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AND HANKEL OPERATORS**
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Abstract

Extensions of the Hardy and the Bergman modules over the disc algebra are studied. The

author relates extensions of these canonical modules to the symbol spaces of corresponding
Hankel operators. In the context of function theory, an explicit formula of Ext(L2

a(D), H2(D))
is obtained. Finally, it is also proved that Ext(L2

a(D), L2
a(D)) ̸= 0. This may be the essential

difference between the Hardy and the Bergman modules over the disk algebra.
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§1. Introduction

In the present paper, we will continue the study of Hilbert modules[1−5]. Let H be a

Hilbert space and A a function algebra. We say that H is a Hilbert module over A if there

is a multiplication (a, f) → af from A × H to H, making H into an A-module and if,

in addition, the action is jointly continuous in the sup-norm on A and the Hilbert space

norm on H. The category H of all Hilbert A–modules is a natural setting for numerous

questions in operator theory. In [9], Douglas and Paulsen initiated a systematic study of

Hilbert modules: they were able to translate many concepts and problems from operator

theory in the suggestive language of module theory and in addition they began the study of

applications of homological algebra to the categories of Hilbert modules. From an algebraist’s

point of view, H is of interest as a nonabelian category. For the analyst, we expect H to be

a fruitful object of study and a useful tool in operator theory. In studying Hilbert modules,

as in studying any algebraic structure, the standard procedure is to look at submodules and

associated quotient modules. The extension problem then appears quite naturally: given

two Hilbert modules H1, H2, what module H may be constructed with submodule H2 and

associated quotient module H1? The set of equivalence classes of such modules H, denoted
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by ExtH(H1, H2), may then be given a natural A-module structure in a way described by

Carlson and Clark[6].

In this paper, we will concentrate on studing extensions of the Hardy module H2(D) and

the Bergman module L2
a(D) on the disk algebra A = A(D), and relating extensions of these

canonical modules to the symbol spaces of corresponding Hankel operators. In Section 2,

we introduce some basic homological notions and give some immediate results. Section 3

proves that ExtH(L2
a(D),H) ̸= 0 for any nonunitarily isometric module H. In particular, we

obtain an explicit formula for ExtH(L2
a(D),H2(D)). When one studies the Hardy module

and Bergman module over the disk algebra, Hankel operators play an important role. In

almost all cases, one must investigate the symbol spaces of corresponding Hankel operators.

On the one hand, by using such symbol spaces, one can give the explicit expressions of Ext-

groups. On the other hand, by the Hom-Ext sequences, one can determine when a Hankel

operator is bounded. In Section 4, we show that

ExtH(L2
a(D), L2

a(D)) ̸= 0.

As an application, we see that there exists a bounded derivation from A(D) to B(L2
a(D))

which is not inner, while each bounded derivation from A(D) to B(H2(D)) is inner. This

may be the essential difference between the Hardy and the Bergman modules over the disk

algebra.

§2. Homological Preliminaries and Some Immediate Results

In this section, we review some necessary homological notions from the papers [6,7],

and give some immediate results which are used in sequent sections. Let H1, H2 be two

Hilbert modules over A(D). A Hilbert module homomorphism between H1 and H2 is a

bounded linear operator L : H1 → H2 which commutes with the action of A(D). Let H be

the category of all Hilbert modules over A(D) with Hilbert module homomorphisms. The

subcategory C of H consists of those Hilbert modules H, for which the multiplication by z

on H is similar to a contraction (i.e., ∥LzL−1h∥ ≤ ∥h∥ for some bounded invertible linear

operator L : H → H ′). It is easy to check that the subcategory C is full in H. This means

that for H1, H2 ∈ C, the set of homomorphisms from H1 to H2 in C is the same as in H,

i.e.,

HomC(H1,H2) = HomH(H1,H2).

In [6], Carlson and Clark investigated the ExtH-functor in the category H. What seems

to make things most difficult is that the category H lacks enough projective or injective

objects. If we replace H by the category C, Carlson et al.[7] proved that the category C has

enough projective and injective objects, and the Shilov resolution[9] of a contractive module

gives a projective resolution. From [7] and [9], it is not difficult to show that a Hilbert

module in C is projective if and only if it is similar to an isometric Hilbert module; a Hilbert

module is projective and injective if and only if it is similar to a unitary Hilbert module.

