ON TAYLOR'S CONJECTURE ABOUT THE PACKING MEASURES OF CARTESIAN PRODUCT SETS**

Xu You* Ren Fuyao*

Abstract

It is proved that if $E \subset \mathbf{R}, F \subset \mathbf{R}^{n}$, then $\mathcal{P}\left(E \times F, \varphi_{1} \varphi_{2}\right) \leq c \cdot \mathcal{P}\left(E, \varphi_{1}\right) \mathcal{P}\left(E, \varphi_{2}\right)$, where $\mathcal{P}(\cdot, \varphi)$ denotes the φ-packing measure, φ belongs to a class of Hausdorff functions, the positive constant c deponds only on φ_{1}, φ_{2} and n.

Keywords Packing measure, Hausdorff measure, Cartesian product set
1991 MR Subject Classification 28A12, 28A35
Chinese Library Classification O174.1

§1. Introduction

In the geometry of fractals, Hausdorff measure and dimension play a very important role. On the other hand, the recent introduction of packing measures has led to a greater understanding of the geometric theory of fractals, as packing measures behave in a way that is 'dual' to Hausdorff measures in many respects ${ }^{[2]}$. For example, denoting Hausdorff dimension and packing dimension by dim and Dim respectively, we have $\operatorname{dim}(E \times F) \geq \operatorname{dim} E+\operatorname{dim} F$, while $\operatorname{Dim}(E \times F) \leq \operatorname{Dim} E+\operatorname{Dim} F$. It is well-knowen that if $E \subset \mathbf{R}^{m}, F \subset \mathbf{R}^{n}$, then

$$
\mathcal{H}\left(E \times F, \varphi_{1} \varphi_{2}\right) \geq b \cdot \mathcal{H}\left(\left(E, \varphi_{1}\right) H\left(F, \varphi_{2}\right)\right.
$$

for some Hausdorff functions and constant b, where $\mathcal{H}(\cdot, \varphi)$ denotes the φ-Hausdorff measure. Taylor conjectures that we should have

$$
\mathcal{P}\left(E \times F, \varphi_{1} \varphi_{2}\right) \leq c \cdot \mathcal{P}\left(E, \varphi_{1}\right) \mathcal{P}\left(F, \varphi_{2}\right)
$$

In this paper, it is shown that if E or F is a subset of \mathbf{R}, then the conjecture is correct.

§2. Packing Premeasure

We restrict our attention to subsets of Euclidean space $\mathbf{R}^{d}(d \geq 1)$. The Cartesian product of sets $E \subset \mathbf{R}^{m}$ and $F \subset \mathbf{R}^{n}$ is denoted by $E \times F$. We use $|E|$ to denote the diameter of E and $\|x\|$ to denote the distance from 0 to $x \in \mathbf{R}^{n}$. The open ball with center at x and radius $r>0$ is denoted by

$$
B_{r}(x)=\left\{y \in \mathbf{R}^{n}:\|x-y\|<r\right\} .
$$

Ω stands for the class of balls:

