generated by Calderón-Zygmund operators and Lipschitz functions, in Lebesgue spaces or the Hardy space $H^1(\mu)$ and some endpoint estimates for them.

To this end, we first introduce the Lipschitz function in non-homogeneous spaces of García-Cuerva and Gatto in [1].

Definition 1.1 Let $\beta > 0$ and $b \in L^1_{loc}(\mu)$. We say that b belongs to the space Lip (β, μ) if there is a constant C > 0 such that

$$|b(x) - b(y)| \le C|x - y|^{\beta}$$
 (1.2)

for μ -almost every x and y in the support of μ . The minimal constant C appeared in (1.2) is the Lip (β, μ) norm of b and is denoted simply by $\|b\|_{\text{Lip}(\beta)}$.

Let $b \in \text{Lip}_{\beta}(\mu)$ for $0 < \beta \leq 1$ and K be a function on $\mathbb{R}^d \times \mathbb{R}^d \setminus \{(x, y) : x = y\}$ that satisfies

$$|K(x, y)| \le C|x - y|^{-n} \text{ for } x \ne y,$$
 (1.3)

and if $|x - y| \ge 2|x - x'|$,

$$|K(x, y) - K(x', y)| + |K(y, x) - K(y, x')| \le C \frac{|x - x'|^{\delta}}{|x - y|^{n + \delta}},$$
(1.4)

where $\delta \in (0, 1]$ and C > 0 are positive constants independent of x, x' and y. We define the commutator T_b associated with the Lipschitz function b and the kernel K satisfying (1.3) and (1.4) as follows. For any bounded function f with compact support and μ -a.e. $x \notin \text{supp}(f)$,

$$T_b f(x) = \int_{\mathbb{R}^d} [b(x) - b(y)] K(x, y) f(y) \, d\mu(y).$$
(1.5)

Obviously, the commutator generated by the Calderón-Zygmund operator and Lipschitz function satisfies (1.5) (see [5]). Moreover, the boundedness of Calderón-Zygmund commutators with Lipschitz functions in Lebesgue spaces and the Hardy space $H^1(\mu)$, and some endpoint estimates for them can also be found in [5]. In this paper, we will prove the boundedness of commutators defined by (1.5) in Lebesgue spaces and the Hardy space $H^1(\mu)$ is equivalent to some endpoint estimates satisfied by them. We point out that our result is new even when μ is the *d*-dimensional Lebesgue measure.

Before stating our result, we need to recall some necessary notation and definitions.

Throughout this paper, by a cube $Q \subset \mathbb{R}^d$, we mean a closed cube with sides parallel to the axes and centered at some point of $\operatorname{supp}(\mu)$. For any cube $Q \subset \mathbb{R}^d$, we denote its length by l(Q) and denote its center by x_Q . Let $\alpha > 1$ and $\beta > \alpha^n$. We say that Q is a (α, β) -doubling cube if $\mu(\alpha Q) \leq \beta \mu(Q)$, where αQ denotes the cube with the same center as Q and having the length $\alpha l(Q)$. It was pointed out by Tolsa in [12] that for any $x \in \operatorname{supp}(\mu)$ and c > 0, there exists some (α, β) -doubling cube Q centered at x with $l(Q) \geq c$. On the other hand, if $\beta > \alpha^d$, then for μ -a.e. $x \in \mathbb{R}^d$, there exists a sequence of (α, β) -doubling cubes $\{Q_i\}_{i \in \mathbb{N}}$ centered at

x with $l(Q_i) \to 0$ as $i \to \infty$. In the sequel, for definiteness, if α and β are not specified, by a doubling cube we mean a $(2, 2^{d+1})$ -doubling cube. Especially, for any given cube Q, we denote by Q the smallest doubling cube in the family $\{2^i Q\}_{i>0}$. Given two cubes $Q \subset R$ in \mathbb{R}^d , set

$$K_{Q,R} = 1 + \sum_{i=1}^{N_{Q,R}} \frac{\mu(2^{i}Q)}{l(2^{i}Q)^{n}},$$

where $N_{Q,R}$ is the smallest positive integer *i* such that $l(2^iQ) \ge l(R)$.

Using the coefficient $K_{Q,R}$, Tolsa in [12] introduced the function space RBMO(μ) with the non-doubling measure μ .

Definition 1.2 Let $\rho > 1$ be some fixed constant. We say that a function $f \in L^1_{loc}(\mu)$ belongs to the space RBMO(μ) if there exists some constant C > 0 such that for any cube $Q \subset \mathbb{R}^d$,

$$\frac{1}{\mu(\rho Q)} \int_{Q} \left| f(y) - m_{\tilde{Q}}(f) \right| \, d\mu(y) \le C,$$

and for any two doubling cubes $Q \subset R$,

$$|m_Q(f) - m_R(f)| \le CK_{Q,R}$$

where for any cube $Q \subset \mathbb{R}^d$, $m_Q(f)$ denotes the mean of f over the cube Q, that is,

$$m_Q(f) = \frac{1}{\mu(Q)} \int_Q f(y) \, d\mu(y).$$

The minimal constant C > 0 as above is defined to be the RBMO(μ) norm of f and is denoted $by \|f\|_{*}.$

Tolsa proved in [12] that the definition of RBMO(μ) is independent of chosen constant ρ , and that the space RBMO(μ) is the dual of the Hardy space $H^1(\mu)$. To state the definition of the Hardy space $H^1(\mu)$ of Tolsa in [12, 15], we first recall the definition of the "grand" maximal operator M_{Φ} of Tolsa in [15].

Definition 1.3 Given $f \in L^1_{loc}(\mu)$, we set

$$M_{\Phi}f(x) = \sup_{\varphi \sim x} \left| \int_{\mathbb{R}^d} f(y)\varphi(y) \, d\mu(y) \right|,$$

where the notation $\varphi \sim x$ means that $\varphi \in L^1(\mu) \cap C^1(\mathbb{R}^d)$ and satisfies

- (i) $\|\varphi\|_{L^1(\mu)} \leq 1$,
- (ii) $0 \leq \varphi(y) \leq \frac{1}{|y-x|^n}$ for all $y \in \mathbb{R}^d$, and (iii) $|\nabla \varphi(y)| \leq \frac{1}{|y-x|^{n+1}}$ for all $y \in \mathbb{R}^d$, where $\nabla = (\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_d})$.