The term isometric (resp., unitary) Hilbert module refers to a Hilbert module H such that

the operator of multiplication by z on H is an isometry (resp., a unitary operator). From

the definition[7] of ExtC-functor in the category C, it is easy to see that for H1 and H2 in C,
there is a canonically injective A(D)-module homomorphism

i : ExtC(H1,H2) → ExtH(H1,H2).
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One thus often works in the category C instead of the category H. In this paper, our main

tool is the following Hom-Ext sequences in [6,7]. Let E : 0 → H1
α→ H2

β→ H3 → 0 be an

exact sequence in the category C. Then for any H in C, there are the following Hom-Ext

sequences

0 → Hom(H,H1)
α∗→ Hom(H,H2)

β∗→ Hom(H,H3)

δ→ ExtH(H,H1)
α∗→ ExtH(H,H2)

β∗→ ExtH(H,H3), (2.1)

0 → Hom(H,H1)
α∗→ Hom(H,H2)

β∗→ Hom(H,H3)

δ→ ExtC(H,H1)
α∗→ ExtC(H,H2)

β∗→ ExtC(H,H3). (2.2)

From the above Hom-Ext sequences, we immediately obtain the following proposition which

generalizes Proposition 3.2.6 in [6] by completely different method. For another different

proof of the next proposition, see [15, Theorem 1.3].

Proposition 2.1. If H1, H2 are similar to isometric Hilbert modules, then

ExtC(H1,H2) = ExtH(H1,H2) = 0.

Proof. By the Wold decomposition, we may suppose H2 = H2(H) for some finite or

infinite dimensional Hilbert space H. One thus has the exact sequence of Hilbert modules:

E : 0 → H2(H)
i→ L2(H)

π→ H2(H)⊥ → 0.

Since H1 is projective in C, this forces the sequence

0 → Hom(H1,H
2(H))

i∗→ Hom(H1, L
2(H))

π∗→ Hom(H1,H
2(H)⊥) → 0

to be exact. From this fact and L2(H) being projective in H, the Hom-Ext sequence (2.1)

thus implies

ExtH(H1,H
2(H)) = 0.

This gives what is desired, completing the proof.

Let dA denote the usual normalized area measure on the unit disk D, and let L2(D)

be the space of measurable functions f on D such that
∫
|f |2dA < ∞. The Bergman

module L2
a(D) over A(D) is the set of analytic functions in L2(D). In studying extensions

of the Hardy and the Bergman modules, we will be concerned with the following four kinds

of Hankel operators: from H2(D) to H2(D)⊥; from H2(D) to L2
a(D)⊥; from L2

a(D) to

H2(D)⊥; from L2
a(D) to L2

a(D)⊥. For their definitions, we only see the case from H2(D) to

L2
a(D)⊥. Let ϕ be in L2(D), a densely defined Hankel operator Hϕ : H2(D) → L2

a(D)⊥ is

defined by Hϕh = (I − P )ϕh, h ∈ A(D), where P is the orthogonal projection from L2(D)

to L2
a(D). Therefore, the Hankel operator Hϕ is bounded if and only if the Hϕ in H2(D)

can be continuously extended onto H2(D).

Let µ be a positive finite measure on D. µ is called an i-th (i = 1, 2) Carleson measure

if there is a constant c such that µ(S) ≤ chi for each Carleson square

S = {z = reiθ| 1− h ≤ r ≤ 1; θ0 ≤ θ ≤ θ0 + h}.

For ϕ ∈ L2(D), we say that ϕ is an i-th Carleson function if |ϕ|2dA is an i-th Carleson

measure (i = 1, 2). Write Si(D) for the set of all i-th Carleson functions (i = 1, 2). Then

it is easily seen that Si(D) are A(D)-modules. It is well-known that a Hankel operator
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Hϕ from H2(D) to H2(D)⊥ is bounded if and only if ϕ ∈ L∞(T ) + H2(D), where T is

the unit circle with arc–length measure. This fact, translated into homological language, is

equivalent to the exactness of the following sequence:

0 → Hom(H2(D),H2(D))
i∗→ Hom(H2(D), L2(T ))

π∗→ Hom(H2(D),H2(D)⊥) → 0.

It is easily verified that each bounded Hankel operator Hϕ from H2(D) to L2
a(D)⊥ is a

Hilbert module homomorphism, and every Hilbert module homomorphism from H2(D) to

L2
a(D)⊥ is a bounded Hankel operator. Since H2(D) is projective in the category C, one

immediately obtains

Proposition 2.2. A Hankel operator Hϕ from H2(D) to L2
a(D)⊥ is bounded if and only

if ϕ ∈ S1(D) + L2
a(D).

