(C) The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2007

Boundedness of Commutators with Lipschitz Functions in Non-homogeneous Spaces****

Xiaoli FU* Yan MENG** Dachun YANG***

Abstract

Under the assumption that the underlying measure is a non-negative Radon measure which only satisfies some growth condition, the authors prove that for a class of commutators with Lipschitz functions which include commutators generated by CalderónZygmund operators and Lipschitz functions as examples, their boundedness in Lebesgue spaces or the Hardy space $H^{1}(\mu)$ is equivalent to some endpoint estimates satisfied by them. This result is new even when the underlying measure μ is the d-dimensional Lebesgue measure.

Keywords Commutator, Lipschitz function, Lebesgue space, Hardy space, RBMO space, Non-doubling measure
2000 MR Subject Classification 47B47, 42B20

1 Introduction

Let μ be a non-negative measure on \mathbb{R}^{d} which only satisfies the following growth condition that there exists a positive constant C_{0} such that

$$
\begin{equation*}
\mu(B(x, r)) \leq C_{0} r^{n} \tag{1.1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{d}$ and $r>0$, where $B(x, r)=\left\{y \in \mathbb{R}^{d}:|y-x|<r\right\}, n$ is a fixed number and $0<n \leq$ d. We call the Euclidean space \mathbb{R}^{d} endowed with the usual Euclidean distance and the measure satisfying (1.1) a non-homogeneous space, since the measure μ is not necessary to satisfy the doubling condition which is a key assumption in the analysis on spaces of homogeneous type. Here, we recall that μ is said to satisfy the doubling condition if there exists some positive constant C such that $\mu(B(x, 2 r)) \leq C \mu(B(x, r))$ for all $x \in \operatorname{supp} \mu$ and $r>0$. Recently, considerable attention has been paid to Calderón-Zygmund operator theory in non-homogeneous spaces and many classical results have been proved still valid in non-homogeneous spaces (see [2, 6-11]). The motivation for developing the analysis on non-homogeneous spaces and some examples of non-doubling measures can be found in [16]. We only point out that the analysis

[^0]on non-homogeneous spaces played an essential role in solving the long-standing Painlevé's problem by Tolsa in [14].

The purpose of this paper is to investigate the relation between the boundedness of commutators with Lipschitz functions, which include commtators generated by Calderón-Zygmund operators and Lipschitz functions, in Lebesgue spaces or the Hardy space $H^{1}(\mu)$ and some endpoint estimates for them.

To this end, we first introduce the Lipschitz function in non-homogeneous spaces of GarcíaCuerva and Gatto in [1].

Definition 1.1 Let $\beta>0$ and $b \in L_{\text {loc }}^{1}(\mu)$. We say that b belongs to the space $\operatorname{Lip}(\beta, \mu)$ if there is a constant $C>0$ such that

$$
\begin{equation*}
|b(x)-b(y)| \leq C|x-y|^{\beta} \tag{1.2}
\end{equation*}
$$

for μ-almost every x and y in the support of μ. The minimal constant C appeared in (1.2) is the $\operatorname{Lip}(\beta, \mu)$ norm of b and is denoted simply by $\|b\|_{\operatorname{Lip}(\beta)}$.

Let $b \in \operatorname{Lip}_{\beta}(\mu)$ for $0<\beta \leq 1$ and K be a function on $\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{(x, y): x=y\}$ that satisfies

$$
\begin{equation*}
|K(x, y)| \leq C|x-y|^{-n} \quad \text { for } x \neq y \tag{1.3}
\end{equation*}
$$

and if $|x-y| \geq 2\left|x-x^{\prime}\right|$,

$$
\begin{equation*}
\left|K(x, y)-K\left(x^{\prime}, y\right)\right|+\left|K(y, x)-K\left(y, x^{\prime}\right)\right| \leq C \frac{\left|x-x^{\prime}\right|^{\delta}}{|x-y|^{n+\delta}} \tag{1.4}
\end{equation*}
$$

where $\delta \in(0,1]$ and $C>0$ are positive constants independent of x, x^{\prime} and y. We define the commutator T_{b} associated with the Lipschitz function b and the kernel K satisfying (1.3) and (1.4) as follows. For any bounded function f with compact support and μ-a.e. $x \notin \operatorname{supp}(f)$,

$$
\begin{equation*}
T_{b} f(x)=\int_{\mathbb{R}^{d}}[b(x)-b(y)] K(x, y) f(y) d \mu(y) \tag{1.5}
\end{equation*}
$$

Obviously, the commutator generated by the Calderón-Zygmund operator and Lipschitz function satisfies (1.5) (see [5]). Moreover, the boundedness of Calderón-Zygmund commutators with Lipschitz functions in Lebesgue spaces and the Hardy space $H^{1}(\mu)$, and some endpoint estimates for them can also be found in [5]. In this paper, we will prove the boundedness of commutators defined by (1.5) in Lebesgue spaces and the Hardy space $H^{1}(\mu)$ is equivalent to some endpoint estimates satisfied by them. We point out that our result is new even when μ is the d-dimensional Lebesgue measure.

Before stating our result, we need to recall some necessary notation and definitions.
Throughout this paper, by a cube $Q \subset \mathbb{R}^{d}$, we mean a closed cube with sides parallel to the axes and centered at some point of $\operatorname{supp}(\mu)$. For any cube $Q \subset \mathbb{R}^{d}$, we denote its length by $l(Q)$ and denote its center by x_{Q}. Let $\alpha>1$ and $\beta>\alpha^{n}$. We say that Q is a (α, β)-doubling cube if $\mu(\alpha Q) \leq \beta \mu(Q)$, where αQ denotes the cube with the same center as Q and having the length $\alpha l(Q)$. It was pointed out by Tolsa in [12] that for any $x \in \operatorname{supp}(\mu)$ and $c>0$, there exists some (α, β)-doubling cube Q centered at x with $l(Q) \geq c$. On the other hand, if $\beta>\alpha^{d}$, then for μ-a.e. $x \in \mathbb{R}^{d}$, there exists a sequence of (α, β)-doubling cubes $\left\{Q_{i}\right\}_{i \in \mathbb{N}}$ centered at
x with $l\left(Q_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. In the sequel, for definiteness, if α and β are not specified, by a doubling cube we mean a $\left(2,2^{d+1}\right)$-doubling cube. Especially, for any given cube Q, we denote by \widetilde{Q} the smallest doubling cube in the family $\left\{2^{i} Q\right\}_{i \geq 0}$. Given two cubes $Q \subset R$ in \mathbb{R}^{d}, set

$$
K_{Q, R}=1+\sum_{i=1}^{N_{Q, R}} \frac{\mu\left(2^{i} Q\right)}{l\left(2^{i} Q\right)^{n}}
$$

where $N_{Q, R}$ is the smallest positive integer i such that $l\left(2^{i} Q\right) \geq l(R)$.
Using the coefficient $K_{Q, R}$, Tolsa in [12] introduced the function space $\operatorname{RBMO}(\mu)$ with the non-doubling measure μ.