Based on [12, Theorem 1.2], Tolsa defined the Hardy space $H^1(\mu)$ as follows.

Definition 1.4 The Hardy space $H^1(\mu)$ is the set of all functions $f \in L^1(\mu)$ satisfying that $\int_{\mathbb{R}^d} f \, d\mu = 0$ and $M_{\Phi} f \in L^1(\mu)$. Moreover, the norm of $f \in H^1(\mu)$ is defined by

$$||f||_{H^1(\mu)} = ||f||_{L^1(\mu)} + ||M_{\Phi}f||_{L^1(\mu)}$$

Here is the main result of this paper.

Theorem 1.1 Let $b \in \text{Lip}(\beta, \mu)$ for $0 < \beta \leq 1$. Let K be a function on $\mathbb{R}^d \times \mathbb{R}^d \setminus \{(x, y) : x = y\}$ satisfying (1.3) and (1.4) and the commutator T_b be as in (1.5). Then there exists a constant C > 0 such that for all bounded function f with compact support, the following statements are equivalent:

(I) if $1 and <math>\frac{1}{q} = \frac{1}{p} - \frac{\beta}{n}$, $\|T_b f\|_{L^q(\mu)} \le C \|b\|_{\text{Lip}(\beta)} \|f\|_{L^p(\mu)};$

(II) for all $\lambda > 0$,

$$\mu(\{x \in \mathbb{R}^d : |T_b f(x)| > \lambda\}) \le C \|b\|_{\operatorname{Lip}(\beta)} \{\lambda^{-1} \|f\|_{L^1(\mu)}\}^{n/(n-\beta)}$$

(III)

$$||T_b f||_* \le C ||b||_{\operatorname{Lip}(\beta)} ||f||_{L^{n/\beta}(\mu)};$$

(IV)

$$||T_b f||_{L^{n/(n-\beta)}(\mu)} \le C ||b||_{\operatorname{Lip}(\beta)} ||f||_{H^1(\mu)}.$$

Throughout this paper, C denotes a positive constant that is independent of the main parameters involved but whose value may differ from line to line. Constants with subscripts, such as C_0 , do not change in different occurrences. For any index $p \in [1, \infty]$, we denote by p'its conjugate index, namely, $\frac{1}{p} + \frac{1}{p'} = 1$. For $A \sim B$, we mean that there is a constant C > 0such that $C^{-1}B \leq A \leq CB$. Similar is $A \leq B$.

2 Proof of Theorem 1.1

We begin with the atomic characterization of the Hardy space $H^1(\mu)$ (see [12, 15]).

Definition 2.1 Let $\rho > 1$ and $1 . A function <math>b \in L^1_{loc}(\mu)$ is called a p-atomic block if

(1) there exists some cube R such that $supp (b) \subset R$,

(2) $\int_{\mathbb{R}^d} b \, d\mu = 0,$

(3) for j = 1, 2, there are functions a_j supported on cube $Q_j \subset R$ and numbers $\lambda_j \in \mathbb{R}$ such that $b = \lambda_1 a_1 + \lambda_2 a_2$, and

$$||a_j||_{L^p(\mu)} \le \left\{ \left[\mu(\rho Q_j) \right]^{1-1/p} K_{Q_j, R} \right\}^{-1}.$$

Then we define

$$|b|_{H^{1,p}_{atb}(\mu)} = |\lambda_1| + |\lambda_2|.$$

We say that $f \in H^{1,p}_{atb}(\mu)$ if there are p-atomic blocks $\{b_i\}_{i \in \mathbb{N}}$ such that

$$f = \sum_{i=1}^{\infty} b_i \quad with \quad \sum_{i=1}^{\infty} |b_i|_{H^{1, p}_{atb}(\mu)} < \infty.$$

The $H^{1, p}_{atb}(\mu)$ norm of f is defined by

$$\|f\|_{H^{1,p}_{atb}(\mu)} = \inf \Big\{ \sum_{i} |b_i|_{H^{1,p}_{atb}(\mu)} \Big\},\$$

where the infimum is taken over all the possible decompositions of f in atomic blocks.

It was proved by Tolsa in [12, 15] that the definition of $H_{atb}^{1, p}(\mu)$ is independent of chosen constant $\rho > 1$. For $1 , the atomic Hardy spaces <math>H_{atb}^{1, p}(\mu)$ are just the Hardy space $H^{1}(\mu)$ with equivalent norms.

To prove Theorem 1.1, we need to introduce the Calderón-Zygmund decomposition in [12, 13] as follows.

Lemma 2.1 For $1 \leq p < \infty$, consider $f \in L^p(\mu)$ with compact support. For any $\lambda > 0$ $\left(with \ \lambda > \frac{2^{d+1} \|f\|_{L^1(\mu)}}{\|\mu\|} \text{ if } \|\mu\| < \infty \right)$, there exists a sequence of cubes $\{Q_j\}$ with bounded overlaps, that is, $\sum_j \chi_{Q_j}(x) \leq C < \infty$, such that

(a)
$$\frac{1}{\mu(2Q_j)} \int_{Q_j} |f(x)|^p d\mu(x) > \frac{\lambda^p}{2^{d+1}};$$

(b) $\frac{1}{\mu(2\eta Q_j)} \int_{\eta Q_j} |f(x)|^p d\mu(x) \le \frac{\lambda^p}{2^{d+1}} \text{ for any } \eta > 2;$

(c)
$$|f(x)| \leq \lambda \ \mu$$
-a. e. on $\mathbb{R}^d \setminus \bigcup_j Q_j$;

(d) for each fixed j, let R_j be the smallest $(6, 6^{n+1})$ -doubling cube of the form $6^i Q_j$, $i \ge 1$. Set $w_j = \sum_{i \neq Q_j \atop i \neq Q_i} N_{Q_i}$. Then there is a function φ_j with supp $\varphi_j \subset R_j$ and some positive constant C satisfying

$$\int_{\mathbb{R}^d} \varphi_j(x) \, d\mu(x) = \int_{Q_j} f(x) w_j(x) \, d\mu(x) \quad and \quad \sum_j |\varphi_j(x)| \le C\lambda$$

Moreover, if p = 1,

$$\|\varphi_j\|_{L^{\infty}(\mu)}\mu(R_j) \le C \int_{Q_j} |f(x)| \, d\mu(x),$$

and if 1 ,

$$\left\{\int_{R_j} |\varphi_j(x)|^p \, d\mu(x)\right\}^{1/p} [\mu(R_j)]^{1/p'} \le \frac{C}{\lambda^{p-1}} \int_{Q_j} |f(x)|^p \, d\mu(x).$$

The following lemma plays an important role in the proof of Theorem 1.1 and its proof can be found in [4].

