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1 Introduction and Preliminaries

A complete theory on the exact controllability and the exact observability for linear hy-
perbolic systems and for 1-D quasilinear hyperbolic systems can be found in [1, 2] and [3],
respectively. In this paper, we give the definition of the strong (resp. weak) exact controllabil-
ity and the strong (resp. weak) exact observability, and study their relationship for 1-D first
order quasilinear hyperbolic systems. Since all the discussions are made in the framework of
classical solutions, the controllability and the observability in the quasilinear hyperbolic case
mean the local controllability and the local observability in a neighborhood of the equilibrium
u = 0. However, in the linear hyperbolic case, the controllability and the observability should
be the global controllability and the global observability.

Consider the following 1-D first order quasilinear hyperbolic system

∂u

∂t
+A(u)

∂u

∂x
= F (u), (1.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x), A(u) is an n×n matrix with
C1 entries aij(u) (i, j = 1, · · · , n), and F (u) = (f1(u), · · · , fn(u))T is a C1 vector function with

F (0) = 0. (1.2)
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By (1.2), u = 0 is an equilibrium of system (1.1).
By hyperbolicity, for any given u on the domain under consideration, the matrix A(u)

possesses n real eigenvalues
λ1(u), λ2(u), · · · , λn(u) (1.3)

and a complete set of left eigenvectors li(u) = (li1(u), · · · , lin(u)) (i = 1, · · · , n) and right
eigenvectors ri(u) = (r1i(u), · · · , rni(u))T (i = 1, · · · , n):

li(u)A(u) = λi(u)li(u) (1.4)

and
A(u)ri(u) = λi(u)ri(u). (1.5)

Without loss of generality, we assume that

li(u)rj(u) ≡ δij , i, j = 1, · · · , n, (1.6)

where δij denotes the Kronecher symbol.
We suppose that all λi(u), li(u) and ri(u) (i = 1, · · · , n) have the same regularity as A(u) =

(aij(u)).
Suppose that there are no zero eigenvalues:

λr(u) < 0 < λs(u), r = 1, · · · ,m; s = m+ 1, · · · , n. (1.7)

Let
vi = li(u)u, i = 1, · · · , n. (1.8)

vi is called to be the diagonal variable corresponding to λi(u) (i = 1, · · · , n). In a neighborhood
of u = 0, v = (v1, · · · , vn)T is a C1 diffeomorphism of u = (u1, · · · , un)T.

Under assumption (1.7), the most general boundary conditions which guarantee the well-
posedness of the forward problem on the domain {(t, x) | t ≥ 0, 0 ≤ x ≤ L} can be written as
(see [4])

x = 0 : vs = Gs(t, v1, · · · , vm) +Hs(t), s = m+ 1, · · · , n, (1.9)

x = L : vr = Gr(t, vm+1, · · · , vn) +Hr(t), r = 1, · · · ,m, (1.10)

where Gi and Hi (i = 1, · · · , n) are C1 functions and, without loss of generality, we suppose
that

Gi(t, 0, · · · , 0) ≡ 0, i = 1, · · · , n. (1.11)

By (1.7), all the characteristics dx
dt = λs(u) (s = m + 1, · · · , n) (resp. dx

dt = λr(u) (r =
1, · · · ,m)) corresponding to the positive (resp. negative) eigenvalues are called to be the coming
(resp. departing) characteristics on x = 0, since they reach (resp. leave) the boundary x = 0
from (resp. to) the interior of the domain {(t, x) | t ≥ 0, 0 ≤ x ≤ L}. Similarly, all the
characteristics dx

dt = λr(u) (r = 1, · · · ,m) (resp. dx
dt = λs(u) (s = m+ 1, · · · , n)) corresponding

to the negative (resp. positive) eigenvalues are called to be the coming (resp. departing)
characteristics on x = L.

Thus, the characters of boundary conditions (1.9)–(1.10) are as follows.
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(1) On x = 0, the number of the boundary conditions = the number of the coming char-
acteristics = n−m, while, on x = L, the number of the boundary conditions = the number of
the coming characteristics = m.

(2) The boundary conditions on x = 0 are written in the form that the diagonal variables
vs (s = m + 1, · · · , n) corresponding to the coming characteristics on x = 0 are explicitly
expressed by the diagonal variables vr (r = 1, · · · ,m) corresponding to other characteristics,
while, the boundary conditions on x = L are written in the form that all the diagonal variables
vr (r = 1, · · · ,m) corresponding to the coming characteristics on x = L are explicitly expressed
by the diagonal variables vs (s = m+ 1, · · · , n) corresponding to other characteristics.

For the forward mixed initial-boundary value problem (1.1) and (1.9)–(1.10) with the initial
condition

t = 0 : u = ϕ(x), 0 ≤ x ≤ L, (1.12)

according to the theory on the semi-global C1 solution (see [5]), we have the following lemma.

Lemma 1.1 Suppose that (1.2), (1.7) and (1.11) hold. Suppose furthermore that the
conditions of C1 compatibility are satisfied at the points (t, x) = (0, 0) and (0, L), respec-
tively. For any given and possibly quite large T0 > 0, if ‖ϕ‖C1[0,L] and ‖H‖C1[0,T0] (in which
H = (H1, · · · , Hn)T) are sufficiently small (depending on T0), then the forward mixed prob-
lem (1.1), (1.9)– (1.10) and (1.12) admits a unique semi-global C1 solution u = u(t, x) on the
domain R(T0) = {(t, x) | 0 ≤ t ≤ T0, 0 ≤ x ≤ L}. Moreover, under the additional hypoth-
esis that ∂Gi

∂t (i = 1, · · · , n) satisfy the local Lipschitz condition with respect to the variable
v = (v1, · · · , vn)T or can be controlled by ‖H‖C1[0,T0] for the variable v in any given bounded
set, we have

‖u‖C1[R(T0)] ≤ C(‖ϕ‖C1[0,L] + ‖H‖C1[0,T0]), (1.13)

where C is a positive constant depending on T0.

Remark 1.1 Suppose that (1.2) holds. If ‖ϕ‖C1[0,L] is sufficiently small, then Cauchy
problem (1.1) and (1.12) admits a unique global C1 solution u = u(t, x) on the whole maximum
determinate domain D and

‖u‖C1[D] ≤ C‖ϕ‖C1[0,L], (1.14)

where C is a positive constant and

D = {(t, x) | t ≥ 0, x1(t) ≤ x ≤ x2(t)}, (1.15)

in which x = x1(t) is the maximum characteristic passing through the point (t, x) = (0, 0):⎧⎨⎩
dx1(t)

dt
= max

i=1,··· ,n
λi(u(t, x1(t))),

x1(0) = 0,
(1.16)

while, x = x2(t) is the minimum characteristic passing through the point (t, x) = (0, L):⎧⎨⎩
dx2(t)

dt
= min

i=1,··· ,n
λi(u(t, x2(t))),

x2(0) = L.