$$
\Omega(E)=\left\{B_{r}(x): r>0, x \in E\right\} .
$$

[^0]Γ^{*} stands for the class of dyadic cubes in $\mathbf{R}^{d}, C \in \Gamma^{*}$ if it has side length $2^{-n}, n \in$ \mathbf{N}, and each of its projections $\operatorname{proj}_{i} C$ on the i th axis is a half-open interval of the form $\left[k_{i} 2^{-n},\left(k_{i}+1\right) 2^{-n}\right)$ with $k_{i} \in \mathbf{Z} . u_{n}(x)$ denotes the unique cube which is in Γ^{*} and contains x with side legnth 2^{-n}.
$$
\Gamma^{*}(E)=\left\{u_{n}(x): x \in E, n \in \mathbf{N}\right\}
$$
$\Gamma^{* *}$ stands for the class of semidyadic cubes in $\mathbf{R}^{d}, C \in \Gamma^{* *}$ if it has side legnth 2^{-n} and $\operatorname{proj}_{i} C=\left[\frac{1}{2} k_{i} 2^{-n},\left(\frac{1}{2} k_{i}+1\right) 2^{-n}\right)$ with $k_{i} \in \mathbf{Z} . v_{n}(x)$ is the unique cube in $\Gamma^{* *}$ of side legnth 2^{-n} such that on the i-th axis the complement of $\operatorname{proj}_{i} C$ is at distance 2^{-n-2} from $u_{n+2}\left(\operatorname{proj}_{i} x\right) \subset \mathbf{R}$. It is not difficult to see that if $x \in \mathbf{R}^{m+n}$ and $n \in \mathbf{N}$, then $\operatorname{proj}_{\mathbf{R}^{n}}\left(v_{n}(x)\right)=v_{n}\left(\operatorname{proj}_{\mathbf{R}^{n}} x\right)$, where $v_{n}\left(\operatorname{proj}_{\mathbf{R}^{n}} x\right)$ is in \mathbf{R}^{n}.
$$
\Gamma^{* *}=\left\{v_{n}(x): x \in E, n \in \mathbf{N}\right\}
$$
Φ denotes the class of functions $\varphi:[0,+\infty) \rightarrow \mathbf{R}$ which are increasing, continous with $\varphi(0)=0$ and
\[

$$
\begin{equation*}
\varphi(2 x)<c_{0} \varphi(x) \quad \text { for some } c_{0}>0 \quad \text { and } \quad 0<x<\frac{1}{2} \tag{2.1}
\end{equation*}
$$

\]

We use $\mathcal{B}\left(\mathbf{R}^{n}\right)$ to denote the family of bounded subsets of \mathbf{R}^{n}. For $\mathcal{R} \subset \mathcal{B}\left(\mathbf{R}^{n}\right)$, put $\|\mathcal{R}\|=\sup \{|E|: E \in \mathcal{R}\}$ and

$$
\begin{equation*}
\varphi(R)=\sum_{R \in \mathcal{R}} \varphi(|E|) \tag{2.2}
\end{equation*}
$$

We say $R \subset B\left(\mathbf{R}^{n}\right)$ is a packing of E if for all $F \in R, \bar{E} \cap \bar{F} \neq \emptyset$, and the sets in \mathcal{R} are disjoint. Put

$$
\begin{equation*}
\tau(E, \varphi, \varepsilon)=\sup \{\varphi(\mathcal{R}):\|\mathcal{R}\| \leq \varepsilon, \mathcal{R} \text { is a packing of } E\} \tag{2.3}
\end{equation*}
$$

Particularly, if $\mathcal{R} \subset \Omega(E)$ or $\mathcal{R} \subset \Gamma^{* *}(E)$, the corresponding $\tau(E, \varphi, \varepsilon)$ is denoted by $P(E, \varphi, \varepsilon)$ or $P^{* *}(E, \varphi, \varepsilon)$.

Obviously $\tau(E, \varphi, \varepsilon)$ is an increasing function of ε. Let

$$
\begin{align*}
\tau(E, \varphi) & =\lim _{\varepsilon \rightarrow 0} \tau(E, \varphi, \varepsilon), \\
P(E, \varphi) & =\lim _{\varepsilon \rightarrow 0} P(E, \varphi, \varepsilon), \\
P^{* *}(E, \varphi) & =\lim _{\varepsilon \rightarrow 0} P^{* *}(E, \varphi, \varepsilon) . \tag{2.4}
\end{align*}
$$

§3. Packing Measure

For $E \subset \mathbf{R}^{n}$, let

$$
\begin{align*}
\mathcal{P}(E, \phi) & =\inf \left\{\sum P\left(E_{i}, \varphi\right): E_{i} \in \mathcal{B}\left(\mathbf{R}^{n}\right), E \subset \cup E_{i}\right\}, \tag{3.1}\\
\mathcal{P}^{* *}(E, \varphi) & =\inf \left\{\sum P^{* *}\left(E_{i}, \varphi\right): E_{i} \in \mathcal{B}\left(\mathbf{R}^{n}\right), E \subset \cup E_{i}\right\} . \tag{3.2}
\end{align*}
$$

Then they are two outer measures. We call $\mathcal{P}(E, \varphi)$ the φ-packing measure of E.