Definition 1.2 Let $\rho>1$ be some fixed constant. We say that a function $f \in L_{\mathrm{loc}}^{1}(\mu)$ belongs to the space $\operatorname{RBMO}(\mu)$ if there exists some constant $C>0$ such that for any cube $Q \subset \mathbb{R}^{d}$,

$$
\frac{1}{\mu(\rho Q)} \int_{Q}\left|f(y)-m_{\widetilde{Q}}(f)\right| d \mu(y) \leq C
$$

and for any two doubling cubes $Q \subset R$,

$$
\left|m_{Q}(f)-m_{R}(f)\right| \leq C K_{Q, R}
$$

where for any cube $Q \subset \mathbb{R}^{d}, m_{Q}(f)$ denotes the mean of f over the cube Q, that is,

$$
m_{Q}(f)=\frac{1}{\mu(Q)} \int_{Q} f(y) d \mu(y)
$$

The minimal constant $C>0$ as above is defined to be the $\operatorname{RBMO}(\mu)$ norm of f and is denoted by $\|f\|_{*}$.

Tolsa proved in [12] that the definition of $\operatorname{RBMO}(\mu)$ is independent of chosen constant ρ, and that the space $\operatorname{RBMO}(\mu)$ is the dual of the Hardy space $H^{1}(\mu)$. To state the definition of the Hardy space $H^{1}(\mu)$ of Tolsa in $[12,15]$, we first recall the definition of the "grand" maximal operator M_{Φ} of Tolsa in [15].

Definition 1.3 Given $f \in L_{\text {loc }}^{1}(\mu)$, we set

$$
M_{\Phi} f(x)=\sup _{\varphi \sim x}\left|\int_{\mathbb{R}^{d}} f(y) \varphi(y) d \mu(y)\right|
$$

where the notation $\varphi \sim x$ means that $\varphi \in L^{1}(\mu) \cap C^{1}\left(\mathbb{R}^{d}\right)$ and satisfies
(i) $\|\varphi\|_{L^{1}(\mu)} \leq 1$,
(ii) $0 \leq \varphi(y) \leq \frac{1}{|y-x|^{n}}$ for all $y \in \mathbb{R}^{d}$, and
(iii) $|\nabla \varphi(y)| \leq \frac{1}{|y-x|^{n+1}}$ for all $y \in \mathbb{R}^{d}$, where $\nabla=\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{d}}\right)$.

Based on [12, Theorem 1.2], Tolsa defined the Hardy space $H^{1}(\mu)$ as follows.
Definition 1.4 The Hardy space $H^{1}(\mu)$ is the set of all functions $f \in L^{1}(\mu)$ satisfying that $\int_{\mathbb{R}^{d}} f d \mu=0$ and $M_{\Phi} f \in L^{1}(\mu)$. Moreover, the norm of $f \in H^{1}(\mu)$ is defined by

$$
\|f\|_{H^{1}(\mu)}=\|f\|_{L^{1}(\mu)}+\left\|M_{\Phi} f\right\|_{L^{1}(\mu)}
$$

Here is the main result of this paper.
Theorem 1.1 Let $b \in \operatorname{Lip}(\beta, \mu)$ for $0<\beta \leq 1$. Let K be a function on $\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{(x, y)$: $x=y\}$ satisfying (1.3) and (1.4) and the commutator T_{b} be as in (1.5). Then there exists a constant $C>0$ such that for all bounded function f with compact support, the following statements are equivalent:
(I) if $1<p<\frac{n}{\beta}$ and $\frac{1}{q}=\frac{1}{p}-\frac{\beta}{n}$,

$$
\left\|T_{b} f\right\|_{L^{q}(\mu)} \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{L^{p}(\mu)}
$$

(II) for all $\lambda>0$,

$$
\mu\left(\left\{x \in \mathbb{R}^{d}:\left|T_{b} f(x)\right|>\lambda\right\}\right) \leq C\|b\|_{\operatorname{Lip}(\beta)}\left\{\lambda^{-1}\|f\|_{L^{1}(\mu)}\right\}^{n /(n-\beta)}
$$

(III)

$$
\left\|T_{b} f\right\|_{*} \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{L^{n / \beta}(\mu)}
$$

(IV)

$$
\left\|T_{b} f\right\|_{L^{n /(n-\beta)}(\mu)} \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{H^{1}(\mu)}
$$

Throughout this paper, C denotes a positive constant that is independent of the main parameters involved but whose value may differ from line to line. Constants with subscripts, such as C_{0}, do not change in different occurrences. For any index $p \in[1, \infty]$, we denote by p^{\prime} its conjugate index, namely, $\frac{1}{p}+\frac{1}{p}^{\prime}=1$. For $A \sim B$, we mean that there is a constant $C>0$ such that $C^{-1} B \leq A \leq C B$. Similar is $A \lesssim B$.

2 Proof of Theorem 1.1

We begin with the atomic characterization of the Hardy space $H^{1}(\mu)($ see $[12,15])$.
Definition 2.1 Let $\rho>1$ and $1<p \leq \infty$. A function $b \in L_{\text {loc }}^{1}(\mu)$ is called a p-atomic block if
(1) there exists some cube R such that $\operatorname{supp}(b) \subset R$,
(2) $\int_{\mathbb{R}^{d}} b d \mu=0$,
(3) for $j=1,2$, there are functions a_{j} supported on cube $Q_{j} \subset R$ and numbers $\lambda_{j} \in \mathbb{R}$ such that $b=\lambda_{1} a_{1}+\lambda_{2} a_{2}$, and

$$
\left\|a_{j}\right\|_{L^{p}(\mu)} \leq\left\{\left[\mu\left(\rho Q_{j}\right)\right]^{1-1 / p} K_{Q_{j}, R}\right\}^{-1}
$$

Then we define

$$
|b|_{H_{a t b}^{1, p}(\mu)}=\left|\lambda_{1}\right|+\left|\lambda_{2}\right| .
$$

We say that $f \in H_{a t b}^{1, p}(\mu)$ if there are p-atomic blocks $\left\{b_{i}\right\}_{i \in \mathbb{N}}$ such that

$$
f=\sum_{i=1}^{\infty} b_{i} \quad \text { with } \quad \sum_{i=1}^{\infty}\left|b_{i}\right|_{H_{a t b}^{1, p}(\mu)}<\infty .
$$

The $H_{a t b}^{1, p}(\mu)$ norm of f is defined by

$$
\|f\|_{H_{a t b}^{1, p}(\mu)}=\inf \left\{\sum_{i}\left|b_{i}\right|_{H_{a t b}^{1, p}(\mu)}\right\}
$$

where the infimum is taken over all the possible decompositions of f in atomic blocks.
It was proved by Tolsa in $[12,15]$ that the definition of $H_{a t b}^{1, p}(\mu)$ is independent of chosen constant $\rho>1$. For $1<p \leq \infty$, the atomic Hardy spaces $H_{a t b}^{1, p}(\mu)$ are just the Hardy space $H^{1}(\mu)$ with equivalent norms.

To prove Theorem 1.1, we need to introduce the Calderón-Zygmund decomposition in $[12,13]$ as follows.