(1.17)

Lemma 1.1 and Remark 1.1 are the basis of the nonlinear method given in [3] for establishing
the exact controllability and the exact observability of 1-D quasilinear hyperbolic systems by
means of a simple constructive method. They are also a basis in this paper.
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2 Strong Exact Controllability and Weak Exact Controllability

For any given initial data ϕ(x) and final data ψ(x) with small C1[0, L] norm, if there exists
a T > 0 such that, taking Hi(t) (i = 1, · · · , n) or a part of Hi(t) (i = 1, · · · , n) with small
C1[0, T ] norm as boundary controls, the corresponding mixed initial-boundary value problem
(1.1), (1.9)–(1.10) and (1.12) admits a unique semi-global C1 solution u = u(t, x) with small
C1 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies exactly the
final condition

t = T : u = ψ(x), 0 ≤ x ≤ L, (2.1)

then we say that there is a local exact boundary controllability. In this situation, by means
of boundary controls, the system under consideration can drive any given initial data ϕ(x) at
t = 0 exactly to any given final data ψ(x) at t = T . This kind of controllability is called to be
the strong exact boundary controllability in this paper.

On the other hand, there is another kind of controllability, namely, the so-called zero con-
trollability (see [1, 2, 6]), for which the final data are specially taken as

t = T : u = 0, 0 ≤ x ≤ L. (2.2)

In this situation, by means of boundary controls, the system under consideration can drive
any given initial data ϕ(x) at t = 0 exactly to the equilibrium u = 0 at t = T . This kind of
controllability is called to be the weak exact boundary controllability in this paper.

Obviously, the strong exact controllability implies the weak exact controllability, hence,
when the strong exact controllability can be realized, it is not necessary to consider the cor-
responding weak exact controllability. However, when we do not know if the strong exact
controllability can be realized or not, it is quite natural to ask if the corresponding weak exact
controllability can be realized and if it is possible to get the strong exact controllability from
the weak exact controllability under certain additional hypotheses.

By [7–10], for the strong exact boundary controllability, we have the following results.

Theorem 2.1 (Two-Sided Strong Exact Boundary Controllability) Let

T > L max
r=1,··· ,m

s=m+1,··· ,n

( 1
|λr(0)| ,

1
λs(0)

)
. (2.3)

There exist boundary controls Hi(t) (i = 1, · · · , n) with small C1[0, T ] norm, such that the
corresponding mixed initial-boundary value problem (1.1), (1.9)–(1.10) and (1.12) admits a
unique semi-global C1 solution u = u(t, x) with small C1 norm on the domain R(T ) = {(t, x) |
0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies exactly the final condition (2.1).

Theorem 2.2 (One-Sided Strong Exact Boundary Controllability) Suppose that the number
of positive eigenvalues is not greater than that of negative ones:

m
def.= n−m ≤ m, i.e., n ≤ 2m. (2.4)

Suppose furthermore that in a neighborhood of u = 0, the boundary conditions (1.9) on x =
0 (the side with less coming characteristics) can be equivalently rewritten as

x = 0 : vr = Gr(t, vm+1, · · · , vm, vm+1, · · · , vn) +Hr(t), r = 1, · · · ,m (2.5)



Strong (Weak) Exact Controllability and Strong (Weak) Exact Observability 727

with
Gr(t, 0, · · · , 0) ≡ 0, r = 1, · · · ,m. (2.6)

Let
T > L

(
max

r=1,··· ,m
1

|λr(0)| + max
s=m+1,··· ,n

1
λs(0)

)
. (2.7)

For any given Hs(t) (s = m + 1, · · · , n) with small C1[0, T ] norm, satisfying the conditions
of C1 compatibility at the points (t, x) = (0, 0) and (T, 0), respectively, there exist boundary
controls Hr(t) (r = 1, · · · ,m) with small C1[0, T ] norm on x = L (the side with more coming
characteristics), such that the conclusion of Theorem 2.1 holds.

Remark 2.1 In the linear case with the hypotheses that the number of positive eigenvalues
is equal to that of negative ones (n = 2m) and Hs(t) ≡ 0 (s = m+1, · · · , n), the corresponding
result can be found in [1].

Theorem 2.3 (Two-Sided Strong Exact Boundary Controllability with Less Controls) Sup-
pose that the number of positive eigenvalues is less than that of negative ones:

m
def.= n−m < m, i .e., n < 2m. (2.8)

Suppose furthermore that, in a neighborhood of u = 0, without loss of generality, the first m
boundary conditions in (1.10) on x = L (the side with more coming characteristics)

x = L : vr = Gr(t, vm+1, · · · , vn) +Hr(t), r = 1, · · · ,m (2.9)

can be equivalently rewritten as

x = L : vs = Gs(t, v1, · · · , vm) +Hs(t), s = m+ 1, · · · , n (2.10)

with
Gs(t, 0, · · · , 0) ≡ 0, s = m+ 1, · · · , n. (2.11)

Let T > 0 satisfy (2.7). For any given Hr(t) (r = 1, · · · ,m) with small C1[0, T ] norm, satis-
fying the corresponding conditions of C1 compatibility at the points (t, x) = (0, L) and (T, L),
respectively, there exist boundary controls Hs(t) (s = m + 1, · · · , n) on x = 0 (the side with
less coming characteristics) and boundary controls Hr(t) (r = m + 1, · · · ,m) on x = L (the
side with more coming characteristics) with small C1[0, T ] norm, such that the conclusion of
Theorem 2.1 holds.

In Theorems 2.1–2.3, estimates (2.3) and (2.7) on the controllability time are all sharp.
Moreover, in order to realize the strong exact boundary controllability on the interval [0, T ],
the number of boundary controls can not be reduced generically.