Lemma 2.2 Let T be a linear operator which is bounded from $L^{p_0}(\mu)$ into RBMO(μ) and from $H^1(\mu)$ into weak $L^{p'_0}(\mu)$. Then T extends boundedly from $L^p(\mu)$ into $L^q(\mu)$, where $1 and <math>\frac{1}{q} = \frac{1}{p} - \frac{1}{p_0}$.

Now we turn to the proof of Theorem 1.1.

Proof of Theorem 1.1 By the homogeneity, we may assume that $||b||_{\text{Lip}(\beta)} = 1$.

(I) \Rightarrow (II) Without loss of generality, we may assume that $||f||_{L^1(\mu)} = 1$.

It is easy to see that the conclusion (II) holds if $\lambda \leq \frac{2^{d+1} \|f\|_{L^1(\mu)}}{\|\mu\|}$ when $\|\mu\| < \infty$. Then we assume that $\lambda > \frac{2^{d+1} \|f\|_{L^1(\mu)}}{\|\mu\|}$ if $\|\mu\| < \infty$. For f and any fixed $\lambda > \frac{2^{d+1} \|f\|_{L^1(\mu)}}{\|\mu\|}$, applying Lemma 2.1 with λ replaced by λ^{q_0} with $q_0 = \frac{n}{n-\beta}$, we obtain that with the same notation as in Lemma 2.1, f = g + h, where

$$g(x) = f(x)\chi_{\mathbb{R}^d \setminus \cup_j Q_j}(x) + \sum_j \varphi_j(x),$$

$$h(x) = f(x) - g(x) = \sum_j [w_j(x)f(x) - \varphi_j(x)] = \sum_j h_j(x).$$

By Lemma 2.1, we can obtain the following properties:

$$\begin{aligned} \text{(A)} \quad & \frac{1}{\mu(2Q_j)} \int_{Q_j} |f(x)| \, d\mu(x) > \frac{\lambda^{q_0}}{2^{d+1}}; \\ \text{(B)} \quad & |f(x)| \le \lambda^{q_0}, \ \mu \text{- a.e.} \ x \in \mathbb{R}^d \setminus \bigcup_j Q_j; \\ \text{(C)} \quad & \int_{R_j} \varphi_j(x) \, d\mu(x) = \int_{Q_j} f(x) w_j(x) \, d\mu(x); \\ \text{(D)} \quad & \|\varphi_j\|_{L^{\infty}(\mu)} \mu(R_j) \lesssim \int_{Q_j} |f(x)| \, d\mu(x); \\ \text{(E)} \quad & \sum_j |\varphi_j(x)| \lesssim \lambda^{q_0}. \end{aligned}$$

By (B) and (D), we easily obtain

$$\|g\|_{L^{1}(\mu)} \lesssim \|f\|_{L^{1}(\mu)} \lesssim 1.$$
(2.1)

From (B) and (E), it follows that for μ -a. e. $x \in \mathbb{R}^d$,

$$|g(x)| \lesssim \lambda^{q_0}.\tag{2.2}$$

Choose $1 < p_1 < \frac{n}{\beta}$ and $\frac{1}{q_1} = \frac{1}{p_1} - \frac{\beta}{n}$. The boundedness of T_b from $L^{p_1}(\mu)$ into $L^{q_1}(\mu)$, (2.1) and (2.2) give us that

$$\mu\left(\left\{x \in \mathbb{R}^{d} : |T_{b}g(x)| > \lambda\right\}\right) \lesssim \lambda^{-q_{1}} \int_{\mathbb{R}^{d}} |T_{b}g(x)|^{q_{1}} d\mu(x) \lesssim \lambda^{-q_{1}} \|g\|_{L^{p_{1}}(\mu)}^{q_{1}} \\ \lesssim \lambda^{-q_{1}} \lambda^{q_{0}(p_{1}-1)q_{1}/p_{1}} \|f\|_{L^{1}(\mu)}^{q_{1}/p_{1}} \lesssim \lambda^{-q_{0}}.$$

$$(2.3)$$

The facts (A) and $\sum_{j} \chi_{Q_j}(x) \lesssim 1$ tell us that

$$\mu\Big(\bigcup_{j} 2Q_j\Big) \lesssim \lambda^{-q_0} \int_{\mathbb{R}^d} |f(y)| \, d\mu(y) \lesssim \lambda^{-q_0}.$$
(2.4)

Noting that f = g + h, from (2.3) and (2.4), we deduce that the proof of (II) can be reduced to proving that

$$\mu\Big(\Big\{x \in \mathbb{R}^d \setminus \bigcup_j 2Q_j : |T_b h(x)| > \lambda\Big\}\Big) \lesssim \lambda^{-q_0}.$$
(2.5)

Let θ be a bounded function satisfying $\|\theta\|_{L^{q'_0}(\mu)} \leq 1$ and $\operatorname{supp} \theta \subset \mathbb{R}^d \setminus \bigcup_j 2Q_j$. Then

$$\begin{split} &\int_{\mathbb{R}^d \setminus \bigcup_j 2Q_j} |T_b h(x) \theta(x)| \, d\mu \\ &\leq \sum_j \int_{\mathbb{R}^d \setminus 2R_j} |T_b h_j(x) \theta(x)| \, d\mu(x) + \sum_j \int_{2R_j \setminus 2Q_j} |T_b h_j(x) \theta(x)| \, d\mu(x) \\ &= \mathcal{F}_1 + \mathcal{F}_2. \end{split}$$