Lemma 2.1 For $1 \leq p<\infty$, consider $f \in L^{p}(\mu)$ with compact support. For any $\lambda>0$ (with $\lambda>\frac{2^{d+1}\|f\|_{L^{1}(\mu)}}{\|\mu\|}$ if $\left.\|\mu\|<\infty\right)$, there exists a sequence of cubes $\left\{Q_{j}\right\}$ with bounded overlaps, that is, $\sum_{j} \chi_{Q_{j}}(x) \leq C<\infty$, such that
(a) $\frac{1}{\mu\left(2 Q_{j}\right)} \int_{Q_{j}}|f(x)|^{p} d \mu(x)>\frac{\lambda^{p}}{2^{d+1}}$;
(b) $\frac{1}{\mu\left(2 \eta Q_{j}\right)} \int_{\eta Q_{j}}|f(x)|^{p} d \mu(x) \leq \frac{\lambda^{p}}{2^{d+1}}$ for any $\eta>2$;
(c) $|f(x)| \leq \lambda \mu$-a.e. on $\mathbb{R}^{d} \backslash \bigcup_{j} Q_{j}$;
(d) for each fixed j, let R_{j} be the smallest $\left(6,6^{n+1}\right)$-doubling cube of the form $6^{i} Q_{j}, i \geq 1$. Set $w_{j}=\frac{\chi Q_{j}}{\sum_{i} \chi Q_{i}}$. Then there is a function φ_{j} with $\operatorname{supp} \varphi_{j} \subset R_{j}$ and some positive constant C satisfying

$$
\int_{\mathbb{R}^{d}} \varphi_{j}(x) d \mu(x)=\int_{Q_{j}} f(x) w_{j}(x) d \mu(x) \quad \text { and } \quad \sum_{j}\left|\varphi_{j}(x)\right| \leq C \lambda
$$

Moreover, if $p=1$,

$$
\left\|\varphi_{j}\right\|_{L^{\infty}(\mu)} \mu\left(R_{j}\right) \leq C \int_{Q_{j}}|f(x)| d \mu(x)
$$

and if $1<p<\infty$,

$$
\left\{\int_{R_{j}}\left|\varphi_{j}(x)\right|^{p} d \mu(x)\right\}^{1 / p}\left[\mu\left(R_{j}\right)\right]^{1 / p^{\prime}} \leq \frac{C}{\lambda^{p-1}} \int_{Q_{j}}|f(x)|^{p} d \mu(x)
$$

The following lemma plays an important role in the proof of Theorem 1.1 and its proof can be found in [4].

Lemma 2.2 Let T be a linear operator which is bounded from $L^{p_{0}}(\mu)$ into $\operatorname{RBMO}(\mu)$ and from $H^{1}(\mu)$ into weak $L^{p_{0}^{\prime}}(\mu)$. Then T extends boundedly from $L^{p}(\mu)$ into $L^{q}(\mu)$, where $1<$ $p<p_{0}<\infty$ and $\frac{1}{q}=\frac{1}{p}-\frac{1}{p_{0}}$.

Now we turn to the proof of Theorem 1.1.
Proof of Theorem 1.1 By the homogeneity, we may assume that $\|b\|_{\operatorname{Lip}(\beta)}=1$.
$(\mathrm{I}) \Rightarrow(\mathrm{II}) \quad$ Without loss of generality, we may assume that $\|f\|_{L^{1}(\mu)}=1$.
It is easy to see that the conclusion (II) holds if $\lambda \leq \frac{2^{d+1}\|f\|_{L^{1}(\mu)}}{\|\mu\|}$ when $\|\mu\|<\infty$. Then we assume that $\lambda>\frac{2^{d+1}\|f\|_{L^{1}(\mu)}}{\|\mu\|}$ if $\|\mu\|<\infty$. For f and any fixed $\lambda>\frac{2^{d+1}\|f\|_{L^{1}(\mu)}}{\|\mu\|}$, applying Lemma 2.1 with λ replaced by $\lambda^{q_{0}}$ with $q_{0}=\frac{n}{n-\beta}$, we obtain that with the same notation as in Lemma 2.1, $f=g+h$, where

$$
\begin{aligned}
g(x) & =f(x) \chi_{\mathbb{R}^{d} \backslash \cup_{j} Q_{j}}(x)+\sum_{j} \varphi_{j}(x), \\
h(x) & =f(x)-g(x)=\sum_{j}\left[w_{j}(x) f(x)-\varphi_{j}(x)\right]=\sum_{j} h_{j}(x) .
\end{aligned}
$$

By Lemma 2.1, we can obtain the following properties:
(A) $\frac{1}{\mu\left(2 Q_{j}\right)} \int_{Q_{j}}|f(x)| d \mu(x)>\frac{\lambda^{q_{0}}}{2^{d+1}} ;$
(B) $|f(x)| \leq \lambda^{q_{0}}, \quad \mu$ - a.e. $x \in \mathbb{R}^{d} \backslash \bigcup_{j} Q_{j} ;$
(C) $\int_{R_{j}} \varphi_{j}(x) d \mu(x)=\int_{Q_{j}} f(x) w_{j}(x) d \mu(x) ;$
(D) $\left\|\varphi_{j}\right\|_{L^{\infty}(\mu)} \mu\left(R_{j}\right) \lesssim \int_{Q_{j}}|f(x)| d \mu(x) ;$
(E) $\sum_{j}\left|\varphi_{j}(x)\right| \lesssim \lambda^{q_{0}}$.

By (B) and (D), we easily obtain

$$
\begin{equation*}
\|g\|_{L^{1}(\mu)} \lesssim\|f\|_{L^{1}(\mu)} \lesssim 1 \tag{2.1}
\end{equation*}
$$

From (B) and (E), it follows that for μ - a. e. $x \in \mathbb{R}^{d}$,

$$
\begin{equation*}
|g(x)| \lesssim \lambda^{q_{0}} \tag{2.2}
\end{equation*}
$$

Choose $1<p_{1}<\frac{n}{\beta}$ and $\frac{1}{q_{1}}=\frac{1}{p_{1}}-\frac{\beta}{n}$. The boundedness of T_{b} from $L^{p_{1}}(\mu)$ into $L^{q_{1}}(\mu),(2.1)$ and (2.2) give us that

$$
\begin{align*}
\mu\left(\left\{x \in \mathbb{R}^{d}:\left|T_{b} g(x)\right|>\lambda\right\}\right) & \lesssim \lambda^{-q_{1}} \int_{\mathbb{R}^{d}}\left|T_{b} g(x)\right|^{q_{1}} d \mu(x) \lesssim \lambda^{-q_{1}}\|g\|_{L^{p_{1}}(\mu)}^{q_{1}} \\
& \lesssim \lambda^{-q_{1}} \lambda^{q_{0}\left(p_{1}-1\right) q_{1} / p_{1}}\|f\|_{L^{1}(\mu)}^{q_{1} / p_{1}} \lesssim \lambda^{-q_{0}} \tag{2.3}
\end{align*}
$$

The facts (A) and $\sum_{j} \chi_{Q_{j}}(x) \lesssim 1$ tell us that

$$
\begin{equation*}
\mu\left(\bigcup_{j} 2 Q_{j}\right) \lesssim \lambda^{-q_{0}} \int_{\mathbb{R}^{d}}|f(y)| d \mu(y) \lesssim \lambda^{-q_{0}} \tag{2.4}
\end{equation*}
$$

Noting that $f=g+h$, from (2.3) and (2.4), we deduce that the proof of (II) can be reduced to proving that

$$
\begin{equation*}
\mu\left(\left\{x \in \mathbb{R}^{d} \backslash \bigcup_{j} 2 Q_{j}:\left|T_{b} h(x)\right|>\lambda\right\}\right) \lesssim \lambda^{-q_{0}} \tag{2.5}
\end{equation*}
$$