By Theorem 2.2, in order to realize the one-sided strong exact boundary controllability, we
should utilize all the boundary functions Hr(t) (r = 1, · · · ,m) as boundary controls on x = L

(the side with more coming characteristics) and we should suppose that the boundary condition
(1.9) on the non-control side x = 0 satisfies hypothesis (2.5). However, for getting the one-sided
weak exact boundary controllability, boundary controls can be acted on any given side and the
boundary conditions on the non-control side are not asked to satisfy a hypothesis of form (2.5),
but all the boundary functions should be identically equal to zero in the boundary conditions
on the non-control side. Precisely speaking, we have the following theorem.
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Theorem 2.4 (One-Sided Weak Exact Boundary Controllability) Let T > 0 satisfy (2.7).
(1) Suppose that the boundary condition (1.10) on x = L is specially taken as

x = L : vr = Gr(t, vm+1, · · · , vn), r = 1, · · · ,m, (2.12)

namely, Hr(t) ≡ 0 (r = 1, · · · ,m). For any given initial data ϕ(x) with small C1[0, L] norm,
such that the conditions of C1 compatibility are satisfied at the point (t, x) = (0, L), there exist
boundary controls Hs(t) (s = m + 1, · · · , n) with small C1[0, T ] norm on x = 0, such that
the corresponding mixed problem (1.1), (1.9), (2.12) and (1.12) admits a unique semi-global C1

solution u = u(t, x) with small C1 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L},
which verifies exactly the zero final condition (2.2).

(2) Suppose that the boundary condition (1.9) on x = 0 is specially taken as

x = 0 : vs = Gs(t, v1, · · · , vm), s = m+ 1, · · · , n, (2.13)

namely, Hs(t) ≡ 0 (s = m + 1, · · · , n). For any given initial data ϕ(x) with small C1[0, L]
norm, such that the conditions of C1 compatibility are satisfied at the point (t, x) = (0, 0), there
exist boundary controls Hr(t) (r = 1, · · · ,m) with small C1[0, T ] norm on x = L, such that the
corresponding mixed problem (1.1), (2.13), (1.10) and (1.12) admits a unique semi-global C1

solution u = u(t, x) with small C1 norm on the domain R(T ), which verifies exactly the zero
final condition (2.2).

Remark 2.2 Noting (1.2) and (1.11), it is easy to see that the conditions of C1 compatibility
are satisfied at the point (t, x) = (T, L) (resp. (T, 0)) for system (1.1), boundary condition (2.12)
(resp. (2.13)) on x = L (resp. x = 0) and the zero final condition (2.2).

Proof of Theorem 2.4 We only prove the first part of Theorem 2.4. The proof of the
second part is similar.

Similarly to the proof of Theorem 2.2 (see [9]), it suffices to construct a C1 solution u =
u(t, x) to system (1.1) on R(T ), such that it satisfies simultaneously the initial condition (1.12),
the zero final condition (2.2) and the boundary condition (2.12) on x = L.

By (2.7), there exists an ε0 > 0 so small that

T > L
(

sup
|u|≤ε0

max
r=1,··· ,m

1
|λr(u)| + sup

|u|≤ε0

max
s=m+1,··· ,n

1
λs(u)

)
. (2.14)

Let
T1 = L sup

|u|≤ε0

max
r=1,··· ,m

1
|λr(u)| (2.15)

and
T2 = L sup

|u|≤ε0

max
s=m+1,··· ,n

1
λs(u)

. (2.16)

( i ) On the domain
Rf = {(t, x) | 0 ≤ t ≤ T1, 0 ≤ x ≤ L} (2.17)

we consider the following forward mixed initial-boundary value problem for system (1.1) with
the initial condition (1.12), the boundary condition (2.12) on x = L and the following artificial
boundary condition on x = 0:

x = 0 : vs = fs(t), s = m+ 1, · · · , n, (2.18)
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where fs(t) (s = m+1, · · · , n) are any given functions of t with small C1[0, T1] norm, satisfying
the conditions of C1 compatibility at the point (t, x) = (0, 0). By Lemma 1.1, this forward
problem admits a unique semi-global C1 solution u = uf (t, x) with small C1 norm on the
domain Rf . In particular, we have

|uf(t, x)| ≤ ε0, ∀ (t, x) ∈ Rf . (2.19)

Thus, we can determine the value of u = uf(t, x) on x = L as

x = L : uf = a(t), 0 ≤ t ≤ T1. (2.20)

The C1[0, T1] norm of a(t) is small and a(t) satisfies the boundary condition (2.12) on the
interval [0, T1].

( ii ) Next, on the domain

Rb = {(t, x) | T − T2 ≤ t ≤ T, 0 ≤ x ≤ L}, (2.21)

we want to get a C1 solution which satisfies system (1.1), the zero final condition (2.2) and
the boundary condition (2.12) on x = L. Different from the proof of Theorem 2.2, this C1

solution can not be obtained by solving the corresponding backward mixed initial-boundary
value problem generically, since in the special case that (2.8) holds, the boundary condition
(2.12) on x = L does not fit the requirement of well-posedness presented in Section 1. However,
noting (2.2) and the special form of boundary condition (2.12), it is easy to see that u =
ub(t, x) ≡ 0 is just a desired C1 solution.

(iii) Noting (2.14)–(2.16), there exists a c(t) with small C1[0, T ] norm, such that

c(t) =

{
a(t), 0 ≤ t ≤ T1,

0, T − T2 ≤ t ≤ T,
(2.22)

and c(t) satisfies the boundary condition (2.12) on the whole interval [0, T ].
Changing the role of t and x, we solve the following leftward mixed initial-boundary value

problem for system (1.1) with the initial condition

x = L : u = c(t), 0 ≤ t ≤ T (2.23)

and the following boundary conditions reduced from the original initial data (1.12) and the
final data (2.2):

t = 0 : vr = lr(ϕ(x))ϕ(x), r = 1, · · · ,m, (2.24)

t = T : vs = 0, s = m+ 1, · · · , n. (2.25)

By Lemma 1.1, this mixed problem admits a unique semi-global C1 solution u = u(t, x) on the
domain R(T ).

By means of the uniqueness of C1 solution to the one-sided mixed initial-boundary value
problem (see [4]), similarly to the proof of Theorem 2.2, it is easy to get that u = u(t, x) also
satisfies the initial condition (1.12) and the final condition (2.2). This finishes the proof.

Remark 2.3 A treatment similar to (ii) in the proof of Theorem 2.4 can be found in [1]
for the linear hyperbolic case.
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Remark 2.4 The estimate (2.7) on the weak controllability time is still sharp.

Similarly to Theorem 2.4, we have the following result related to Theorem 2.3.

Theorem 2.5 (Two-Sided Weak Exact Boundary Controllability with Less Controls) Let
T > 0 satisfy (2.7).

(1) Suppose that, without loss of generality, the first h (0 < h ≤ m) boundary conditions in
(1.10) on x = L take the following form:

x = L : va = Ga(t, vm+1, · · · , vn), a = 1, · · · , h, (2.26)

namely, Ha(t) ≡ 0 (a = 1, · · · , h). Then there exist boundary controls Hs(t) (s = m+1, · · · , n)
on x = 0 and boundary controls Hb(t) (b = h+ 1, · · · ,m) on x = L with small C1[0, T ] norm,
such that the corresponding forward problem (1.1), (1.9)–(1.10) and (1.12) admits a unique
semi-global C1 solution u = u(t, x) with small C1 norm on the domain R(T ), which verifies
exactly the zero final condition (2.2).