Recall that $h_j = w_j f - \varphi_j$. This together with (C) gives us that

$$\int_{\mathbb{R}^d} h_j(x) \, d\mu(x) = 0.$$

By this fact, (1.2)–(1.4) and the Hölder inequality, we have

$$\begin{split} \mathrm{F}_{1} &\leq \sum_{j} \int_{\mathbb{R}^{d} \backslash 2R_{j}} \int_{\mathbb{R}^{d}} |\theta(x)| |[b(x) - b(y)] K(x, y) - [b(x) - b(x_{R_{j}})] K(x, x_{R_{j}})| \\ &\times |h_{j}(y)| \, d\mu(y) \, d\mu(x) \\ &\leq \sum_{j} \int_{\mathbb{R}^{d} \backslash 2R_{j}} \int_{\mathbb{R}^{d}} |\theta(x)| |[b(x) - b(y)] [K(x, y) - K(x, x_{R_{j}})]| |h_{j}(y)| \, d\mu(y) \, d\mu(x) \\ &+ \sum_{j} \int_{\mathbb{R}^{d} \backslash 2R_{j}} \int_{\mathbb{R}^{d}} |\theta(x)| |[b(x_{R_{j}}) - b(y)] K(x, x_{R_{j}})| |h_{j}(y)| \, d\mu(y) \, d\mu(x) \\ &\leq \sum_{j} \int_{\mathbb{R}^{d}} |h_{j}(y)| \, d\mu(y) \sum_{i=1}^{\infty} \int_{2^{i+1}R_{j} \backslash 2^{i}R_{j}} \frac{l(R_{j})^{\delta}}{l(2^{i}R_{j})^{n+\delta-\beta}} |\theta(x)| \, d\mu(x) \\ &+ \sum_{j} \int_{\mathbb{R}^{d}} |h_{j}(y)| \, d\mu(y) \sum_{i=1}^{\infty} \int_{2^{i+1}R_{j} \backslash 2^{i}R_{j}} \frac{l(R_{j})^{\beta}}{l(2^{i}R_{j})^{n}} |\theta(x)| \, d\mu(x) \\ &\lesssim \|\theta\|_{L^{q_{0}'}(\mu)} \sum_{j} \int_{Q_{j}} |f(y)| \, d\mu(y) \Big[\sum_{i=1}^{\infty} 2^{-i\delta} + \sum_{i=1}^{\infty} 2^{-i\beta} \Big] \\ &\lesssim 1. \end{split}$$

On the other hand, (1.2), (1.3), the Hölder inequality and (1.1) lead to

$$\begin{aligned} \mathbf{F}_{2} &\leq \sum_{j} \int_{2R_{j} \setminus 2Q_{j}} |\theta(x)| |T_{b}(w_{j}f)(x)| \, d\mu(x) + \sum_{j} \int_{2R_{j}} |\theta(x)| \, |T_{b}\varphi_{j}(x)| \, d\mu(x) \\ &\lesssim \sum_{j} \int_{2R_{j} \setminus 2Q_{j}} \frac{|\theta(x)|}{|x - x_{Q_{j}}|^{n - \beta}} \, d\mu(x) \int_{Q_{j}} |f(y)| \, d\mu(y) + \sum_{j} \left\{ \int_{2R_{j}} |T_{b}\varphi_{j}(x)|^{q_{0}} \, d\mu(x) \right\}^{1/q_{0}} \\ &\lesssim \sum_{j} \int_{Q_{j}} |f(y)| \, d\mu(y) \left\{ \sum_{i=1}^{N_{2}Q_{j}, \, 2R_{j}} \int_{2^{i+1}Q_{j} \setminus 2^{i}Q_{j}} \frac{1}{|x - x_{Q_{j}}|^{(n - \beta)q_{0}}} \, d\mu(x) \right\}^{1/q_{0}} \\ &+ \sum_{j} \left\{ \int_{2R_{j}} |T_{b}\varphi_{j}(x)|^{q_{2}} \, d\mu(x) \right\}^{1/q_{2}} \left[\mu(2R_{j}) \right]^{1/q_{0} - 1/q_{2}} \end{aligned}$$

$$\lesssim \sum_{j} \int_{Q_{j}} |f(y)| d\mu(y) [K_{2Q_{j}, 2R_{j}}]^{1/q_{0}} + \sum_{j} \|\varphi_{j}\|_{L^{p_{2}}(\mu)} [\mu(2R_{j})]^{1/q_{0}-1/q_{2}}$$

$$\lesssim \sum_{j} \int_{Q_{j}} |f(y)| d\mu(y) + \sum_{j} \|\varphi_{j}\|_{L^{\infty}(\mu)} \mu(2R_{j})$$

$$\lesssim 1,$$

where we have chosen p_2 and q_2 such that $1 < p_2 < \frac{n}{\beta}$ and $\frac{1}{q_2} = \frac{1}{p_2} - \frac{\beta}{n}$. And we have also used the following simply fact that

$$[K_{2Q_j, 2R_j}]^{1/q_0} \le K_{2Q_j, 2R_j} \lesssim 1.$$

The estimates for F_1 and F_2 indicate (2.5) and this finishes the proof of $(I) \Rightarrow (II)$.

(II) \Rightarrow (III) For any cube Q, let

$$h_Q = m_Q(T_b[f\chi_{\mathbb{R}^d \setminus \frac{4}{2}Q}]).$$

To prove $T_b f \in \operatorname{RBMO}(\mu)$, we only need to verify that for any cube Q,

$$\frac{1}{\mu(\frac{3}{2}Q)} \int_{Q} |T_b f(x) - h_Q| \ d\mu(x) \lesssim ||f||_{L^{n/\beta}(\mu)}, \tag{2.6}$$

and for any cubes $Q \subset R$,

$$|h_Q - h_R| \lesssim K_{Q,R} ||f||_{L^{n/\beta}(\mu)}.$$
(2.7)

In fact, by (2.6), it is easy to see that if Q is doubling, then

$$|m_Q(T_b f) - h_Q| \lesssim \frac{1}{\mu(\frac{3}{2}Q)} \int_Q |T_b f(x) - h_Q| \ d\mu(x) \lesssim ||f||_{L^{n/\beta}(\mu)}.$$
 (2.8)

Moveover, for any cube $Q, K_{Q,\tilde{Q}} \lesssim 1$, and then by (2.6), (2.7) and (2.8), we obtain that

$$\frac{1}{\mu(\frac{3}{2}Q)} \int_{Q} |T_{b}f(x) - m_{\tilde{Q}}(T_{b}f)| \, d\mu(x) \leq \frac{1}{\mu(\frac{3}{2}Q)} \int_{Q} |T_{b}f(x) - h_{Q}| \, d\mu(x) + |h_{Q} - h_{\tilde{Q}}| + |m_{\tilde{Q}}(T_{b}f) - h_{\tilde{Q}}| \lesssim ||f||_{L^{n/\beta}(\mu)}.$$
(2.9)