Proof. Since H2(D) is projective in the category C (see [7]), we have the following exact

Hom sequence

0 → Hom(H2(D), L2
a(D))

i∗→ Hom(H2(D), L2(D))
π∗→ Hom(H2(D), L2

a(D)⊥) → 0.

Assume that Hϕ is bounded. Hence, the above exact sequence insures that there is an

α ∈ Hom(H2(D), L2(D)) such that Hϕ = π∗(α). It is easily seen that there exists a

ϕ0 ∈ L2(D) such that for any f ∈ H2(D), α(f) = ϕ0f . This induces that ϕ0 is a 1-th

Carleson function by Theorem 9.3 in [10]. We conclude thus that ϕ − ϕ0 ∈ L2
a(D). The

other direction is achieved by considering the above exact sequence and Theorem 9.3 in [10],

completing the proof.

An important question is whether the category H has enough projectives, in the sense

that every object in H is a quotient of some projective module. Pisier’s recent example (see

[8]) shows that C is a proper subcategory of H. Though

ExtC(H
2(D), L2

a(D)) = 0,

it remains unknown whether

ExtH(H2(D), L2
a(D)) = 0.

§3. Nonvanishing of ExtH(L2
a(D),H)

In this section, we shall prove that

ExtH(L2
a(D),H)) ̸= 0

for each nonunitarily isometric module H. In particular, an explicit formula is obtained for

ExtH(L2
a(D), H2(D)).

Theorem 3.1. Let H be similar to a nonunitarily isometric module. Then

ExtC(L
2
a(D),H) = ExtH(L2

a(D),H) ̸= 0.

Proof. If H is similar to a unitary module, then H is injective in H by [1 or 7], and

therefore

ExtC(L
2
a(D),H) = ExtH(L2

a(D),H) = 0.

By the Wold decomposition of an isometry, we only need to prove

ExtC(L
2
a(D),H2(H)) = ExtH(L2

a(D),H2(H)) ̸= 0
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for some finite or infinite Hilbert space H. Consider the exact sequence

E : 0 → H2(H)
i→ L2(H)

π→ H2(H)⊥ → 0.

Since L2(H) is projective in H (also in C), the Hom-Ext sequences (2.1), (2.2) induce the

following

0 → Hom(L2
a(D),H2(H))

i∗→ Hom(L2
a(D), L2(H))

π∗→ Hom(L2
a(D),H2(H)⊥)

δ→ ExtH(L2
a(D),H2(H)) → 0;

0 → Hom(L2
a(D),H2(H))

i∗→ Hom(L2
a(D), L2(H))

π∗→ Hom(L2
a(D),H2(H)⊥)

δ→ ExtC(L
2
a(D), H2(H)) → 0.

We claim that Hom(L2
a(D), L2(H)) = 0. In fact, for any α ∈ Hom(L2

a(D), L2(H)), since

∥α(zn)∥ = ∥znα(1)∥ = ∥α(1)∥ ≤ ∥α∥
[ ∫

|zn|2dA
] 1

2 → 0

as n→ ∞, it follows that α(1) = 0. This means that

α(f) = fα(1) = 0, ∀f ∈ A(D).

The claim follows. Combining the above exact sequences with the claim immediately shows

that

ExtC(L
2
a(D),H2(H)) = ExtH(L2

a(D), H2(H)) = Hom(L2
a(D),H2(H)⊥).

For ϕ ∈ L2(H), a densely defined Hankel operator Hϕ : L2
a(D) → H2(H)⊥ is defined

by Hϕh = (I − P )hϕ; h ∈ A(D), where P is the orthogonal projection from L2(H) onto

H2(H)⊥. If the densely defined operator Hϕ in L2
a(D) can be continuously extended onto

L2
a(D), then it is easy to check that Hϕ is a Hilbert module homomorphism from L2

a(D)

to H2(H)⊥, and each Hilbert module homomorphism from L2
a(D) to H2(H)⊥ has such a

form. Writing S(L2
a(D),H2(H)) for the set of all such ϕ, we have

ExtC(L
2
a(D), H2(H)) = ExtH(L2

a(D), H2(H)) = S(L2
a(D),H2(H))/H2(H).

Taking any h ∈ H with ∥h∥ = 1, we can easily prove that ϕ = z̄h is in S(L2
a(D),H2(H)),

while ϕ not in H2(H)). This is just what we expect, completing the proof.

Remark 3.1. From the proof of Theorem 3.1, one can deduce the following explicit

formula for ExtC(L
2
a(D),H2(H)) = ExtH(L2

a(D),H2(H)), this is,

ExtC(L
2
a(D), H2(H)) = ExtH(L2

a(D), H2(H)) = S(L2
a(D),H2(H))/H2(H).