(2) Suppose that, without loss of generality, the first g (0 < g ≤ n−m) boundary conditions
in (1.9) on x = 0 take the following form:

x = 0 : vc = Gc(t, v1, · · · , vm), c = m+ 1, · · · ,m+ g, (2.27)

namely, Hc(t) ≡ 0 (c = m + 1, · · · ,m + g). Then there exist boundary controls Hd(t) (d =
m + g + 1, · · · , n) on x = 0 and boundary controls Hr(t) (r = 1, · · · ,m) on x = L with small
C1[0, T ] norm, such that we have the same conclusion as in (1).

Remark 2.5 When h = m or g = n−m, Theorem 2.5 implies Theorem 2.4.

Remark 2.6 In order to get the strong controllability from the corresponding weak con-
trollability, we should suppose that

(a) The number of positive eigenvalues is equal to that of negative ones:

n−m = m, i.e., n = 2m. (2.28)

(b) In a neighborhood of u = 0, the boundary conditions (1.9) and (1.10) can be equivalently
rewritten, respectively, as

x = 0 : vr = Gr(t, vm+1, · · · , vn) +Hr(t), r = 1, · · · ,m (2.29)

and
x = L : vs = Gs(t, v1, · · · , vm) +Hs(t), s = m+ 1, · · · , n (2.30)

with
Gi(t, 0, · · · , 0) ≡ 0, i = 1, · · · , n. (2.31)

Under these hypotheses, for system (1.1) and boundary conditions (1.9)–(1.10), both the for-
ward mixed problem and the backward mixed problem are all well-posed. Therefore, if suitable
boundary controls on the interval [0, T ] can be chosen to realize the weak exact boundary con-
trollability for any given system (1.1) and any given boundary conditions (1.9)–(1.10), namely,
to drive any given initial data ϕ(x) with small C1[0, L] norm at t = 0 to the zero final data at
t = T , then it is easily shown that suitable boundary controls on the interval [0, T ] can be used
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to realize the strong exact boundary controllability for driving the zero initial data at t = 0 to
any given final data ψ(x) with small C1[0, L] norm at t = T .

In fact, consider the following quasilinear hyperbolic system

∂u

∂t
−A(u)

∂u

∂x
= −F (u) (2.32)

and boundary conditions

x = 0 : vr = Gr(T − t, vm+1, · · · , vn) +Hr(T − t), r = 1, · · · ,m, (2.33)

x = L : vs = Gs(T − t, v1, · · · , vm) +Hs(T − t), s = m+ 1, · · · , n, (2.34)

in which Gi and Hi (i = 1, · · · , n) are given by (2.29)–(2.30) and

t = T − t. (2.35)

Noting (2.31), we have
Gi(T − t, 0, · · · , 0) ≡ 0, i = 1, · · · , n. (2.36)

By the weak exact boundary controllability, suitable boundary controls on the interval [0, T ]
can be used to drive any given initial data ψ(x) with small C1[0, L] norm at t = 0 to the
zero final data at t = T . Hence, noting (2.35), system (1.1) with the corresponding boundary
conditions (2.29)–(2.30) (i.e., (1.9)–(1.10)) can drive the zero initial data at t = 0 to any given
final data ψ(x) with small C1[0, L] norm at t = T .

Thus, using the weak exact boundary controllability again, we get that suitable boundary
controls on the interval [0, 2T ] can be used to drive any given initial data ϕ(x) with small
C1[0, L] norm at t = 0 to any given final data ψ(x) with small C1[0, L] norm at t = 2T .
That is to say, the strong exact boundary controllability follows from the weak exact boundary
controllability, however, the controllability time should be doubled in this indirect way.

3 Strong Exact Observability and Weak Exact Observability

For the mixed initial-boundary value problem (1.1), (1.9)–(1.10) and (1.12), if there exists
a T > 0 such that, under the assumption that the C1[0, L] norm of the initial data ϕ(x)
and the C1[0, T ] norm of the boundary functions H(t) = (H1(t), · · · , Hn(t))T are sufficiently
small, and the conditions of C1 compatibility are satisfied at the points (t, x) = (0, 0) and
(0, L) respectively, suitable boundary observations together with boundary functions H(t) =
(H1(t), · · · , Hn(t))T on the interval [0, T ] can uniquely determine the initial data ϕ(x) (0 ≤ x ≤
L) and then the C1 solution u = u(t, x) on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L},
hence we have the (local) exact boundary observability which will be called to be the strong
exact boundary observability in this paper.

On the other hand, in the linear hyperbolic case, D. Russell has introduced another kind of
observability in [1], in which, for the backward problem, it requires to uniquely determine the
initial data from boundary observations. Correspondingly, for the forward problem, it requires
to uniquely determine the final data form boundary observations. Since, under assumptions
(a) and (b) in Section 2 (see (2.28)–(2.31)), both the forward mixed problem (1.1), (1.9)–(1.10)
and (1.12) and the backward mixed problem (1.1), (1.9)–(1.10) and (2.1) are well-posed, it is
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easy to see that these two kinds of observablilities are actually equivalent. However, in the
general situation without assumptions (a) and (b), from the final data uniquely determined by
boundary observations one can not uniquely determine the whole solution u = u(t, x) on the
domain R(T ) for the forward problem. This kind of observability is called to be the weak exact
boundary observability in this paper.

Obviously, the strong exact observability implies the weak exact observability. Hence, when
the strong exact observability can be realized, it is not necessary to consider the corresponding
weak exact observability. However, when we do not know if the strong exact observability can
be realized or not, it is quite natural to ask if the corresponding weak exact observability can
be realized.

By [11, 12], for the strong exact boundary observability, we have the following results, in
which the boundary functions H(t) = (H1(t), · · · , Hn(t))T with small C1 norm are given.

Theorem 3.1 (Two-Sided Strong Exact Boundary Observability) Suppose that T > 0 sat-
isfies (2.3). For any given initial data ϕ(x) with small C1[0, L] norm, satisfying the conditions
of C1 compatibility at the points (t, x) = (0, 0) and (0, L), respectively, the boundary observa-
tions vr = vr(t) (r = 1, · · · ,m) corresponding to the departing characteristics on x = 0 and
vs = vs(t) (s = m + 1, · · · , n) corresponding to the departing characteristics on x = L on the
interval [0, T ] can be used to uniquely determine the initial data ϕ(x), and the following strong
observability inequality holds:

‖ϕ‖C1[0,L] ≤ C
( m∑

r=1

‖vr‖C1[0,T ] +
n∑

s=m+1

‖vs‖C1[0,T ] + ‖H‖C1[0,T ]

)
, (3.1)

where C is a positive constant.