Let θ be a bounded function satisfying $\|\theta\|_{L^{q_{0}^{\prime}}(\mu)} \leq 1$ and $\operatorname{supp} \theta \subset \mathbb{R}^{d} \backslash \bigcup_{j} 2 Q_{j}$. Then

$$
\begin{aligned}
& \int_{\mathbb{R}^{d} \backslash \bigcup_{j} Q_{j}}\left|T_{b} h(x) \theta(x)\right| d \mu \\
\leq & \sum_{j} \int_{\mathbb{R}^{d} \backslash 2 R_{j}}\left|T_{b} h_{j}(x) \theta(x)\right| d \mu(x)+\sum_{j} \int_{2 R_{j} \backslash 2 Q_{j}}\left|T_{b} h_{j}(x) \theta(x)\right| d \mu(x) \\
= & \mathrm{F}_{1}+\mathrm{F}_{2} .
\end{aligned}
$$

Recall that $h_{j}=w_{j} f-\varphi_{j}$. This together with (C) gives us that

$$
\int_{\mathbb{R}^{d}} h_{j}(x) d \mu(x)=0
$$

By this fact, (1.2)-(1.4) and the Hölder inequality, we have

$$
\begin{aligned}
\mathrm{F}_{1} \leq & \sum_{j} \int_{\mathbb{R}^{d} \backslash 2 R_{j}} \int_{\mathbb{R}^{d}}|\theta(x)|\left|[b(x)-b(y)] K(x, y)-\left[b(x)-b\left(x_{R_{j}}\right)\right] K\left(x, x_{R_{j}}\right)\right| \\
& \times\left|h_{j}(y)\right| d \mu(y) d \mu(x) \\
\leq & \sum_{j} \int_{\mathbb{R}^{d} \backslash 2 R_{j}} \int_{\mathbb{R}^{d}}|\theta(x)|\left|[b(x)-b(y)]\left[K(x, y)-K\left(x, x_{R_{j}}\right)\right]\right|\left|h_{j}(y)\right| d \mu(y) d \mu(x) \\
& +\sum_{j} \int_{\mathbb{R}^{d} \backslash 2 R_{j}} \int_{\mathbb{R}^{d}}\left|\theta(x) \|\left[b\left(x_{R_{j}}\right)-b(y)\right] K\left(x, x_{R_{j}}\right)\right|\left|h_{j}(y)\right| d \mu(y) d \mu(x) \\
\lesssim & \sum_{j} \int_{\mathbb{R}^{d}}\left|h_{j}(y)\right| d \mu(y) \sum_{i=1}^{\infty} \int_{2^{i+1} R_{j} \backslash 2^{i} R_{j}} \frac{l\left(R_{j}\right)^{\delta}}{l\left(2^{i} R_{j}\right)^{n+\delta-\beta}}|\theta(x)| d \mu(x) \\
& +\sum_{j} \int_{\mathbb{R}^{d}}\left|h_{j}(y)\right| d \mu(y) \sum_{i=1}^{\infty} \int_{2^{i+1} R_{j} \backslash 2^{i} R_{j}} \frac{l\left(R_{j}\right)^{\beta}}{l\left(2^{i} R_{j}\right)^{n}}|\theta(x)| d \mu(x) \\
\lesssim & \|\theta\|_{L^{q_{0}^{\prime}}(\mu)} \sum_{j} \int_{Q_{j}}|f(y)| d \mu(y)\left[\sum_{i=1}^{\infty} 2^{-i \delta}+\sum_{i=1}^{\infty} 2^{-i \beta}\right] \\
\lesssim & 1 .
\end{aligned}
$$

On the other hand, (1.2), (1.3), the Hölder inequality and (1.1) lead to

$$
\begin{aligned}
\mathrm{F}_{2} \leq & \sum_{j} \int_{2 R_{j} \backslash 2 Q_{j}}|\theta(x)|\left|T_{b}\left(w_{j} f\right)(x)\right| d \mu(x)+\sum_{j} \int_{2 R_{j}}|\theta(x)|\left|T_{b} \varphi_{j}(x)\right| d \mu(x) \\
& \lesssim \sum_{j} \int_{2 R_{j} \backslash 2 Q_{j}} \frac{|\theta(x)|}{\left|x-x_{Q_{j}}\right|^{n-\beta}} d \mu(x) \int_{Q_{j}}|f(y)| d \mu(y)+\sum_{j}\left\{\int_{2 R_{j}}\left|T_{b} \varphi_{j}(x)\right|^{q_{0}} d \mu(x)\right\}^{1 / q_{0}} \\
\lesssim & \sum_{j} \int_{Q_{j}}|f(y)| d \mu(y)\left\{\sum_{i=1}^{N_{2 Q_{j}, 2 R_{j}}} \int_{2^{i+1} Q_{j} \backslash 2^{i} Q_{j}} \frac{1}{\left|x-x_{Q_{j}}\right|^{(n-\beta) q_{0}}} d \mu(x)\right\}^{1 / q_{0}} \\
& +\sum_{j}\left\{\int_{2 R_{j}}\left|T_{b} \varphi_{j}(x)\right|^{q_{2}} d \mu(x)\right\}^{1 / q_{2}}\left[\mu\left(2 R_{j}\right)\right]^{1 / q_{0}-1 / q_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \lesssim \sum_{j} \int_{Q_{j}}|f(y)| d \mu(y)\left[K_{2 Q_{j}, 2 R_{j}}\right]^{1 / q_{0}}+\sum_{j}\left\|\varphi_{j}\right\|_{L^{p_{2}}(\mu)}\left[\mu\left(2 R_{j}\right)\right]^{1 / q_{0}-1 / q_{2}} \\
& \lesssim \sum_{j} \int_{Q_{j}}|f(y)| d \mu(y)+\sum_{j}\left\|\varphi_{j}\right\|_{L^{\infty}(\mu)} \mu\left(2 R_{j}\right) \\
& \lesssim 1,
\end{aligned}
$$

where we have chosen p_{2} and q_{2} such that $1<p_{2}<\frac{n}{\beta}$ and $\frac{1}{q_{2}}=\frac{1}{p_{2}}-\frac{\beta}{n}$. And we have also used the following simply fact that

$$
\left[K_{2 Q_{j}, 2 R_{j}}\right]^{1 / q_{0}} \leq K_{2 Q_{j}, 2 R_{j}} \lesssim 1
$$

The estimates for F_{1} and F_{2} indicate (2.5) and this finishes the proof of (I) \Rightarrow (II).
$(\mathrm{II}) \Rightarrow(\mathrm{III})$ For any cube Q, let

$$
h_{Q}=m_{Q}\left(T_{b}\left[f \chi_{\mathbb{R}^{d} \backslash \frac{4}{3} Q}\right]\right)
$$

To prove $T_{b} f \in \operatorname{RBMO}(\mu)$, we only need to verify that for any cube Q,

$$
\begin{equation*}
\frac{1}{\mu\left(\frac{3}{2} Q\right)} \int_{Q}\left|T_{b} f(x)-h_{Q}\right| d \mu(x) \lesssim\|f\|_{L^{n / \beta}(\mu)} \tag{2.6}
\end{equation*}
$$

and for any cubes $Q \subset R$,

$$
\begin{equation*}
\left|h_{Q}-h_{R}\right| \lesssim K_{Q, R}\|f\|_{L^{n / \beta}(\mu)} \tag{2.7}
\end{equation*}
$$

In fact, by (2.6), it is easy to see that if Q is doubling, then

$$
\begin{equation*}
\left|m_{Q}\left(T_{b} f\right)-h_{Q}\right| \lesssim \frac{1}{\mu\left(\frac{3}{2} Q\right)} \int_{Q}\left|T_{b} f(x)-h_{Q}\right| d \mu(x) \lesssim\|f\|_{L^{n / \beta}(\mu)} \tag{2.8}
\end{equation*}
$$