On the other hand, for any doubling cubes $Q \subset R$, from (2.7) and (2.8), it follows that

 $|m_Q(T_bf) - m_R(T_bf)| \le |m_Q(T_bf) - h_Q| + |h_Q - h_R| + |h_R - m_R(T_bf)| \le ||f||_{L^{n/\beta}(\mu)},$ which together with (2.9) indicates that $T_bf \in \text{RBMO}(\mu)$ and

$$||T_b f||_* \lesssim ||f||_{L^{n/\beta}(\mu)}$$

Now we verify (2.6). Decompose

$$\begin{split} &\frac{1}{\mu(\frac{3}{2}Q)} \int_{Q} |T_{b}f(x) - h_{Q}| \, d\mu(x) \\ &\leq \frac{1}{\mu(\frac{3}{2}Q)} \int_{Q} |T_{b}(f\chi_{\frac{4}{3}Q})(x)| \, d\mu(x) + \frac{1}{\mu(\frac{3}{2}Q)} \int_{Q} |T_{b}(f\chi_{\mathbb{R}^{d}\setminus\frac{4}{3}Q})(x) - h_{Q}| \, d\mu(x) \\ &= \mathrm{H} + \mathrm{I}. \end{split}$$

From the Kolmogorov inequality that for $0 and any function <math>f \ge 0$,

$$\|f\|_{L^{q,\infty}(\mu)} \le \sup_{E} \frac{\|f\chi_E\|_{L^{p}(\mu)}}{\|\chi_E\|_{L^{s}(\mu)}} \lesssim \|f\|_{L^{q,\infty}(\mu)},$$

where $L^{q,\infty}(\mu)$ is just weak $L^{q}(\mu)$, $\frac{1}{s} = \frac{1}{p} - \frac{1}{q}$, and the supremum is taken for all measurable sets E with $0 < \mu(E) < \infty$ (see [3, p. 485]), and the condition (II) of Theorem 1.1, it follows that

$$\mathbf{H} \lesssim \frac{1}{\mu(\frac{3}{2}Q)} \|\chi_Q\|_{L^{n/\beta}(\mu)} \|T_b(f\chi_{\frac{4}{3}Q})\|_{L^{q_0,\infty}(\mu)} \lesssim \frac{[\mu(Q)]^{\beta/n}}{\mu(\frac{3}{2}Q)} \|f\chi_{\frac{4}{3}Q}\|_{L^1(\mu)} \lesssim \|f\|_{L^{n/\beta}(\mu)}$$

To estimate I, by (1.2)–(1.4), the Hölder inequality and (1.1), we first have that for any $x, y \in Q$,

$$\begin{split} |T_{b}(f\chi_{\mathbb{R}^{d}\setminus\frac{4}{3}Q})(x) - T_{b}(f\chi_{\mathbb{R}^{d}\setminus\frac{4}{3}Q})(y)| \\ &\leq \int_{\mathbb{R}^{d}\setminus\frac{4}{3}Q} |[b(x) - b(z)]K(x, z) - [b(y) - b(z)]K(y, z)||f(z)| \, d\mu(z) \\ &\leq \int_{\mathbb{R}^{d}\setminus\frac{4}{3}Q} |[b(x) - b(z)][K(x, z) - K(y, z)]||f(z)| \, d\mu(z) \\ &+ \int_{\mathbb{R}^{d}\setminus\frac{4}{3}Q} |[b(x) - b(y)]||K(y, z)||f(z)| \, d\mu(z) \\ &\lesssim \sum_{i=1}^{\infty} \int_{2^{i}\frac{4}{3}Q\setminus2^{i-1}\frac{4}{3}Q} \frac{|x - y|^{\delta}}{|x - z|^{n+\delta-\beta}} |f(z)| \, d\mu(z) + \sum_{i=1}^{\infty} \int_{2^{i}\frac{4}{3}Q\setminus2^{i-1}\frac{4}{3}Q} \frac{|x - y|^{\beta}}{|y - z|^{n}} |f(z)| \, d\mu(z) \\ &\lesssim \|f\|_{L^{n/\beta}(\mu)} \Big\{ \sum_{i=1}^{\infty} \frac{2^{-i\delta}}{l(2^{i}\frac{4}{3}Q)^{n-\beta}} \Big[\mu\Big(2^{i}\frac{4}{3}Q\Big) \Big]^{1-\beta/n} + \sum_{i=1}^{\infty} \frac{l(Q)^{\beta}}{l(2^{i}\frac{4}{3}Q)^{n}} \Big[\mu\Big(2^{i}\frac{4}{3}Q\Big) \Big]^{1-\beta/n} \Big\} \\ &\lesssim \|f\|_{L^{n/\beta}(\mu)}. \end{split}$$

Therefore,

$$\mathbf{I} \lesssim \|f\|_{L^{n/\beta}(\mu)}.$$

The estimates for H and I lead to (2.6) immediately.

Now we check (2.7) for chosen $\{h_Q\}_Q$. Let $N_1 = N_{Q,R} + 1$. Write

$$\begin{split} h_Q - h_R &| = |m_Q(T_b[f\chi_{\mathbb{R}^d \setminus \frac{4}{3}Q}]) - m_R(T_b[f\chi_{\mathbb{R}^d \setminus \frac{4}{3}R}])| \\ &\leq |m_Q(T_b[f\chi_{2Q \setminus \frac{4}{3}Q}])| + |m_Q(T_b[f\chi_{2^{N_1}Q \setminus 2Q}])| + |m_R(T_b[f\chi_{2^{N_1}Q \setminus \frac{4}{3}R}])| \\ &+ |m_Q(T_b[f\chi_{\mathbb{R}^d \setminus 2^{N_1}Q}]) - m_R(T_b[f\chi_{\mathbb{R}^d \setminus 2^{N_1}Q}])| \\ &= J_1 + J_2 + J_3 + J_4. \end{split}$$

An argument similar to the estimate for H tells us that

 $J_1 \lesssim ||f||_{L^{n/\beta}(\mu)}$ and $J_3 \lesssim ||f||_{L^{n/\beta}(\mu)}$.