Theorem 3.2 (One-Sided Strong Exact Boundary Observability) Suppose that (2.4) holds
and T > 0 satisfies (2.7). Suppose furthermore that in a neighborhood of u = 0, boundary
condition (1.10) on x = L (the side with more coming characteristics) implies

x = L : vs = Gs(t, v1, · · · , vm) +Hs(t), s = m+ 1, · · · , n (3.2)

with
Gs(t, 0, · · · , 0) ≡ 0, s = m+ 1, · · · , n. (3.3)

Suppose finally that ∂Gs

∂t (s = m+ 1, · · · , n) satisfy the local Lipschitz condition with respect to
the variable v = (v1, · · · , vn)T or can be controlled by ‖Hs‖C1[0,T ] (s = m + 1, · · · , n) for the
variable v in any given bounded set. For any given initial data ϕ(x) satisfying the same prop-
erties as in Theorem 3.1, the boundary observations vr = vr(t) (r = 1, · · · ,m) corresponding to
the departing characteristics on x = 0 (the side with less coming characteristics) can be used to
uniquely determine the initial data ϕ(x), and the following strong observability inequality holds:

‖ϕ‖C1[0,L] ≤ C
( m∑

r=1

‖vr‖C1[0,T ] + ‖H‖C1[0,T ]

)
, (3.4)

where C is a positive constant.

Theorem 3.3 (Two-Sided Strong Exact Boundary Observability with Less Observations)
Suppose that (2.8) holds and T > 0 satisfies (2.7). Suppose furthermore that, without loss of
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generality, in a neighborhood of u = 0, boundary condition (1.9) on x = 0 (the side with less
coming characteristics) can be equivalently rewritten as

x = 0 : vr = Gr(t, vm+1, · · · , vm, vm+1, · · · , vn) +Hr(t), r = 1, · · · ,m (3.5)

with
Gr(t, 0, · · · , 0) ≡ 0, r = 1, · · · ,m. (3.6)

Suppose finally that ∂Gr

∂t (r = 1, · · · ,m) satisfy the local Lipschitz condition with respect to the
variable v = (v1, · · · , vn)T or can be controlled by ‖Hr‖C1[0,T ] (r = 1, · · · ,m) for the variable
v in any given bounded set. For any given initial data ϕ(x) satisfying the same properties as
in Theorem 3.1, the boundary observations vs = vs(t) (s = m + 1, · · · ,m) corresponding to a
part of the departing characteristics on x = 0 and vs = vs(t) (s = m+ 1, · · · , n) corresponding
to all the departing characteristics on x = L can be used to uniquely determine the initial data
ϕ(x), and the following strong observability inequality holds:

‖ϕ‖C1[0,L] ≤ C
( m∑

s=m+1

‖vs‖C1[0,T ] +
n∑

s=m+1

‖vs‖C1[0,T ] + ‖H‖C1[0,T ]

)
, (3.7)

where C is a positive constant.

In Theorems 3.1–3.3, the estimates (2.3) and (2.7) on the observability time, which coincide
with the corresponding estimates on the controllability time, are both sharp. Moreover, in
order to realize the strong exact boundary observability on the interval [0, T ], the number of
boundary observations can not be reduced generically.

By Theorem 3.2, in order to realize the one-sided strong exact boundary observability, we
should utilize all the boundary observations vr = vr(t) (r = 1, · · · ,m) on x = 0 (the side with
less coming characteristics) and we should suppose that the boundary condition (1.10) on the
non-observation side x = L satisfies hypothesis (3.2). However, for getting the one-sided weak
exact boundary observability, boundary observations can be taken on any given side and the
boundary conditions on the non-observation side are not asked to satisfy a hypothesis of form
(3.2). Precisely speaking, we have

Theorem 3.4 (One-Sided Weak Exact Boundary Observability) Suppose that T > 0 sat-
isfies (2.7). For any given initial data ϕ(x) satisfying the same properties as in Theorem 3.1,
we have

(1) Suppose that ∂Gs

∂t (s = m + 1, · · · , n) satisfy the local Lipschitz condition with respect
to the variable v = (v1, · · · , vn)T or can be controlled by ‖Hs‖C1[0,T ] (s = m+ 1, · · · , n) for the
variable v in any given bounded set. Then, boundary observations vs = vs(t) (s = m+1, · · · , n)
corresponding to all the departing characteristics on x = L on the interval [0, T ] can be used to
uniquely determine the final data ψ(x) on t = T , and the following weak observability inequality
holds:

‖ψ‖C1[0,L] ≤ C
( n∑

s=m+1

‖vs‖C1[0,T ] + ‖H‖C1[0,T ]

)
, (3.8)

where C is a positive constant.
(2) Suppose that ∂Gr

∂t (r = 1, · · · ,m) satisfy the local Lipschitz condition with respect to
the variable v = (v1, · · · , vn)T or can be controlled by ‖Hr‖C1[0,T ] (r = 1, · · · ,m) for the
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variable v in any given bounded set. Then, boundary observations vr = vr(t) (r = 1, · · · ,m)
corresponding to all the departing characteristics on x = 0 on the interval [0, T ] can be used to
uniquely determine the final data ψ(x) on t = T , and the following weak observability inequality
holds:

‖ψ‖C1[0,L] ≤ C
( m∑

r=1

‖vr‖C1[0,T ] + ‖H‖C1[0,T ]

)
, (3.9)

where C is a positive constant.

Proof We only prove the first part of Theorem 3.4. The proof of the second part is similar.
Similarly to the proof of Theorem 3.2 (see [12]), using the boundary observations vs = vs(t)

(s = m + 1, · · · , n) on x = L and the boundary condition (1.10) on x = L, we get the values
vr = vr(t) (r = 1, · · · ,m) on x = L, where

vr(t) = Gr(t, vm+1(t), · · · , vn(t)) +Hr(t), r = 1, · · · ,m. (3.10)

Then, noting (1.11), we have

m∑
r=1

‖vr‖C1[0,T ] ≤ C
( n∑

s=m+1

‖vs‖C1[0,T ] +
m∑

r=1

‖Hr‖C1[0,T ]

)
. (3.11)

Here and hereafter C denotes a positive constant. Thus, the value u(t) of the solution u = u(t, x)
on x = L can be uniquely determined by the boundary observations vs(t) (s = m + 1, · · · , n)
and the boundary functions Hr(t) (r = 1, · · · ,m), and

‖u‖C1[0,T ] ≤ C
( n∑

s=m+1

‖vs‖C1[0,T ] +
m∑

r=1

‖Hr‖C1[0,T ]

)
. (3.12)

By Remark 1.1, the leftward Cauchy problem for system (1.1) with the initial condition

x = L : u = u(t), 0 ≤ t ≤ T (3.13)

admits a unique global C1 solution u = ˜̃u(t, x) on the corresponding maximum determinate
domain and

‖˜̃u‖C1 ≤ C
( n∑

s=m+1

‖vs‖C1[0,T ] +
m∑

r=1

‖Hr‖C1[0,T ]

)
. (3.14)

u = ˜̃u(t, x) is the restriction of the C1 solution u = u(t, x) to the original mixed problem (1.1),
(1.9)–(1.10) and (1.12) on the intersection of this maximum determinate domain with R(T ).