Moveover, for any cube $Q, K_{Q, \widetilde{Q}} \lesssim 1$, and then by (2.6), (2.7) and (2.8), we obtain that

$$
\begin{align*}
& \frac{1}{\mu\left(\frac{3}{2} Q\right)} \int_{Q}\left|T_{b} f(x)-m_{\widetilde{Q}}\left(T_{b} f\right)\right| d \mu(x) \\
\leq & \frac{1}{\mu\left(\frac{3}{2} Q\right)} \int_{Q}\left|T_{b} f(x)-h_{Q}\right| d \mu(x)+\left|h_{Q}-h_{\widetilde{Q}}\right|+\left|m_{\widetilde{Q}}\left(T_{b} f\right)-h_{\widetilde{Q}}\right| \\
\lesssim & \|f\|_{L^{n / \beta}(\mu)} . \tag{2.9}
\end{align*}
$$

On the other hand, for any doubling cubes $Q \subset R$, from (2.7) and (2.8), it follows that

$$
\left|m_{Q}\left(T_{b} f\right)-m_{R}\left(T_{b} f\right)\right| \leq\left|m_{Q}\left(T_{b} f\right)-h_{Q}\right|+\left|h_{Q}-h_{R}\right|+\left|h_{R}-m_{R}\left(T_{b} f\right)\right| \lesssim\|f\|_{L^{n / \beta}(\mu)},
$$

which together with (2.9) indicates that $T_{b} f \in \operatorname{RBMO}(\mu)$ and

$$
\left\|T_{b} f\right\|_{*} \lesssim\|f\|_{L^{n / \beta}(\mu)}
$$

Now we verify (2.6). Decompose

$$
\begin{aligned}
& \frac{1}{\mu\left(\frac{3}{2} Q\right)} \int_{Q}\left|T_{b} f(x)-h_{Q}\right| d \mu(x) \\
\leq & \frac{1}{\mu\left(\frac{3}{2} Q\right)} \int_{Q}\left|T_{b}\left(f \chi_{\frac{4}{3} Q}\right)(x)\right| d \mu(x)+\frac{1}{\mu\left(\frac{3}{2} Q\right)} \int_{Q}\left|T_{b}\left(f \chi_{\mathbb{R}^{d} \backslash \frac{4}{3} Q}\right)(x)-h_{Q}\right| d \mu(x) \\
= & \mathrm{H}+\mathrm{I} .
\end{aligned}
$$

From the Kolmogorov inequality that for $0<p<q$ and any function $f \geq 0$,

$$
\|f\|_{L^{q, \infty}(\mu)} \leq \sup _{E} \frac{\left\|f \chi_{E}\right\|_{L^{p}(\mu)}}{\left\|\chi_{E}\right\|_{L^{s}(\mu)}} \lesssim\|f\|_{L^{q, \infty}(\mu)}
$$

where $L^{q, \infty}(\mu)$ is just weak $L^{q}(\mu), \frac{1}{s}=\frac{1}{p}-\frac{1}{q}$, and the supremum is taken for all measurable sets E with $0<\mu(E)<\infty$ (see [3, p. 485]), and the condition (II) of Theorem 1.1, it follows that

$$
\mathrm{H} \lesssim \frac{1}{\mu\left(\frac{3}{2} Q\right)}\left\|\chi_{Q}\right\|_{L^{n / \beta}(\mu)}\left\|T_{b}\left(f \chi_{\frac{4}{3} Q}\right)\right\|_{L^{q_{0}, \infty}(\mu)} \lesssim \frac{[\mu(Q)]^{\beta / n}}{\mu\left(\frac{3}{2} Q\right)}\left\|f \chi_{\frac{4}{3} Q}\right\|_{L^{1}(\mu)} \lesssim\|f\|_{L^{n / \beta}(\mu)}
$$

To estimate I, by (1.2)-(1.4), the Hölder inequality and (1.1), we first have that for any $x, y \in Q$,

$$
\begin{aligned}
& \left|T_{b}\left(f \chi_{\mathbb{R}^{d} \backslash \frac{4}{3} Q}\right)(x)-T_{b}\left(f \chi_{\mathbb{R}^{d} \backslash \frac{4}{3} Q}\right)(y)\right| \\
\leq & \int_{\mathbb{R}^{d} \backslash \frac{4}{3} Q}|[b(x)-b(z)] K(x, z)-[b(y)-b(z)] K(y, z)||f(z)| d \mu(z) \\
\leq & \int_{\mathbb{R}^{d} \backslash \frac{4}{3} Q}|[b(x)-b(z)][K(x, z)-K(y, z)]||f(z)| d \mu(z) \\
& +\int_{\mathbb{R}^{d} \backslash \frac{4}{3} Q}|[b(x)-b(y)]||K(y, z) \| f(z)| d \mu(z) \\
\lesssim & \sum_{i=1}^{\infty} \int_{2^{i} \frac{4}{3} Q \backslash 2^{i-1} \frac{4}{3} Q} \frac{|x-y|^{\delta}}{|x-z|^{n+\delta-\beta}}|f(z)| d \mu(z)+\sum_{i=1}^{\infty} \int_{2^{i} \frac{4}{3} Q \backslash 2^{i-1} \frac{4}{3} Q} \frac{|x-y|^{\beta}}{|y-z|^{n}}|f(z)| d \mu(z) \\
\lesssim & \|f\|_{L^{n / \beta}(\mu)}\left\{\sum_{i=1}^{\infty} \frac{2^{-i \delta}}{l\left(2^{i} \frac{4}{3} Q\right)^{n-\beta}}\left[\mu\left(2^{i} \frac{4}{3} Q\right)\right]^{1-\beta / n}+\sum_{i=1}^{\infty} \frac{l(Q)^{\beta}}{l\left(2^{i} \frac{4}{3} Q\right)^{n}}\left[\mu\left(2^{i} \frac{4}{3} Q\right)\right]^{1-\beta / n}\right\} \\
\lesssim & \|f\|_{L^{n / \beta}(\mu)} .
\end{aligned}
$$

Therefore,

$$
\mathrm{I} \lesssim\|f\|_{L^{n / \beta}(\mu)}
$$

The estimates for H and I lead to (2.6) immediately.
Now we check (2.7) for chosen $\left\{h_{Q}\right\}_{Q}$. Let $N_{1}=N_{Q, R}+1$. Write

$$
\begin{aligned}
\left|h_{Q}-h_{R}\right|= & \left|m_{Q}\left(T_{b}\left[f \chi_{\mathbb{R}^{d} \backslash \frac{4}{3} Q}\right]\right)-m_{R}\left(T_{b}\left[f \chi_{\mathbb{R}^{d} \backslash \frac{4}{3} R}\right]\right)\right| \\
\leq & \left|m_{Q}\left(T_{b}\left[f \chi_{2 Q \backslash \frac{4}{3} Q}\right]\right)\right|+\left|m_{Q}\left(T_{b}\left[f \chi_{2^{N_{1}} Q \backslash 2 Q}\right]\right)\right|+\left|m_{R}\left(T_{b}\left[f \chi_{2^{N_{1}} Q \backslash \frac{4}{3} R}\right]\right)\right| \\
& +\left|m_{Q}\left(T_{b}\left[f \chi_{\mathbb{R}^{d} \backslash 2^{N_{1}} Q}\right]\right)-m_{R}\left(T_{b}\left[f \chi_{\mathbb{R}^{d} \backslash 2^{N_{1}} Q}\right]\right)\right| \\
= & \mathrm{J}_{1}+\mathrm{J}_{2}+\mathrm{J}_{3}+\mathrm{J}_{4} .
\end{aligned}
$$