Let CH(T ) be the set of all continuous functions ϕ on the unit circle T such that Hankel

operator Hϕ : L2
a(D) → H2(D)⊥ is bounded. Obviously, CH(T ) is an A(D)-module.

Corollary 3.1. ExtC(L
2
a(D),H2(D)) = ExtH(L2

a(D),H2(D)) = CH(T )/A(D).

Proof. Let ϕ be in L2(T ) and Hϕ : L2
a(D) → H2(D)⊥ be a bounded Hankel opera-

tor. Since H2(D) is contractively contained in L2
a(D), one concludes that Hϕ : H2(D) →

H2(D)⊥ is a bounded Hankel operator. This shows that there is a ϕ0 ∈ L∞(T ) such that

ϕ− ϕ0 ∈ H2(D). Suppose that {hk} ⊂ H2(D), and {hk} weakly converges to 0 in H2(D).

Let

hk =
∑
n≥0

a(k)n zn
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be the power series expansion of hk. Since {∥hk∥H2(D)} is bounded, there exists a constant

c1 such that
∑
n≥0

|a(k)n |2 < c1 for all k. On the other hand, since Hϕ : L2
a(D) → H2(D)⊥ is

bounded, there exists a constant c2 such that

∥Hϕhk∥2L2(T ) = ∥Hϕ0hk∥2L2(T ) ≤ c2

∫
|hk|2dA = c2

[∑
n≥0

|a(k)n |2

n+ 1

]
.

For each fixed n, since a
(k)
n → 0 as k → ∞, the above discussion implies that

∥Hϕ0hk∥2L2(T ) → 0 as k → ∞,

and therefore Hϕ0 is a compact Hankel operator from H2(D) to H2(D)⊥. So ϕ0 is in

H∞(D) + C(T ), where C(T ) is the set of all continuous functions on T . It now follows

that Hϕ : L2
a(D) → H2(D)⊥ is bounded if and only if there is a ψ ∈ CH(T ) such that

ϕ− ψ ∈ H2(D). Hence from Remark 3.1, we have

ExtC(L
2
a(D),H2(D)) = ExtH(L2

a(D),H2(D))

∼= [CH(T ) +H2(D)]/H2(D)

∼= CH(T )/A(D).

This comlpes the proof of Corollary 3.3.

Remark 3.2. From the proof of Corollary 3.1, we observe that a Hankel operator

Hϕ : L2
a(D) → H2(D)⊥ is bounded if and only if ϕ ∈ CH(T ) +H2(D). However it remains

unknown whether CH(T ) is equal to C(T ).

§4. Nonvanishing of ExtH(L2
a(D),L2

a(D))

From the Hom-Ext sequences, it is easy to see that a Hilbert module H in H (resp., in C)
is injective if and only if ExtH(H̃,H) = 0 (resp., ExtC(H̃,H) = 0) for each Hilbert module

H̃ in H (resp., in C). The question naturally arises as to whether it is necessary to use all

Hilbert modules H̃ in Ext(H̃,H) to test whether H is injective; might it not happen that

there exists a small family of Hilbert modules Hλ such that if Ext(Hλ,H) = 0 for each Hλ in

the family, then H is injective? By Theorem 3.1, when H is similar to an isometric module,

H is injective in H if and only if ExtH(L2
a(D),H) = 0. Hence the Bergman module L2

a(D)

seems to play a role to test injective modules. In the following we shall show that

ExtC(L
2
a(D), L2

a(D)) ̸= 0,

and therefore

ExtH(L2
a(D), L2

a(D)) ̸= 0.

Consider the exact sequence

E : 0 → L2
a(D)

i→ L2(D)
π→ L2

a(D)⊥ → 0.

Hence it induces the following Hom-Ext sequence

0 → Hom(L2
a(D), L2

a(D))
i∗→ Hom(L2

a(D), L2(D))
π∗→ Hom(L2

a(D), L2
a(D)⊥)

δ→ ExtC(L
2
a(D), L2

a(D))
i∗→ ExtC(L

2
a(D), L2(D))

π∗→ ExtC(L
2
a(D), L2

a(D)⊥).