Noting (2.7) and the smallness of the data, this maximum determinate domain must intersect
x = 0. Hence, there exists a T0 (0 < T0 < T ) such that the value û(x) of u = u(t, x) at t = T0

can be uniquely determined by u = ˜̃u(t, x), and

‖û‖C1[0,L] ≤ C
( n∑

s=m+1

‖vs‖C1[0,T ] +
m∑

r=1

‖Hr‖C1[0,T ]

)
. (3.15)

We now solve the forward mixed problem for system (1.1) with the initial condition

t = T0 : u = û(x), 0 ≤ x ≤ L, (3.16)
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the boundary condition (1.9) on x = 0 and the following boundary condition

x = L : vr = vr(t), r = 1, · · · ,m. (3.17)

By Lemma 1.1 and noting (3.11) and (3.15), u = u(t, x) as its unique C1 solution on the domain
{(t, x) | T0 ≤ t ≤ T, 0 ≤ x ≤ L} satisfies

‖u‖C1 ≤ C
( n∑

s=m+1

‖vs‖C1[0,T ] + ‖H‖C1[0,T ]

)
. (3.18)

In particular, the final data ψ(x) can be uniquely determined and (3.8) holds.

Remark 3.1 In Theorem 3.4, the estimate (2.7) on the weak observability time is sharp.

For the purpose in what follows, we rewrite Theorems 3.2 and 3.4 in the corresponding form
for the backward problem.

Noting that the coming (resp. departing) characteristics for the forward problem become
the departing (resp. coming) characteristics for the backward problem, for system (1.1) with
hypothesis (1.7), the boundary conditions which guarantee the well-posedness for the backward
problem should be

x = 0 : vr = G̃r(t, vm+1, · · · , vn) + H̃r(t), r = 1, · · · ,m (3.19)

and
x = L : vs = G̃s(t, v1, · · · , vm) + H̃s(t), s = m+ 1, · · · , n (3.20)

with
G̃i(t, 0, · · · , 0) ≡ 0, i = 1, · · · , n, (3.21)

and the final condition is supposed to be

t = T : u = Φ(x), 0 ≤ x ≤ L. (3.22)

For the backward problem, Theorem 3.2 can be written as follows.

Theorem 3.2′ (One-Sided Strong Exact Boundary Observability) Suppose that (2.4) holds
and T > 0 satisfies (2.7). Suppose furthermore that in a neighborhood of u = 0, boundary
condition (3.19) on x = 0 (the side with more coming characteristics for the backward problem)
implies

x = 0 : vs = G̃s(t, v1, · · · , vm) + H̃s(t), s = m+ 1, · · · , n (3.23)

with
G̃s(t, 0, · · · , 0) ≡ 0, s = m+ 1, · · · , n, (3.24)

and ∂ �Gs

∂t (s = m + 1, · · · , n) satisfy the local Lipschitz condition with respect to the variable

v = (v1, · · · , vn)T or can be controlled by ‖H̃s‖C1[0,T ] (s = m + 1, · · · , n) for the variable
v in any given bounded set. For any given final data Φ(x) with small C1[0, L] norm, such
that the conditions of C1 compatibility are satisfied at the points (t, x) = (T, 0) and (T, L)
respectively, the boundary observations vr = vr(t) (r = 1, · · · ,m) on x = L (the side with less
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coming characteristics for the backward problem) on the interval [0, T ] can be used to uniquely
determine the final data Φ(x), and the following strong observability inequality holds:

‖Φ‖C1[0,L] ≤ C
( m∑

r=1

‖vr‖C1[0,T ] + ‖H̃‖C1[0,T ]

)
, (3.25)

where C is a positive constant.

The corresponding form of Theorem 3.4 for the backward problem is as follows.

Theorem 3.4′ (One-Sided Weak Exact Boundary Observability) Suppose that T > 0 sat-
isfies (2.7). For any given final data Φ(x) with the same properties as shown in Theorem 3.2′,
we have

(1) Suppose that ∂ �Gs

∂t (s = m + 1, · · · , n) satisfy the local Lipschitz condition with respect
to the variable v = (v1, · · · , vn)T or can be controlled by ‖H̃s‖C1[0,T ] (s = m+ 1, · · · , n) for the
variable v in any given bounded set. The boundary observations vs = vs(t) (s = m+ 1, · · · , n)
on x = 0 on the interval [0, T ] can be used to uniquely determine the initial data Ψ(x) of the
solution u = u(t, x) at t = 0, and the following weak observability inequality holds:

‖Ψ‖C1[0,L] ≤ C
( n∑

s=m+1

‖vs‖C1[0,T ] + ‖H̃‖C1[0,T ]

)
, (3.26)

where C is a positive constant.
(2) Suppose that ∂ �Gr

∂t (r = 1, · · · ,m) satisfy the local Lipschitz condition with respect to the
variable v = (v1, · · · , vn)T or can be controlled by ‖H̃r‖C1[0,T ] (r = 1, · · · ,m) for the variable
v in any given bounded set. The boundary observations vr = vr(t) (r = 1, · · · ,m) on x = L

on the interval [0, T ] can be used to uniquely determine the initial data Ψ(x) of the solution
u = u(t, x) at t = 0, and the following weak observability inequality holds:

‖Ψ‖C1[0,L] ≤ C
( m∑

r=1

‖vr‖C1[0,T ] + ‖H̃‖C1[0,T ]

)
, (3.27)

where C is a positive constant.

4 Relationship Between the Strong (Weak) Controllability and
the Strong (Weak) Observability — Non-observability
Implies Non-controllability

In this section and the next section, we illustrate the relationship between the strong (weak)
controllability and the strong (weak) observability for the following linear hyperbolic system

∂ui

∂t
+ λi

∂ui

∂x
= 0, i = 1, · · · , n, (4.1)

in which λi (i = 1 · · · , n) are constants and

λr < 0 < λs, r = 1, · · · ,m; s = m+ 1, · · · , n. (4.2)

The linear boundary conditions are prescribed as follows:

x = 0 : us =
m∑

r=1

asrur, s = m+ 1, · · · , n (4.3)
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and

x = L : ur =
n∑

s=m+1

arsus +Hr(t), r = 1, · · · ,m, (4.4)

where asr and ars (r = 1, · · · ,m; s = m + 1, · · · , n) are constants, and Hr (r = 1, · · · ,m) are
C1 functions of t.