An argument similar to the estimate for H tells us that

$$
\mathrm{J}_{1} \lesssim\|f\|_{L^{n / \beta}(\mu)} \quad \text { and } \quad \mathrm{J}_{3} \lesssim\|f\|_{L^{n / \beta}(\mu)}
$$

Some calculations completely similar to the estimate for I lead to

$$
\mathrm{J}_{4} \lesssim\|f\|_{L^{n / \beta}(\mu)}
$$

Finally, we estimate J_{2}. By (1.2), (1.3) and the Hölder inequality, we obtain that for any $x \in Q$,

$$
\begin{aligned}
\left|T_{b}\left(f \chi_{2^{N_{1}} Q \backslash 2 Q}\right)(x)\right| & \lesssim\left\{\sum_{i=1}^{N_{1}-1} \int_{2^{i+1} Q \backslash 2^{i} Q} \frac{1}{|x-z|^{(n-\beta) q_{0}}} d \mu(z)\right\}^{1 / q_{0}}\|f\|_{L^{n / \beta}(\mu)} \\
& \lesssim\left\{\sum_{i=1}^{N_{1}-1} \frac{\mu\left(2^{i+1} Q\right)}{l\left(2^{i+1} Q\right)^{n}}\right\}^{1 / q_{0}}\|f\|_{L^{n / \beta}(\mu)} \lesssim K_{Q, R}\|f\|_{L^{n / \beta}(\mu)} .
\end{aligned}
$$

Then

$$
\mathrm{J}_{2} \lesssim K_{Q, R}\|f\|_{L^{n / \beta}(\mu)}
$$

The estimates for J_{1}, J_{2}, J_{3} and J_{4} yield (2.7) and thus this completes the proof of (II) \Rightarrow (III).
$(\mathrm{III}) \Rightarrow(\mathrm{IV})$ We first verify that for any cube Q and any bounded function a supported on Q,

$$
\begin{equation*}
\int_{Q}\left|T_{b} a(x)\right|^{q_{0}} d \mu(x) \lesssim\|a\|_{L^{\infty}(\mu)}^{q_{0}}[\mu(2 Q)]^{q_{0}} \tag{2.10}
\end{equation*}
$$

We consider the following two cases.
Case I $l(Q) \leq \frac{\operatorname{diam}(\operatorname{supp}(\mu))}{20}$. By the condition (III) of Theorem 1.1 and [12, Corollary 3.5], we have

$$
\int_{Q}\left|T_{b} a(x)-m_{\widetilde{Q}}\left(T_{b} a\right)\right|^{q_{0}} d \mu(x) \lesssim\|a\|_{L^{n / \beta}(\mu)}^{q_{0}} \mu(2 Q) \lesssim\|a\|_{L^{\infty}(\mu)}^{q_{0}}[\mu(2 Q)]^{q_{0}}
$$

Thus, to prove (2.10), it suffices to verify

$$
\begin{equation*}
\left|m_{\widetilde{Q}}\left(T_{b} a\right)\right| \lesssim\|a\|_{L^{\infty}(\mu)}[\mu(2 Q)]^{\beta / n} \tag{2.11}
\end{equation*}
$$

Let $x_{0} \in \operatorname{supp}(\mu)$ be the point (or one of the points) in $\mathbb{R}^{d} \backslash(5 Q)^{\circ}$ which is closest to Q, where $(5 Q)^{\circ}$ is the set of all interior points of $5 Q$. We denote $\operatorname{dist}\left(x_{0}, Q\right)$ by d_{0}. Assume that x_{0} is a point such that some cube with side length $2^{-i} d_{0}$ and centered at $x_{0}, i \geq 2$, is doubling. Otherwise, we choose y_{0} in $\operatorname{supp}(\mu) \cap B\left(x_{0}, \frac{l(Q)}{100}\right)$ such that this is true for y_{0}, and we interchange x_{0} with y_{0} (see [12, pp. 136-137]). We denote by R a cube concentric with Q with side length $\max \left\{10 d_{0}, l(\widetilde{Q})\right\}$. It is easy to check $K_{\widetilde{Q}, R} \lesssim 1$. Let Q_{0} be the biggest doubling cube centered at x_{0} with side length $2^{-i} d_{0}, i \geq 2$. Then $Q_{0} \subset R$ with $K_{Q_{0}, R} \lesssim 1$, and it is easy to check that

$$
\begin{equation*}
\left|m_{Q_{0}}\left(T_{b} a\right)-m_{\widetilde{Q}}\left(T_{b} a\right)\right| \lesssim\left\|T_{b} a\right\|_{*} \lesssim\|a\|_{L^{n / \beta}(\mu)} \lesssim\|a\|_{L^{\infty}(\mu)}[\mu(Q)]^{\beta / n} \tag{2.12}
\end{equation*}
$$

Note that $\operatorname{dist}\left(Q_{0}, Q\right) \sim d_{0}$ and $l(Q)<d_{0}$. This together with (1.2) and (1.3) tells us that for $y \in Q_{0}$,

$$
\left|T_{b} a(y)\right| \lesssim \frac{\mu(Q)}{d_{0}^{n-\beta}}\|a\|_{L^{\infty}(\mu)} \lesssim[\mu(Q)]^{\beta / n}\|a\|_{L^{\infty}(\mu)}
$$

Therefore,

$$
\begin{equation*}
\left|m_{Q_{0}}\left(T_{b} a\right)\right| \lesssim[\mu(Q)]^{\beta / n}\|a\|_{L^{\infty}(\mu)} \tag{2.13}
\end{equation*}
$$

The estimates (2.12) and (2.13) lead to (2.11) in this case.
Case II $l(Q)>\frac{\operatorname{diam}(\operatorname{supp}(\mu))}{20}$. We may assume Q is centered at some point of $\operatorname{supp}(\mu)$ and $l(Q) \leq 4 \operatorname{diam}(\operatorname{supp}(\mu))$. Then $Q \cap \operatorname{supp}(\mu)$ can be covered by a finite number of cubes, $\left\{Q_{j}\right\}_{j=1}^{J}$, centered at points of $\operatorname{supp}(\mu)$ with side length $\frac{l(Q)}{200}$. It is quite easy to check that J only depends on d. We set

$$
a_{j}=\frac{\chi_{Q_{j}}}{\sum_{i=1}^{J} \chi_{Q_{i}}} a
$$

Since (2.11) is true, if we replace Q by $2 Q_{j}$ which contains the support of a_{j}, by (1.2) and (1.3), we have

$$
\begin{aligned}
\int_{Q}\left|T_{b} a(x)\right|^{q_{0}} d \mu(x) & \lesssim \sum_{j=1}^{J} \int_{Q \backslash 2 Q_{j}}\left|T_{b} a_{j}(x)\right|^{q_{0}} d \mu(x)+\sum_{j=1}^{J} \int_{2 Q_{j}}\left|T_{b} a_{j}(x)\right|^{q_{0}} d \mu(x) \\
& \lesssim \sum_{j=1}^{J} \int_{Q \backslash 2 Q_{j}}\left[\int_{Q_{j}} \frac{\left|a_{j}(y)\right|}{|x-y|^{n-\beta}} d \mu(y)\right]^{q_{0}} d \mu(x)+\sum_{j=1}^{J}\left\|a_{j}\right\|_{L^{\infty}(\mu)}^{q_{0}}\left[\mu\left(4 Q_{j}\right)\right]^{q_{0}} \\
& \lesssim \sum_{j=1}^{J}\left\|a_{j}\right\|_{L^{\infty}(\mu)}^{q_{0}} \frac{\left[\mu\left(Q_{j}\right)\right]^{q_{0}}}{l\left(Q_{j}\right)^{n}} \mu(Q)+\sum_{j=1}^{J}\left\|a_{j}\right\|_{L^{\infty}(\mu)}^{q_{0}}\left[\mu\left(4 Q_{j}\right)\right]^{q_{0}} \\
& \lesssim J\|a\|_{L^{\infty}(\mu)}^{q_{0}} \mu(2 Q)^{q_{0}}
\end{aligned}
$$