§4. Packing Measures of Cartesian Product Sets

Lemma 4.1. ${ }^{[3]}$ Let $E \subset \mathbf{R}^{n}$. Then there exist $0<c_{1} \leq c_{2}<+\infty$ such that

$$
\begin{equation*}
c_{1} P(E, \varphi) \leq P^{* *}(E, \varphi) \leq c_{2} P(E, \varphi) \tag{4.1}
\end{equation*}
$$

c_{1} and c_{2} depend only on φ and n.
Proof. From the definition of $v_{i}(x)$, we can get $B_{2^{-i-2}}(x) \subset v_{i}(x) \subset B_{\rho \cdot 2^{-i}}(x)$, where $i \in N$, and $\rho=n^{\frac{1}{2}}$. So according to (2.3) and (2.4), the results is obvious.

Corollary 4.1. ${ }^{[3]}$ Let $E \subset \mathbf{R}^{n}$. Then there exist $0<c_{1} \leq c_{2}<+\infty$ such that

$$
c_{1} \mathcal{P}(E, \varphi) \leq \mathcal{P}^{* *}(E, \varphi) \leq c_{2} \mathcal{P}(E, \varphi) .
$$

c_{1} and c_{2} depend only on φ and n.
Proof. Use (3.1), (3.2) and Lemma 4.1.
Lemma 4.2. Let $E \subset[a, b],-\infty<a \leq b<+\infty, u=\left\{U_{i}, i=1,2,3, \cdots\right\} \subset \Gamma^{* *}(E)$. U_{i} and U_{j} may be the same set when $i \neq j, q>0,\|u\| \leq q$. For all $x \in[a, b]$,

$$
\begin{equation*}
\sum_{U_{i} \in u} \chi_{U_{i}}(x) \leq n, \quad n \in \mathbf{N}, \tag{4.2}
\end{equation*}
$$

where $\chi_{U_{i}}(x)$ is the characteristic function of U_{i}. Then

$$
\begin{equation*}
\sum_{U_{i} \in u} \varphi\left(\left|U_{i}\right|\right) \leq n \cdot P^{* *}(E, \varphi, q) . \tag{4.3}
\end{equation*}
$$

Proof. Use mathematical induction.
If $n=1$, then from (4.2) we know that u is a packing of E, so

$$
\sum_{U_{i} \in u} \varphi\left(\left|U_{i}\right|\right) \leq P^{* *}(E, \varphi, q) .
$$

Suppose that the lemma is true when $n=k-1$. Let $n=k$. Let $u^{\prime}=\left\{U_{1}, U_{2}, \cdots U_{N}\right\}$. Then

$$
\begin{equation*}
\sum_{U_{i} \in u^{\prime}} \chi_{U_{i}}(x) \leq \sum_{U_{i} \in u} \chi_{U_{i}}(x) \leq k, \quad x \in[a, b] . \tag{4.4}
\end{equation*}
$$

Let $U_{i}=\left[a_{i}, b_{i}\right), i=1,2, \cdots N$. We can assume that $a_{1} \leq a_{2} \leq \cdots \leq a_{N-1} \leq a_{N}$. Let $U_{r_{1}}=\left[a_{1}, b_{1}\right), U_{r_{2}}=\left[a_{r_{2}}, b_{r_{2}}\right)$, where r_{2} is the smallest number which satisfies $a_{r_{2}} \geq b_{1}$. Also we can get $U_{r_{3}}=\left[a_{r_{3}}, b_{r_{3}}\right)$, where r_{3} is the smallest number such that $a_{r_{3}} \geq b_{r_{2}}$. In such a way, we can get

$$
U_{r_{1}}, U_{r_{2}}, \cdots U_{r_{l}}, \quad 1=r_{1}<r_{2}<\cdots \leq r_{l} \leq N .
$$