We consider the forward mixed initial-boundary value problem for system (4.1) with bound-
ary conditions (4.3)–(4.4) and the initial condition

t = 0 : u = ϕ(x), 0 ≤ x ≤ L. (4.5)

Correspondingly, we consider the following backward mixed problem for the adjoint system:

∂wi

∂t
+ λi

∂wi

∂x
= 0, i = 1, · · · , n, (4.6)

x = 0 : wr = −
n∑

s=m+1

λs

λr
asrws, r = 1, · · · ,m, (4.7)

x = L : ws = −
m∑

r=1

λr

λs
arswr, s = m+ 1, · · · , n, (4.8)

t = T : w = Φ(x), 0 ≤ x ≤ L. (4.9)

Multiplying the i-th equation in (4.1) by wi, integrating it with respect to t and x on the
domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L} and summing up with respect to i from 1 to n,
by integration by parts it is easy to get the following dual integral formula:

n∑
i=1

∫ L

0

uiwi(T, x) dx−
n∑

i=1

∫ L

0

uiwi(0, x) dx+
m∑

r=1

∫ T

0

λrHr(t)wr(t, L) dt = 0. (4.10)

Using (4.10), under the assumption that the number of boundary observations can not be
reduced in the one-sided strong (resp. weak) exact boundary observability for the backward
problem (4.6)–(4.9), we can reach the conclusion that the number of boundary controls can not
be reduced generically in the one-sided strong (resp. weak) exact boundary controllability for
the forward problem (4.1) and (4.3)–(4.5).

(1) We first consider the relationship between the weak exact observability and the weak
exact controllability.

Suppose that the boundary observations wr = wr(t) (r = 1, · · · ,m) on x = L on an interval
[0, T ] can be used to uniquely determine the initial data w(0, x) � Ψ(x), 0 ≤ x ≤ L, for the
backward problem (4.6)–(4.9) (see the second part of Theorem 3.4′). In particular, when

wr(t) ≡ 0, r = 1, · · · ,m, 0 ≤ t ≤ T, (4.11)

we have
Ψ(x) ≡ 0, 0 ≤ x ≤ L. (4.12)

Suppose furthermore that in order to realize the one-sided weak exact boundary observability,
the number of boundary observations can not be reduced. For instance, even though the
boundary observations

(w2(t, L), · · · , wm(t, L)) = (w2(t), · · · , wm(t)) ≡ 0, 0 ≤ t ≤ T, (4.13)
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we still have
Ψ(x) �≡ 0, 0 ≤ x ≤ L. (4.14)

Then, we want to prove that the number of boundary controls can not be reduced generically in
the one-sided weak exact boundary controllability for the forward problem (4.1) and (4.3)–(4.5).

For this purpose, we specially take the initial condition for the forward problem as

t = 0 : u = Ψ(x), 0 ≤ x ≤ L, (4.15)

where Ψ(x) is given by (4.14). Suppose that boundary controls Hr(t) (r = 1, · · · ,m) on x = L

on the interval [0, T ] can be used to realize the weak controllability:

u(T, x) ≡ 0, 0 ≤ x ≤ L (4.16)

(see the second part of Theorem 2.4). We now prove that in order to realize the one-sided weak
exact boundary controllability, the number of boundary controls can not be reduced generically.
For this purpose, supposing that only boundary controls H2(t), · · · , Hm(t) on the interval [0, T ]
are enough to get (4.16), we may specially take

H1(t) ≡ 0, 0 ≤ t ≤ T. (4.17)

Substituting (4.13) and (4.15)–(4.17) into (4.10) yields∫ L

0

|Ψ(x)|2dx = 0, (4.18)

which contradicts (4.14).
(2) We next consider the relationship between the strong exact observability and the strong

exact controllability.
Suppose that (2.4) holds. Suppose furthermore that the boundary observations wr = wr(t)

(r = 1, · · · ,m) on x = L on an interval [0, T ] can be used to uniquely determine the final
data w(T, x) = Φ(x), 0 ≤ x ≤ L, for the backward problem (4.6)–(4.9) (see Theorem 3.2′). In
particular, when (4.11) holds, we have

Φ(x) ≡ 0, 0 ≤ x ≤ L. (4.19)

Suppose finally that in order to realize the one-sided strong exact boundary observability, the
number of boundary observations can not be reduced. For instance, even though (4.13) holds,
we still have

Φ(x) �≡ 0, 0 ≤ x ≤ L. (4.20)

Then, we want to prove that the number of boundary controls can not be reduced generically
in the one-sided strong exact boundary controllability for the forward problem (4.1) and (4.3)–
(4.5).

In fact, suppose that boundary controls Hr(t) (r = 1, · · · ,m) on x = L on the interval [0, T ]
can be used to realize the strong controllability for the forward problem (4.1) and (4.3)–(4.5)
(see Theorem 2.2). We now show that in order to realize the one-sided strong exact boundary
controllability on [0, T ], the number of boundary controls can not be reduced generically. For
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this purpose, we specially take the initial condition and the final condition for the forward
problem as

t = 0 : u = 0, 0 ≤ x ≤ L (4.21)

and

t = 0 : u = Φ(x), 0 ≤ x ≤ L, (4.22)

respectively, where Φ(x) is given by (4.20). Supposing that only boundary controls H2(t), · · · ,
Hm(t) on the interval [0, T ] are enough to drive u = 0 at t = 0 exactly to Φ(x) at t = T , we
may assume that (4.17) holds. Thus, noting (4.13), (4.17) and (4.21)–(4.22), it follows form
(4.10) that ∫ L

0

|Φ(x)|2dx = 0, (4.23)

which is a contradiction to (4.20).
From the previous discussions, we reach the conclusion that in order to show that the

number of boundary controls can not be reduced generically in the one-sided strong (resp.
weak) exact boundary controllability for the forward problem, it suffices to show that the
number of boundary observations can not be reduced generically in the one-sided strong (resp.
weak) exact boundary observability for the corresponding backward problem.