Some calculations completely similar to the estimate for I lead to

$$\mathbf{J}_4 \lesssim \|f\|_{L^{n/\beta}(\mu)}.$$

Finally, we estimate J₂. By (1.2), (1.3) and the Hölder inequality, we obtain that for any $x \in Q$,

$$\begin{aligned} |T_b(f\chi_{2^{N_1}Q\setminus 2Q})(x)| &\lesssim \Big\{ \sum_{i=1}^{N_1-1} \int_{2^{i+1}Q\setminus 2^iQ} \frac{1}{|x-z|^{(n-\beta)q_0}} \, d\mu(z) \Big\}^{1/q_0} \|f\|_{L^{n/\beta}(\mu)} \\ &\lesssim \Big\{ \sum_{i=1}^{N_1-1} \frac{\mu(2^{i+1}Q)}{l(2^{i+1}Q)^n} \Big\}^{1/q_0} \|f\|_{L^{n/\beta}(\mu)} \lesssim K_{Q,R} \|f\|_{L^{n/\beta}(\mu)}. \end{aligned}$$

Then

 $\mathbf{J}_2 \lesssim K_{Q,R} \|f\|_{L^{n/\beta}(\mu)}.$

The estimates for J_1 , J_2 , J_3 and J_4 yield (2.7) and thus this completes the proof of (II) \Rightarrow (III).

(III) \Rightarrow (IV) We first verify that for any cube Q and any bounded function a supported on Q,

$$\int_{Q} |T_{b}a(x)|^{q_{0}} d\mu(x) \lesssim ||a||_{L^{\infty}(\mu)}^{q_{0}} [\mu(2Q)]^{q_{0}}.$$
(2.10)

We consider the following two cases.

Case I $l(Q) \leq \frac{\operatorname{diam}(\operatorname{supp}(\mu))}{20}$. By the condition (III) of Theorem 1.1 and [12, Corollary 3.5], we have

$$\int_{Q} |T_{b}a(x) - m_{\widetilde{Q}}(T_{b}a)|^{q_{0}} d\mu(x) \lesssim ||a||_{L^{n/\beta}(\mu)}^{q_{0}} \mu(2Q) \lesssim ||a||_{L^{\infty}(\mu)}^{q_{0}} [\mu(2Q)]^{q_{0}}.$$

Thus, to prove (2.10), it suffices to verify

$$|m_{\widetilde{Q}}(T_b a)| \lesssim ||a||_{L^{\infty}(\mu)} [\mu(2Q)]^{\beta/n}.$$
 (2.11)

Let $x_0 \in \operatorname{supp}(\mu)$ be the point (or one of the points) in $\mathbb{R}^d \setminus (5Q)^\circ$ which is closest to Q, where $(5Q)^\circ$ is the set of all interior points of 5Q. We denote dist (x_0, Q) by d_0 . Assume that x_0 is a point such that some cube with side length $2^{-i}d_0$ and centered at $x_0, i \geq 2$, is doubling. Otherwise, we choose y_0 in $\operatorname{supp}(\mu) \cap B(x_0, \frac{l(Q)}{100})$ such that this is true for y_0 , and we interchange x_0 with y_0 (see [12, pp. 136–137]). We denote by R a cube concentric with Q with side length $\max\{10d_0, l(\widetilde{Q})\}$. It is easy to check $K_{\widetilde{Q},R} \lesssim 1$. Let Q_0 be the biggest doubling cube centered at x_0 with side length $2^{-i}d_0, i \geq 2$. Then $Q_0 \subset R$ with $K_{Q_0,R} \lesssim 1$, and it is easy to check that

$$|m_{Q_0}(T_b a) - m_{\tilde{Q}}(T_b a)| \lesssim ||T_b a||_* \lesssim ||a||_{L^{n/\beta}(\mu)} \lesssim ||a||_{L^{\infty}(\mu)} [\mu(Q)]^{\beta/n}.$$
 (2.12)

Note that dist $(Q_0, Q) \sim d_0$ and $l(Q) < d_0$. This together with (1.2) and (1.3) tells us that for $y \in Q_0$,

$$|T_b a(y)| \lesssim \frac{\mu(Q)}{d_0^{n-\beta}} ||a||_{L^{\infty}(\mu)} \lesssim [\mu(Q)]^{\beta/n} ||a||_{L^{\infty}(\mu)}.$$

Therefore,

$$|m_{Q_0}(T_b a)| \lesssim [\mu(Q)]^{\beta/n} ||a||_{L^{\infty}(\mu)}.$$
(2.13)

The estimates (2.12) and (2.13) lead to (2.11) in this case.

Case II $l(Q) > \frac{\operatorname{diam}(\operatorname{supp}(\mu))}{20}$. We may assume Q is centered at some point of $\operatorname{supp}(\mu)$ and $l(Q) \leq 4\operatorname{diam}(\operatorname{supp}(\mu))$. Then $Q \cap \operatorname{supp}(\mu)$ can be covered by a finite number of cubes, $\{Q_j\}_{j=1}^J$, centered at points of $\operatorname{supp}(\mu)$ with side length $\frac{l(Q)}{200}$. It is quite easy to check that J only depends on d. We set

$$a_j = \frac{\chi_{Q_j}}{\sum\limits_{i=1}^J \chi_{Q_i}} a_i$$

Since (2.11) is true, if we replace Q by $2Q_j$ which contains the support of a_j , by (1.2) and (1.3), we have

$$\begin{split} \int_{Q} |T_{b}a(x)|^{q_{0}} d\mu(x) &\lesssim \sum_{j=1}^{J} \int_{Q \setminus 2Q_{j}} |T_{b}a_{j}(x)|^{q_{0}} d\mu(x) + \sum_{j=1}^{J} \int_{2Q_{j}} |T_{b}a_{j}(x)|^{q_{0}} d\mu(x) \\ &\lesssim \sum_{j=1}^{J} \int_{Q \setminus 2Q_{j}} \left[\int_{Q_{j}} \frac{|a_{j}(y)|}{|x-y|^{n-\beta}} d\mu(y) \right]^{q_{0}} d\mu(x) + \sum_{j=1}^{J} ||a_{j}||^{q_{0}}_{L^{\infty}(\mu)} [\mu(4Q_{j})]^{q_{0}} \\ &\lesssim \sum_{j=1}^{J} ||a_{j}||^{q_{0}}_{L^{\infty}(\mu)} \frac{[\mu(Q_{j})]^{q_{0}}}{l(Q_{j})^{n}} \mu(Q) + \sum_{j=1}^{J} ||a_{j}||^{q_{0}}_{L^{\infty}(\mu)} [\mu(4Q_{j})]^{q_{0}} \\ &\lesssim J ||a||^{q_{0}}_{L^{\infty}(\mu)} \mu(2Q)^{q_{0}}. \end{split}$$

Thus (2.11) also holds in this case.