Let $\tilde{u}=\left\{U_{r_{1}}, U_{r_{2}}, \cdots, U_{r_{1}}\right\}, u^{\prime \prime}=u^{\prime} \backslash \tilde{u}$. Then \tilde{u} is a packing of E, so

$$
\begin{equation*}
\sum_{i=1}^{l} \varphi\left(\left|U_{r_{i}}\right|\right) \leq P^{* *}(E, \varphi, q) \tag{4.5}
\end{equation*}
$$

We need to prove

$$
\begin{equation*}
\sum_{U \in u^{\prime \prime}} \chi_{U_{i}}(x) \leq k-1, \quad x \in[a, b] . \tag{4.6}
\end{equation*}
$$

If $x \in \bigcup_{i=1}^{l} U_{r_{i}}$, then (4.6) is obviously correct.
If $x \notin \bigcup_{i=1}^{l} U_{r_{i}}$, then there must exist r_{i} such that $x \in\left[b_{r_{i}}, a_{r_{i+1}}\right.$) (If $i=l$, then let $\left.a_{r_{i+1}}=b\right)$. So if $x \in U_{i} \in u^{\prime \prime}$, then U_{i} must satisfy $U_{i} \cap\left[a_{r_{i}}, b_{r_{i}}\right) \neq \emptyset$; otherwise U_{i} should have been selected into \tilde{u} before $\left[a_{r_{i+1}}, b_{r_{i+1}}\right)$. So if there are more than $k-1$ sets containing
x in $u^{\prime \prime}$, we can find a point $b_{r_{i}}^{\prime}$ in the left neighborhood of $b_{r_{i}}$ such that

$$
\begin{equation*}
\sum_{U_{i} \in u^{\prime}} \chi_{U_{i}}\left(b_{r_{i}}^{\prime}\right)=\sum_{U_{i} \in \tilde{u}} \chi_{U_{i}}\left(b_{r_{i}}^{\prime}\right)+\sum_{U_{i} \in u^{\prime \prime}} \chi_{U_{i}}\left(b_{r_{i}}^{\prime}\right)>1+(k-1)=k, \tag{4.7}
\end{equation*}
$$

which contradicts (4.4). So we have

$$
\sum_{U_{i} \in u^{\prime \prime}} \chi_{U_{i}}(x) \leq k-1
$$

and (4.6) is correct. So

$$
\sum_{U_{i} \in u^{\prime \prime}} \varphi\left(\left|U_{i}\right|\right) \leq(k-1) \cdot P^{* *}(E, \varphi, q)
$$

and

$$
\sum_{U_{i} \in u^{\prime}} \varphi\left(\left|U_{i}\right|\right)=\sum_{U_{i} \in \tilde{u}} \varphi\left(\left|U_{i}\right|\right)+\sum_{U_{i} \in u^{\prime \prime}} \varphi\left(\left|U_{i}\right|\right) \leq k \cdot P^{* *}(E, \varphi, q) .
$$

Letting $N \rightarrow+\infty$. we complete the proof.
Lemma 4.3. If $E \subset \mathbf{R}, F \subset \mathbf{R}^{n}$, then

$$
\begin{equation*}
P^{* *}\left(E \times F, \varphi_{1} \varphi_{2}\right) \leq c \cdot P^{* *}\left(E, \varphi_{1}\right) \cdot P^{* *}\left(F, \varphi_{2}\right) \tag{4.8}
\end{equation*}
$$

where $0<c<+\infty$. c depends only on φ_{1}, φ_{2} and n.
Proof. If E or F is an unbounded set, then $P^{* *}\left(E, \varphi_{1}\right)=+\infty$ or $P^{* *}\left(F, \varphi_{2}\right)=+\infty$ and (4.8) holds. So we need only to consider the case that both E and F are bounded sets.