Thus (2.11) also holds in this case.
To prove (IV), by the standard argument, it is enough to verify that

$$
\begin{equation*}
\left\|T_{b} h\right\|_{L^{q_{0}}(\mu)} \lesssim|h|_{H_{a t b}^{1, \infty}(\mu)} \tag{2.14}
\end{equation*}
$$

for any atomic block h with $\operatorname{supp}(h) \subset R, h=\sum_{j=1}^{2} \lambda_{j} a_{j}$, where the a_{j} 's are functions as in Definition 2.1 satisfying the following size condition that

$$
\begin{equation*}
\left\|a_{j}\right\|_{L^{\infty}(\mu)} \leq\left[\mu\left(4 Q_{j}\right)\right]^{-1} K_{Q_{j}, R}^{-1} \tag{2.15}
\end{equation*}
$$

Write

$$
\int_{\mathbb{R}^{d}}\left|T_{b} h(x)\right|^{q_{0}} d \mu(x)=\int_{2 R}\left|T_{b} h(x)\right|^{q_{0}} d \mu(x)+\int_{\mathbb{R}^{d} \backslash 2 R}\left|T_{b} h(x)\right|^{q_{0}} d \mu(x)=\mathrm{L}_{1}+\mathrm{L}_{2}
$$

To estimate L_{1}, further decompose

$$
\mathrm{L}_{1} \lesssim \sum_{j=1}^{2}\left|\lambda_{j}\right|^{q_{0}} \int_{2 Q_{j}}\left|T_{b} a_{j}(x)\right|^{q_{0}} d \mu(x)+\sum_{j=1}^{2}\left|\lambda_{j}\right|^{q_{0}} \int_{2 R \backslash 2 Q_{j}}\left|T_{b} a_{j}(x)\right|^{q_{0}} d \mu(x)=\mathrm{L}_{11}+\mathrm{L}_{12}
$$

From (2.10) and (2.15), it follows that

$$
\mathrm{L}_{11} \lesssim \sum_{j=1}^{2}\left|\lambda_{j}\right|^{q_{0}}\left\|a_{j}\right\|_{L^{\infty}(\mu)}^{q_{0}}\left[\mu\left(4 Q_{j}\right)\right]^{q_{0}} \lesssim \sum_{j=1}^{2}\left|\lambda_{j}\right|^{q_{0}}
$$

For L_{12}, by (1.2), (1.3) and (2.15), we have

$$
\begin{aligned}
\mathrm{L}_{12} & \lesssim \sum_{j=1}^{2}\left|\lambda_{j}\right|^{q_{0}} \sum_{i=1}^{N_{Q_{j}, R}} \int_{2^{i+1} Q_{j} \backslash 2^{i} Q_{j}}\left\{\int_{Q_{j}} \frac{|[b(x)-b(y)]|}{|x-y|^{n}}\left|a_{j}(y)\right| d \mu(y)\right\}^{q_{0}} d \mu(x) \\
& \lesssim \sum_{j=1}^{2}\left|\lambda_{j}\right|^{q_{0}} \sum_{i=1}^{N_{Q_{j}, R}} \int_{2^{i+1} Q_{j} \backslash 2^{i} Q_{j}}\left\{\int_{Q_{j}} \frac{\left|a_{j}(y)\right|}{|x-y|^{n-\beta}} d \mu(y)\right\}^{q_{0}} d \mu(x) \\
& \lesssim \sum_{j=1}^{2}\left|\lambda_{j}\right|^{q_{0}} \sum_{i=1}^{N_{Q_{j}, R}} \frac{\mu\left(2^{i+1} Q_{j}\right)}{l\left(2^{i+1} Q_{j}\right)^{(n-\beta) q_{0}}}\left\|a_{j}\right\|_{L^{\infty}(\mu)}^{q_{0}}\left[\mu\left(Q_{j}\right)\right]^{q_{0}} \\
& \lesssim \sum_{j=1}^{2}\left|\lambda_{j}\right|^{q_{0}} K_{Q_{j}, R}\left\|a_{j}\right\|_{L^{\infty}(\mu)}^{q_{0}}\left[\mu\left(Q_{j}\right)\right]^{q_{0}} \\
& \lesssim \sum_{j=1}^{2}\left|\lambda_{j}\right|^{q_{0}} .
\end{aligned}
$$

The estimates for L_{11} and L_{12} tell us that

$$
\mathrm{L}_{1} \lesssim|h|_{H_{a t b}^{1, \infty}(\mu)}^{q_{0}}
$$

On the other hand, from the fact $\int_{\mathbb{R}^{d}} h d \mu=0,(1.2),(1.3)$ and (1.4), it follows that

$$
\begin{aligned}
\mathrm{L}_{2} \lesssim & \sum_{k=1}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R}\left|\left[b(x)-m_{R}(b)\right] \int_{R}\left[K(x, y)-K\left(x, x_{R}\right)\right] h(y) d \mu(y)\right|^{q_{0}} d \mu(x) \\
& +\sum_{k=1}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R}\left|\int_{R}\left[m_{R}(b)-b(y)\right] K(x, y) h(y) d \mu(y)\right|^{q_{0}} d \mu(x) \\
\lesssim & \sum_{k=1}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R}\left|l\left(2^{k} R\right)^{\beta} \int_{R} \frac{\left|y-x_{R}\right|^{\delta}}{|x-y|^{n+\delta}}\left(\sum_{i=1}^{2}\left|\lambda_{i}\right|\left|a_{i}(y)\right|\right) d \mu(y)\right|^{q_{0}} d \mu(x) \\
& +\sum_{k=1}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R}\left|\frac{l(R)^{\beta}}{l\left(2^{k} R\right)^{n}} \int_{R}\left(\sum_{i=1}^{2}\left|\lambda_{i}\right|\left|a_{i}(y)\right|\right) d \mu(y)\right|^{q_{0}} d \mu(x) \\
\lesssim & \left(\sum_{i=1}^{2}\left|\lambda_{i}\right|\right)^{q_{0}} \sum_{k=1}^{\infty} l\left(2^{k} R\right)^{q_{0}(\beta-n-\delta)} l(R)^{\delta q_{0}} \mu\left(2^{k+1} R\right) \\
& +\left(\sum_{i=1}^{2}\left|\lambda_{i}\right|\right)^{q_{0}} \sum_{k=1}^{\infty} l\left(2^{k} R\right)^{-q_{0} n} l(R)^{\beta q_{0}} \mu\left(2^{k+1} R\right) \\
\lesssim & \left(\sum_{i=1}^{2}\left|\lambda_{i}\right|\right)^{q_{0}} .
\end{aligned}
$$