Remark 4.1 For the backward problem (4.6)–(4.9), if we take the boundary observations
on x = L not only for (w2, · · · , wm) = (w2(t), · · · , wm(t)) on the interval [0, T ], but also for
w1 = w1(t) on a smaller interval [T , T ] with 0 < T < T , such that under the assumptions (4.13)
and

w1(t) ≡ 0, T ≤ t ≤ T, (4.24)

we still have (4.14) for the weak exact boundary observability and (4.20) for the strong exact
boundary observability. Then, for the forward problem (4.1) and (4.3)–(4.5), the one-sided weak
(resp. strong) exact boundary controllability can still not be realized generically by means of
both the boundary controls H2(t), · · · , Hm(t) on the interval [0, T ] and the boundary control
H1(t) on an interval smaller than [0, T ]. In fact, if it is not the case, supposing that H1(t) as a
boundary control is given on the interval [T̃ , T ] with T̃ > T and specially taking

H1(t) ≡ 0, 0 ≤ t ≤ T , (4.25)

similarly to the previous discussion, noting (4.24)–(4.25), we can still get (4.18) and (4.23)
which reach a contradiction.

We now take some examples to show that the number of boundary observations can not be
reduced in the one-sided weak (resp. strong) exact boundary observability for the backward
problem.

Consider the backward problem for the following system:⎧⎪⎨⎪⎩
∂u

∂t
− ∂u

∂x
= 0,

∂v

∂t
+
∂v

∂x
= 0

(4.26)
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and the following boundary conditions:

x = 0 : u = v, (4.27)

x = L : v = u. (4.28)

By the second part of Theorem 3.4′, if T ≥ 2L and we observe u = u(t) (0 ≤ t ≤ T ) on
x = L, then we have the one-sided weak exact boundary observability. However, if we do
not take any observation on x = L, then we can not expect to have the one-sided weak exact
boundary observability, since, generically speaking, the initial value at t = 0 of the solution to
the backward problem is not identically equal to zero. This shows that the number of boundary
observations can not be reduced generically in the one-sided weak exact boundary observability.

In order to show that the number of boundary observations can not be reduced generically in
the one-sided strong exact boundary observability for the backward problem, we still consider
system (4.26) and boundary conditions (4.27)–(4.28). By Theorem 3.2′, if T ≥ 2L and we
observe u = u(t) (0 ≤ t ≤ T ) on x = L, then we have the one-sided strong exact boundary
observability. However, if we do not take any observation on x = L, then we can not expect
to have the one-sided strong exact boundary observability, since the final data at t = T of the
solution to the backward problem is arbitrarily given.

Remark 4.2 We now observe u = u(t) for T ≤ t ≤ T on x = L, but the observed time
T − T is less than 2L. Without loss of generality we suppose

L < T − T < 2L. (4.29)

Suppose that
u(t) ≡ 0, T ≤ t ≤ T. (4.30)

When T < L, noting boundary conditions (4.27)–(4.28), it is easy to see that

u(0, x) ≡ 0, 0 ≤ x ≤ L (4.31)

and
v(0, x) ≡ 0, 0 ≤ x ≤ L− T , (4.32)

but in general v(0, x) on L − T ≤ x ≤ L can not be identically equal to zero. Similarly, when
T ≥ L, in general v(0, x) on 0 ≤ x ≤ L can not be identically equal to zero. It shows that the
corresponding one-sided weak exact boundary observability can not be realized in this case.

We now show that the corresponding one-sided strong exact boundary observability can not
be realized in this case, too. In fact, noting (4.29) and using boundary conditions (4.27)–(4.28),
it is easy to see that

u(T, x) ≡ 0, 0 ≤ x ≤ L (4.33)

and
v(T, x) ≡ 0, 0 ≤ x ≤ T − T − L, (4.34)

but v(T, x) on T − T − L ≤ x ≤ L should be arbitrarily given.
By Remark 4.1, corresponding conclusions on the one-sided weak (resp. strong) exact

boundary controllability can be obtained for the related forward problem.
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5 Relationship Between the Strong Controllability and the Strong
Observability — Non-controllability implies Non-observability

In this section, we consider the forward problem for system (4.1) with the boundary condition
(4.3) on x = 0, the boundary condition

x = L : ur = Hr(t), r = 1, · · · ,m (5.1)

and the initial condition
t = 0 : u = 0, 0 ≤ x ≤ L. (5.2)

By Theorem 2.2, if
n ≤ 2m (5.3)

and
T > L

(
max

r=1,··· ,m
1

|λr| + max
s=m+1,··· ,n

1
λs

)
, (5.4)

boundary controls Hr(t) (r = 1, · · · ,m) on x = L on the interval [0, T ] can be used to realize
the one-sided strong exact boundary controllability for driving the initial data (5.2) exactly to
any given final data ψ(x) on t = T :

t = T : u = ψ(x), 0 ≤ x ≤ L. (5.5)

Moreover, the number of boundary controls can not be reduced in this situation. In fact, in the
lack of boundary controls, without loss of generality we may suppose that

H1(t) ≡ 0, 0 ≤ t ≤ T. (5.6)

Then it is easy to see that
u1(T, x) ≡ 0, 0 ≤ x ≤ L. (5.7)

Hence, for any given final data (5.5) in which ψ(x) = Φ(x) � (ϕ(x), 0, · · · , 0)T and ϕ(x) is a
non-trivial C1 function with compact support, there is no way to reach it at t = T , no matter
how to choose boundary controls H2(t), · · · , Hm(t).

We now consider the following adjoint backward problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂wi

∂t
+ λi

∂wi

∂x
= 0, i = 1, · · · , n,

x = 0 : wr = −
n∑

s=m+1

λs

λr
asrws, r = 1, · · · ,m,

x = L : ws = 0, s = m+ 1, · · · , n,
t = T : w = Φ(x),

(5.8)

(5.9)

(5.10)
(5.11)

in which Φ(x) is given in the previous way.
We still have (4.10). Using (5.2) and (5.6) and specially taking

H
�r(t) = w

�r(t, L), r̃ = 2, · · · ,m, (5.12)

we get ∫ L

0

uT(T, x)Φ(x) dx +
m∑
�r=2

∫ T

0

λ
�rw

2
�r(t, L) dt = 0. (5.13)
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Noting (5.7) and the special choice of Φ(x), we have∫ L

0

uT(T, x)Φ(x) dx = 0. (5.14)

Then, noting (4.2), it follows from (5.13) that

w
�r(t, L) ≡ 0, r̃ = 2, · · · ,m, 0 ≤ t ≤ T. (5.15)

Thus, for the solution w = w(t, x) to the backward problem (5.8)–(5.11), we have the zero
boundary observation with lack of observations (see Theorem 3.2′), but the final data are not
identically equal to zero. This shows that the number of boundary observations can not be
reduced in order to realize the one-sided strong exact boundary observability for the backward
problem.
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