Let $u=\left\{U_{i}\right\} \subset \Gamma^{* *}(E \times F),\|u\| \leq q$ and u be a packing of $E \times F$. Put

$$
P_{1}\left(U_{i}\right)=\operatorname{proj}_{\mathbf{R}}\left(U_{i}\right), \quad P_{2}\left(U_{i}\right)=\operatorname{proj}_{\mathbf{R}^{n}}\left(U_{i}\right), \quad u_{1}=\left\{P_{1}\left(U_{i}\right): U_{i} \in u\right\}
$$

and $u_{2}=\left\{P_{2}\left(U_{i}\right): U_{i} \in u\right\}$. Then

$$
u_{1} \subset \Gamma^{* *}(E), \quad u_{2} \subset \Gamma^{* *}(F), \quad\left\|u_{1}\right\| \leq q \text { and }\left\|u_{2}\right\| \leq q
$$

Suppose $E \subset[a, b],-\infty<a \leq b<+\infty$. For any fixed $x \in[a, b],\left\{P_{2}\left(U_{i}\right): x \in P_{1}\left(U_{i}\right)\right\}$ is a packing of F. So

$$
\begin{equation*}
\sum_{U_{i} \in u} \varphi_{2}\left(\left|P_{2}\left(U_{i}\right)\right|\right) \cdot \chi_{P_{1}\left(U_{i}\right)}(x) \leq P^{* *}\left(F, \varphi_{2}, q\right), \quad x \in[a, b] . \tag{4.9}
\end{equation*}
$$

For u we have

$$
\begin{align*}
\sum_{U_{i} \in u} \varphi_{1} \varphi_{2}\left(\left|U_{i}\right|\right) & =\sum_{U_{i} \in u} \varphi_{1}\left(\left|U_{i}\right|\right) \cdot \varphi_{2}\left(\left|U_{i}\right|\right) \\
& =\sum_{U_{i} \in u} \varphi_{1}\left(\sqrt{n+1}\left|P_{1}\left(U_{i}\right)\right|\right) \cdot \varphi_{2}\left(\frac{\sqrt{n+1}}{\sqrt{n}}\left|P_{2}\left(U_{i}\right)\right|\right) . \tag{4.10}
\end{align*}
$$

Let $u^{\prime}=\left\{U_{1}, U_{2}, \cdots, U_{N}\right\}$. Then

$$
\begin{equation*}
\sum_{U_{i} \in u^{\prime}} \varphi_{2}\left(\left|P_{2}\left(U_{i}\right)\right|\right) \cdot \chi_{P_{1}\left(U_{i}\right)}(x) \leq P^{* *}\left(F, \varphi_{2}, q\right) \tag{4.11}
\end{equation*}
$$

Let $\varphi_{2}\left(\left|P_{2}\left(U_{i}\right)\right|\right)=f_{i}, i=1,2, \cdots, N$, and $P^{* *}\left(F, \varphi_{2}, q\right)=g . f_{i}$ and g can be approximated by rational numbers d_{i} and h so that

$$
\frac{h}{1+\varepsilon} \leq g \leq h, \quad \frac{d_{i}}{1+\varepsilon} \leq f_{i} \leq d_{i}, \quad i=1,2, \cdots, N
$$

where ε is also a rational number. Then

$$
\sum_{U_{i} \in u^{\prime}} d_{i} \cdot \chi_{P_{1}\left(U_{i}\right)}(x) \leq(1+\varepsilon) h
$$

Let M be the common demoninator of ε, h and $d_{i}, i=1,2, \cdots, N, d_{i}=\frac{k_{i}}{M}$. Then

$$
\sum_{U_{i} \in u^{\prime}} M k_{i} \cdot \chi_{P_{1}\left(U_{i}\right)}(x) \leq(1+\varepsilon) h M^{2}
$$

Put $(1+\varepsilon) h M^{2}=K$. Then $K \in N$. Using Lemma 4.2 we get

$$
\sum_{U_{i} \in u^{\prime}} M k_{i} \cdot \varphi_{1}\left(\left|P_{1}\left(U_{i}\right)\right|\right) \leq K \cdot P^{* *}\left(E, \varphi_{1}, q\right)
$$