Combining the estimates for L_{1} and L_{2} yields (2.14) and this completes the proof of (III) \Rightarrow (IV).
$(\mathrm{IV}) \Rightarrow(\mathrm{I})$ First we claim that for any cube Q and any function $f \in L^{1}(\mu)$ with $\operatorname{supp}(f) \subset$ $\frac{4}{3} Q$ and any $x \in Q$,

$$
\begin{equation*}
\frac{1}{\mu\left(\frac{3}{2} Q\right)} \int_{Q}\left|T_{b} f(y)\right| d \mu(y) \lesssim\|f\|_{L^{n / \beta}(\mu)} . \tag{2.16}
\end{equation*}
$$

We also consider two cases.
Case A $l(Q) \leq \frac{\operatorname{diam}(\operatorname{supp}(\mu))}{20}$. We consider the same construction as the one in (III) $\Rightarrow(\mathrm{IV})$. Let Q, Q_{0} and R be the same as there. We have known that $Q, Q_{0} \subset R, K_{Q, R} \lesssim 1, K_{Q_{0}, R} \lesssim 1$ and $\operatorname{dist}\left(Q_{0}, Q\right) \geq l(Q)$. Recall also that Q_{0} is doubling.

Let

$$
g=f+C_{Q_{0}} \chi_{Q_{0}},
$$

where $C_{Q_{0}}$ is a constant such that $\int_{\mathbb{R}^{d}} g d \mu=0$. Then g is an atomic block supported in R. It is easy to check

$$
\|g\|_{H_{a t b}^{1, n / \beta}(\mu)} \lesssim\left[\mu\left(\frac{3}{2} Q\right)\right]^{1 / q_{0}}\|f\|_{L^{n / \beta}(\mu)} .
$$

This and the fact that $H_{a t b}^{1, n / \beta}(\mu)=H^{1}(\mu)$ imply that

$$
\begin{equation*}
\|g\|_{H^{1}(\mu)} \lesssim\left[\mu\left(\frac{3}{2} Q\right)\right]^{1 / q_{0}}\|f\|_{L^{n / \beta}(\mu)} . \tag{2.17}
\end{equation*}
$$

For $y \in Q$, we have

$$
\begin{equation*}
\left|T_{b}\left(C_{Q_{0}} \chi_{Q_{0}}\right)(y)\right| \lesssim \frac{\left|C_{Q_{0}}\right| \mu\left(Q_{0}\right)}{\operatorname{dist}\left(Q, Q_{0}\right)^{n-\beta}} \lesssim\|f\|_{L^{n / \beta}(\mu)} . \tag{2.18}
\end{equation*}
$$

Then by the Hölder inequality, the condition (V) of Theorem 1.1 and (2.17), we obtain that

$$
\begin{align*}
\int_{Q}\left|T_{b} g(y)\right| d \mu(y) & =\left\{\int_{Q}\left|T_{b} g(y)\right|^{q_{0}} d \mu(y)\right\}^{1 / q_{0}} \mu(Q)^{1-1 / q_{0}} \\
& \lesssim \mu(Q)^{1-1 / q_{0}}\|g\|_{H^{1}(\mu)} \lesssim \mu\left(\frac{3}{2} Q\right)\|f\|_{L^{n / \beta}(\mu)} . \tag{2.19}
\end{align*}
$$

The estimates (2.18) and (2.19) indicate (2.16).
Case B $l(Q)>\frac{\operatorname{diam}(\operatorname{supp}(\mu))}{20}$. By an argument similar to the proof of (2.10) in the case of $l(Q)>\frac{\operatorname{diam}(\operatorname{supp}(\mu))}{20}$, we can prove that (2.16) also holds.

Now we turn to prove (I). By Lemma 2.2, we only need to verify that T_{b} is bounded from $L^{n / \beta}(\mu)$ into $\operatorname{RBMO}(\mu)$. Repeating the proof of (2.6) and (2.7) step by step with replacing the weak $\left(L^{1}(\mu), L^{n /(n-\beta)}(\mu)\right)$ type estimate of T_{b} by (2.16) when estimating H, we can prove that T_{b} is bounded from $L^{n / \beta}(\mu)$ into $\operatorname{RBMO}(\mu)$. This finishes the proof of $(\mathrm{V}) \Rightarrow(\mathrm{I})$ and, therefore, the proof of Theorem 1.1.

References

[1] García-Cuerva, J. and Gatto, A. E., Lipschitz spaces and Calderón-Zygmund operators associated to non-doubling measures, Publ. Mat., 49, 2005, 285-296.
[2] García-Cuerva, J. and Martell, J., Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces, Indiana Univ. Math. J., 50, 2001, 1241-1280.
[3] García-Cuerva, J. and Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, NorthHolland Math. Studies, Vol. 16, North-Holland, Amesterdan, 1985.
[4] Hu, G., Meng, Y. and Yang, D. C., Boundedness of Riesz potentials in non-homogeneous spaces, Acta Math. Sci. Ser. B Engl. Ed., to appear, 2008.
[5] Meng, Y. and Yang, D. C., Boundedness of commutators with Lipschitz function in nonhomogeneous spaces, Taiwanese J. Math., 10, 2006, 1443-1464.
[6] Nazarov, F., Treil, S. and Volberg, A., Weak type estimates and Cotlar's inequalities for Calderón-Zygmund operators on non-homogeneous spaces, Int. Math. Res. Not., 9, 1998, 463-487.
[7] Nazarov, F., Treil, S. and Volberg, A., Accretive system Tb-theorems on nonhomogeneous spaces, Duke Math. J., 113, 2002, 259-312.
[8] Nazarov, F., Treil, S. and Volberg, A., The Tb-theorem on non-homogeneous spaces, Acta Math., 190, 2003, 151-239.
[9] Orobitg, J. and Pérez, C., A_{p} weights for nondoubling measures in \mathbb{R}^{n} and applications, Trans. Amer. Math. Soc., 354, 2002, 2013-2033.
[10] Tolsa, X., A $T(1)$ theorem for non-doubling measures with atoms, Proc. London Math. Soc., 82, 2001, 195-228.
[11] Tolsa, X., Littlewood-Paley theory and the $T(1)$ theorem with non-doubling measures, Adv. Math., 164, 2001, 57-116.
[12] Tolsa, X., BMO, H^{1} and Calderón-Zygmund operators for non doubling measures, Math. Ann., 319, 2001, 89-149.
[13] Tolsa, X., A proof of the weak $(1,1)$ inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition, Publ. Mat., 45, 2001, 163-174.
[14] Tolsa, X., Painlevé's problem and the semiadditivity of analytic capacity, Acta Math., 190, 2003, $105-149$.
[15] Tolsa, X., The space H^{1} for nondoubling measures in terms of a grand maximal operator, Trans. Amer. Math. Soc., 355, 2003, 315-348.
[16] Verdera, J., The fall of the doubling condition in Calderón-Zygmund theory, Publ. Mat., Vol. Extra, 2002, 275-292.

[^0]: Manuscript received July 15, 2005.
 *School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China.
 E-mail: xiaoli7925@163.com
 **School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China; School of Information, Renmin University, Beijing 100872, China. E-mail: mengyan77@126.com
 ${ }^{* * *}$ Corresponding author. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China. E-mail: dcyang@bnu.edu.cn
 ${ }^{* * * *}$ Project supported by the National Natural Science Foundation of China (No. 10271015) and the Program for New Century Excellent Talents in Universities of China (No. NCET-04-0142).