To prove (IV), by the standard argument, it is enough to verify that

$$||T_b h||_{L^{q_0}(\mu)} \lesssim |h|_{H^{1,\infty}_{atb}(\mu)}$$
(2.14)

for any atomic block h with supp $(h) \subset R$, $h = \sum_{j=1}^{2} \lambda_j a_j$, where the a_j 's are functions as in Definition 2.1 satisfying the following size condition that

$$||a_j||_{L^{\infty}(\mu)} \le [\mu(4Q_j)]^{-1} K_{Q_j,R}^{-1}.$$
(2.15)

Write

$$\int_{\mathbb{R}^d} |T_b h(x)|^{q_0} d\mu(x) = \int_{2R} |T_b h(x)|^{q_0} d\mu(x) + \int_{\mathbb{R}^d \setminus 2R} |T_b h(x)|^{q_0} d\mu(x) = \mathcal{L}_1 + \mathcal{L}_2.$$

To estimate L_1 , further decompose

$$\mathcal{L}_{1} \lesssim \sum_{j=1}^{2} |\lambda_{j}|^{q_{0}} \int_{2Q_{j}} |T_{b}a_{j}(x)|^{q_{0}} d\mu(x) + \sum_{j=1}^{2} |\lambda_{j}|^{q_{0}} \int_{2R \setminus 2Q_{j}} |T_{b}a_{j}(x)|^{q_{0}} d\mu(x) = \mathcal{L}_{11} + \mathcal{L}_{12}.$$

From (2.10) and (2.15), it follows that

$$\mathcal{L}_{11} \lesssim \sum_{j=1}^{2} |\lambda_{j}|^{q_{0}} ||a_{j}||^{q_{0}}_{L^{\infty}(\mu)} \left[\mu(4Q_{j})\right]^{q_{0}} \lesssim \sum_{j=1}^{2} |\lambda_{j}|^{q_{0}}.$$

For L_{12} , by (1.2), (1.3) and (2.15), we have

$$\begin{split} \mathcal{L}_{12} \lesssim \sum_{j=1}^{2} |\lambda_{j}|^{q_{0}} \sum_{i=1}^{N_{Q_{j},R}} \int_{2^{i+1}Q_{j} \setminus 2^{i}Q_{j}} \left\{ \int_{Q_{j}} \frac{|[b(x) - b(y)]|}{|x - y|^{n}} |a_{j}(y)| \, d\mu(y) \right\}^{q_{0}} d\mu(x) \\ \lesssim \sum_{j=1}^{2} |\lambda_{j}|^{q_{0}} \sum_{i=1}^{N_{Q_{j},R}} \int_{2^{i+1}Q_{j} \setminus 2^{i}Q_{j}} \left\{ \int_{Q_{j}} \frac{|a_{j}(y)|}{|x - y|^{n - \beta}} \, d\mu(y) \right\}^{q_{0}} d\mu(x) \\ \lesssim \sum_{j=1}^{2} |\lambda_{j}|^{q_{0}} \sum_{i=1}^{N_{Q_{j},R}} \frac{\mu(2^{i+1}Q_{j})}{l(2^{i+1}Q_{j})^{(n - \beta)q_{0}}} ||a_{j}||_{L^{\infty}(\mu)}^{q_{0}} [\mu(Q_{j})]^{q_{0}} \\ \lesssim \sum_{j=1}^{2} |\lambda_{j}|^{q_{0}} K_{Q_{j},R} ||a_{j}||_{L^{\infty}(\mu)}^{q_{0}} [\mu(Q_{j})]^{q_{0}} \\ \lesssim \sum_{j=1}^{2} |\lambda_{j}|^{q_{0}}. \end{split}$$

The estimates for L_{11} and L_{12} tell us that

$$\mathcal{L}_1 \lesssim |h|_{H^{1,\infty}_{atb}(\mu)}^{q_0}.$$

On the other hand, from the fact $\int_{\mathbb{R}^d} h \, d\mu = 0$, (1.2), (1.3) and (1.4), it follows that

$$\begin{split} \mathbf{L}_{2} &\lesssim \sum_{k=1}^{\infty} \int_{2^{k+1}R \setminus 2^{k}R} \left| \left[b(x) - m_{R}(b) \right] \int_{R} \left[K(x, y) - K(x, x_{R}) \right] h(y) \, d\mu(y) \right|^{q_{0}} d\mu(x) \\ &+ \sum_{k=1}^{\infty} \int_{2^{k+1}R \setminus 2^{k}R} \left| \int_{R} [m_{R}(b) - b(y)] K(x, y) h(y) \, d\mu(y) \right|^{q_{0}} d\mu(x) \\ &\lesssim \sum_{k=1}^{\infty} \int_{2^{k+1}R \setminus 2^{k}R} \left| l(2^{k}R)^{\beta} \int_{R} \frac{|y - x_{R}|^{\delta}}{|x - y|^{n + \delta}} \left(\sum_{i=1}^{2} |\lambda_{i}| |a_{i}(y)| \right) d\mu(y) \right|^{q_{0}} d\mu(x) \\ &+ \sum_{k=1}^{\infty} \int_{2^{k+1}R \setminus 2^{k}R} \left| \frac{l(R)^{\beta}}{l(2^{k}R)^{n}} \int_{R} \left(\sum_{i=1}^{2} |\lambda_{i}| |a_{i}(y)| \right) d\mu(y) \right|^{q_{0}} d\mu(x) \\ &\lesssim \left(\sum_{i=1}^{2} |\lambda_{i}| \right)^{q_{0}} \sum_{k=1}^{\infty} l(2^{k}R)^{q_{0}(\beta - n - \delta)} l(R)^{\delta q_{0}} \mu(2^{k+1}R) \\ &+ \left(\sum_{i=1}^{2} |\lambda_{i}| \right)^{q_{0}} \sum_{k=1}^{\infty} l(2^{k}R)^{-q_{0}n} l(R)^{\beta q_{0}} \mu(2^{k+1}R) \\ &\lesssim \left(\sum_{i=1}^{2} |\lambda_{i}| \right)^{q_{0}}. \end{split}$$

Combining the estimates for L_1 and L_2 yields (2.14) and this completes the proof of (III) \Rightarrow (IV).