So

$$
\begin{aligned}
\sum_{U_{i} \in u^{\prime}} d_{i} \cdot \varphi_{1}\left(\left|P_{1}\left(U_{i}\right)\right|\right) & \leq(1+\varepsilon) h \cdot P^{* *}\left(E, \varphi_{1}, q\right) \\
\sum_{U_{i} \in u^{\prime}} f_{i} \cdot \varphi_{1}\left(\left|P_{1}\left(U_{i}\right)\right|\right) & \leq(1+\varepsilon)^{2} g \cdot P^{* *}\left(E, \varphi_{1}, q\right) . \\
\sum_{U_{i} \in u^{\prime}} \varphi_{2}\left(\left|P_{2}\left(U_{i}\right)\right|\right) \cdot \varphi_{1}\left(\left|P_{1}\left(U_{i}\right)\right|\right) & \leq(1+\varepsilon)^{2} P^{* *}\left(F, \varphi_{2}, q\right) \cdot P^{* *}\left(E, \varphi_{1}, q\right) .
\end{aligned}
$$

Let $\varepsilon \rightarrow 0$ and then $N \rightarrow+\infty$. We get

$$
\begin{equation*}
\sum_{U_{i} \in u} \varphi_{2}\left(\left|P_{2}\left(U_{i}\right)\right|\right) \cdot \varphi_{1}\left(\left|P_{1}\left(U_{i}\right)\right|\right) \leq P^{* *}\left(F, \varphi_{2}, q\right) \cdot P^{* *}\left(E, \varphi_{1}, q\right) \tag{4.12}
\end{equation*}
$$

From (4.12), (4.10) and (2.1) we get

$$
\begin{align*}
\sum_{U_{i} \in u} \varphi_{1} \varphi_{2}\left(\left|U_{i}\right|\right) & \leq \sum_{U_{i} \in u} \varphi_{1}\left(2^{n}\left|P_{1}\left(U_{i}\right)\right|\right) \cdot \varphi_{2}\left(2\left|P_{2}\left(U_{i}\right)\right|\right) \\
& \leq \sum_{U_{i} \in u} c_{1}^{n} \varphi_{1}\left(\left|P_{1}\left(U_{i}\right)\right|\right) \cdot c_{2} \varphi_{2}\left(\left|P_{2}\left(U_{i}\right)\right|\right) \\
& \leq c \cdot P^{* *}\left(E, \varphi_{1}, q\right) \cdot P^{* *}\left(F, \varphi_{2}, q\right) \tag{4.13}
\end{align*}
$$

where $c=c_{1}{ }^{n} \cdot c_{2}$ depends only on φ_{1}, φ_{2} and n. (4.13) is valid for any packing u of $E \times F$ on the condition that $u \in \Gamma^{* *}(E \times F),\|u\| \leq q$ and q is small enough. So we have

$$
\begin{equation*}
P^{* *}\left(E \times F, \varphi_{1} \varphi_{2}, q\right) \leq c \cdot P^{* *}\left(E, \varphi_{1}, q\right) \cdot P^{* *}\left(F, \varphi_{2}, q\right) . \tag{4.14}
\end{equation*}
$$

Let $q \rightarrow 0$. We get

$$
P^{* *}\left(E \times F, \varphi_{1} \varphi_{2}\right) \leq c \cdot P^{* *}\left(E, \varphi_{1}\right) \cdot P^{* *}\left(F, \varphi_{2}\right)
$$

Corollary 4.2. If $E \subset \mathbf{R}, F \subset \mathbf{R}^{n}$, then

$$
\begin{equation*}
P\left(E \times F, \varphi_{1} \varphi_{2}\right) \leq c^{\prime} \cdot P\left(E, \varphi_{1}\right) \cdot P\left(F, \varphi_{2}\right), \tag{4.15}
\end{equation*}
$$

where $0<c^{\prime}<+\infty, c^{\prime}$ depends only on φ_{1}, φ_{2} and n.
Proof. Use Lemma 4.1 and Lemma 4.3.
Now we can prove the main result.
Theorem 4.1. If $E \subset \mathbf{R}, F \subset \mathbf{R}^{n}$, then

$$
\begin{equation*}
\mathcal{P}^{* *}\left(E \times F, \varphi_{1} \varphi_{2}\right) \leq c \cdot \mathcal{P}^{* *}\left(E, \varphi_{1}\right) \cdot \mathcal{P}^{* *}\left(F, \varphi_{2}\right) \tag{4.16}
\end{equation*}
$$

where $0<c<+\infty$. c depends only on φ_{1}, φ_{2} and n.
Proof. According to (3.2), for any $\varepsilon>0$ there exist $\left\{E_{i}, i=1,2, \cdots\right\}$ such that $E_{i} \subset$ $\mathcal{B}(\mathbf{R}), E \subset \cup E_{i}$ and

$$
\mathcal{P}^{* *}\left(E, \varphi_{1}\right) \leq \sum P^{* *}\left(E_{i}\right) \leq \mathcal{P}^{* *}\left(E, \varphi_{1}\right)+\varepsilon
$$