To prove that ExtC(L
2
a(D), L2

a(D)) ̸= 0, one only needs to show that

π∗ : Hom(L2
a(D), L2(D)) → Hom(L2

a(D), L2
a(D)⊥)
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is not surjective. For this aim, we first give the descriptions of Hom(L2
a(D), L2(D)) and

Hom(L2
a(D), L2

a(D)⊥). Let α ∈ Hom(L2
a(D), L2(D)). It is easy to check that α is a multiplier

from L2
a(D) to L2(D), that is, there is a ϕ ∈ L2(D) such that α =Mϕ. According to [11 or

12], Mϕ is a multiplier from L2
a(D) to L2(D) if and only if ϕ is a 2-nd Carleson function.

We thus have

Lemma 4.1. Hom(L2
a(D), L2(D)) ∼= S2(D).

Write BH(D) for all those ϕ ∈ L2(D) such that Hϕ : L2
a(D) → L2

a(D)⊥ is bounded.

Clearly, BH(D) is an A(D)-module.

Lemma 4.2. Hom(L2
a(D), L2

a(D)⊥) ∼= BH(D)/L2
a(D).

From Lemmas 4.1 and 4.2, we have

Lemma 4.3. cokerπ∗ = BH(D)/[S2(D) + L2
a(D)].

Theorem 4.1. BH(D) % S2(D) + L2
a(D).

Proof. To prove Theorem 4.1, we must find a function b such that b ∈ BH(D), while

b /∈ S2(D) + L2
a(D). Firstly notice that the analytic function f(z) =

∞∑
n=0

z2
n

is in L2
a(D). We

claim that f(z) is in the Bloch space. This claim is easily from the theorem on Hadamard

power series[10]. For reader’s convenience, we write the proof’s detail. That is, we need to

prove the following

sup{(1− |z|2)|f ′(z)| : z ∈ D} < +∞.

Since f ′(z) =
∞∑

n=0
2nz2

n−1, one needs to show

∞∑
n=0

2nr2
n−1 = O

( 1

1− r

)
for 0 < r < 1. This is equivalent to estimating the integral∫ ∞

0

2xr2
x−1dx =

1

ln 2

∫ ∞

1

rt−1dt (t = 2x).

Since ln r < r − 1, the second integral is majorized by∫ ∞

1

rt−1dt =

∫ ∞

1

e(t−1) ln rdt ≤
∫ ∞

1

e(r−1)(t−1)dt =
1

1− r
,

which proves the claim, and hence f(z) is in the Bloch space. Therefore, Theorem 6 of

[13] shows that Hankel operator Hf̄ is bounded. The rest of the proof is to check f̄ /∈
S2(D) + L2

a(D).

For any z ∈ D, let kz be the normalized Bergman reproducing kernel at z (i.e., with

∥kz∥ = 1). If there is a ϕ ∈ S2(D) and a ψ ∈ L2
a(D) such that ϕ = f̄ + ψ, then

|f̄(z) + ψ(z)| =
∣∣∣ ∫ (f̄ + ψ)|kz|2dA

∣∣∣ = ∣∣∣ ∫ ϕ|kz|2dA
∣∣∣ ≤ ∥Mϕ∥.

This implies that ϕ(z) = f̄(z) + ψ(z) is a bounded harmonic function. Since f̄(reiθ)− f̄(0)

and ψ(reiθ) + f̄(0) are orthogonal in L2(T ), it follows that

∥ϕ(reiθ)∥2L2(T ) = ∥f(reiθ)− f(0)∥2H2(D) + ∥ψ(reiθ) + f̄(0)∥2H2(D).

Since ϕ is bounded, the above equality shows that there exists some positive constant c such

that

∥f(reiθ)− f(0)∥H2(D) ≤ c for any r.
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So f is in H2(D). This is impossible and hence S2(D)+L2
a(D) is a proper subset of BH(D),

completing the proof.

Corollary 4.1. ExtC(L
2
a(D), L2

a(D)) ̸= 0, and ExtH(L2
a(D), L2

a(D)) ̸= 0.

Remark 4.1. Let B be a Banch A(D)-bimodule. A derivation δ from A(D) to B, by
definition, is a continuously linear map and such that

δ(ab) = aδ(b) + δ(a)b for all a, b ∈ A(D).

Let B(L2
a(D)) (resp., B(H2(D))) denote the set of all bounded linear operators on L2

a(D)

(resp., H2(D)) with natural A(D)-bimodule structure. By Theorem 2.2.2 in [6], we see that

each derivation from A(D) to B(H2(D)) is inner. However, Corollary 4.1 shows that there

is some derivation from A(D) to B(L2
a(D)) which is not inner. This may be the essential

defference between the Hardy and the Bergman modules over A(D).
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