(IV) \Rightarrow (I) First we claim that for any cube Q and any function $f \in L^1(\mu)$ with supp $(f) \subset \frac{4}{3}Q$ and any $x \in Q$,

$$\frac{1}{\mu(\frac{3}{2}Q)} \int_{Q} |T_b f(y)| \, d\mu(y) \lesssim ||f||_{L^{n/\beta}(\mu)}.$$
(2.16)

We also consider two cases.

Case A $l(Q) \leq \frac{\operatorname{diam}(\operatorname{supp}(\mu))}{20}$. We consider the same construction as the one in (III) \Rightarrow (IV). Let Q, Q_0 and R be the same as there. We have known that $Q, Q_0 \subset R, K_{Q,R} \leq 1, K_{Q_0,R} \leq 1$ and dist $(Q_0, Q) \geq l(Q)$. Recall also that Q_0 is doubling.

Let

$$g = f + C_{Q_0} \chi_{Q_0},$$

where C_{Q_0} is a constant such that $\int_{\mathbb{R}^d} g \, d\mu = 0$. Then g is an atomic block supported in R. It is easy to check

$$\|g\|_{H^{1,n/\beta}_{atb}(\mu)} \lesssim \left[\mu\left(\frac{3}{2}Q\right)\right]^{1/q_0} \|f\|_{L^{n/\beta}(\mu)}$$

This and the fact that $H_{atb}^{1,n/\beta}(\mu) = H^1(\mu)$ imply that

$$\|g\|_{H^{1}(\mu)} \lesssim \left[\mu\left(\frac{3}{2}Q\right)\right]^{1/q_{0}} \|f\|_{L^{n/\beta}(\mu)}.$$
(2.17)

For $y \in Q$, we have

$$|T_b(C_{Q_0}\chi_{Q_0})(y)| \lesssim \frac{|C_{Q_0}|\mu(Q_0)}{\operatorname{dist}(Q, Q_0)^{n-\beta}} \lesssim ||f||_{L^{n/\beta}(\mu)}.$$
(2.18)

Then by the Hölder inequality, the condition (V) of Theorem 1.1 and (2.17), we obtain that

$$\int_{Q} |T_{b}g(y)| d\mu(y) = \left\{ \int_{Q} |T_{b}g(y)|^{q_{0}} d\mu(y) \right\}^{1/q_{0}} \mu(Q)^{1-1/q_{0}}$$
$$\lesssim \mu(Q)^{1-1/q_{0}} \|g\|_{H^{1}(\mu)} \lesssim \mu\left(\frac{3}{2}Q\right) \|f\|_{L^{n/\beta}(\mu)}.$$
(2.19)

The estimates (2.18) and (2.19) indicate (2.16).

Case B $l(Q) > \frac{\operatorname{diam}(\operatorname{supp}(\mu))}{20}$. By an argument similar to the proof of (2.10) in the case of $l(Q) > \frac{\operatorname{diam}(\operatorname{supp}(\mu))}{20}$, we can prove that (2.16) also holds.

Now we turn to prove (I). By Lemma 2.2, we only need to verify that T_b is bounded from $L^{n/\beta}(\mu)$ into RBMO(μ). Repeating the proof of (2.6) and (2.7) step by step with replacing the weak $(L^1(\mu), L^{n/(n-\beta)}(\mu))$ type estimate of T_b by (2.16) when estimating H, we can prove that T_b is bounded from $L^{n/\beta}(\mu)$ into RBMO(μ). This finishes the proof of (V) \Rightarrow (I) and, therefore, the proof of Theorem 1.1.

References

- García-Cuerva, J. and Gatto, A. E., Lipschitz spaces and Calderón-Zygmund operators associated to non-doubling measures, *Publ. Mat.*, 49, 2005, 285–296.
- [2] García-Cuerva, J. and Martell, J., Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces, *Indiana Univ. Math. J.*, 50, 2001, 1241–1280.
- [3] García-Cuerva, J. and Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, North-Holland Math. Studies, Vol. 16, North-Holland, Amesterdan, 1985.
- [4] Hu, G., Meng, Y. and Yang, D. C., Boundedness of Riesz potentials in non-homogeneous spaces, Acta Math. Sci. Ser. B Engl. Ed., to appear, 2008.

- [5] Meng, Y. and Yang, D. C., Boundedness of commutators with Lipschitz function in nonhomogeneous spaces, *Taiwanese J. Math.*, 10, 2006, 1443–1464.
- [6] Nazarov, F., Treil, S. and Volberg, A., Weak type estimates and Cotlar's inequalities for Calderón-Zygmund operators on non-homogeneous spaces, Int. Math. Res. Not., 9, 1998, 463–487.
- [7] Nazarov, F., Treil, S. and Volberg, A., Accretive system *Tb*-theorems on nonhomogeneous spaces, *Duke Math. J.*, **113**, 2002, 259–312.
- [8] Nazarov, F., Treil, S. and Volberg, A., The *Tb*-theorem on non-homogeneous spaces, *Acta Math.*, 190, 2003, 151–239.
- [9] Orobitg, J. and Pérez, C., A_p weights for nondoubling measures in \mathbb{R}^n and applications, *Trans. Amer.* Math. Soc., **354**, 2002, 2013–2033.
- [10] Tolsa, X., A T(1) theorem for non-doubling measures with atoms, Proc. London Math. Soc., 82, 2001, 195–228.
- [11] Tolsa, X., Littlewood-Paley theory and the T(1) theorem with non-doubling measures, Adv. Math., 164, 2001, 57–116.
- [12] Tolsa, X., BMO, H^1 and Calderón-Zygmund operators for non doubling measures, *Math. Ann.*, **319**, 2001, 89–149.
- [13] Tolsa, X., A proof of the weak (1, 1) inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition, Publ. Mat., 45, 2001, 163–174.
- [14] Tolsa, X., Painlevé's problem and the semiadditivity of analytic capacity, Acta Math., 190, 2003, 105–149.
- [15] Tolsa, X., The space H¹ for nondoubling measures in terms of a grand maximal operator, Trans. Amer. Math. Soc., 355, 2003, 315–348.
- [16] Verdera, J., The fall of the doubling condition in Calderón-Zygmund theory, Publ. Mat., Vol. Extra, 2002, 275–292.