We can also get $\left\{F_{i}, i=1,2, \cdots\right\}$ so that $F_{i} \subset \mathcal{B}\left(\mathbf{R}^{n}\right), F \subset \cup F_{i}$ and

$$
\mathcal{P}^{* *}\left(F, \varphi_{2}\right) \leq \sum P^{* *}\left(F_{i}\right) \leq \mathcal{P}^{* *}\left(F, \varphi_{2}\right)+\varepsilon
$$

Let $u=\left\{E_{i} \times F_{j}, i, j=1,2, \cdots\right\}$. Then $E_{i} \times F_{j} \subset \mathcal{B}\left(\mathbf{R} \times \mathbf{R}^{n}\right)$ and $E \times F \subset \bigcup_{i} \bigcup_{j} E_{i} \times F_{j}$. So

$$
\mathcal{P}^{* *}\left(E \times F, \varphi_{1} \varphi_{2}\right) \leq \sum_{i} \sum_{j} P^{* *}\left(E_{i} \times F_{j}, \varphi_{1} \varphi_{2}\right) .
$$

From Lemma 4.3, we have

$$
P^{* *}\left(E_{i} \times F_{j}, \varphi_{1} \varphi_{2}\right) \leq c \cdot P^{* *}\left(E_{i}, \varphi_{1}\right) \cdot P^{* *}\left(F_{j}, \varphi_{2}\right)
$$

So

$$
\begin{aligned}
\mathcal{P}^{* *}\left(E \times F, \varphi_{1} \varphi_{2}\right) & \leq \sum_{i} \sum_{j} c \cdot P^{* *}\left(E_{i}, \varphi_{1}\right) \cdot P^{* *}\left(F_{j}, \varphi_{2}\right) \\
& \leq c \cdot\left(\mathcal{P}^{* *}\left(E, \varphi_{1}\right)+\varepsilon\right) \cdot\left(\mathcal{P}^{* *}\left(F, \varphi_{2}\right)+\varepsilon\right)
\end{aligned}
$$

Let $\varepsilon \rightarrow 0$. We get

$$
\mathcal{P}^{* *}\left(E \times F, \varphi_{1} \varphi_{2}\right) \leq c \cdot P^{* *}\left(E, \varphi_{1}\right) \cdot P^{* *}\left(F, \varphi_{2}\right)
$$

Theorem 4.2. If $E \subset \mathbf{R}, F \subset \mathbf{R}^{n}$, then

$$
\mathcal{P}\left(E \times F, \varphi_{1} \varphi_{2}\right) \leq c^{\prime} \cdot \mathcal{P}\left(E, \varphi_{1}\right) \cdot \mathcal{P}\left(F, \varphi_{2}\right)
$$

where $0<c^{\prime}<+\infty, c^{\prime}$ depends only on φ_{1}, φ_{2} and n.
Proof. Use Theorem 4.1 and Corollary 4.1.
Acknowledgment. We would like to thank Dr. Lu Jin for his help.

References

[1] Falconer, K. J., The geometry of fractal sets, Cambridge University Press, New York, 1985.
[2] Falconer, K. J., Fractal geometry, Wiley, New York (1990).
[3] Taylor, S.J. \& Tricot, C., Packing measure, and its evaluation for a Brownian path, Trans. Amer. Math., Soc., 288 (1985), 679-699.
[4] Tricot, C., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91 (1982), 57-74.
[5] Wegmann, H., Die Hausdorff-dimension von kartesischen Producten metrischer Räume, J. Reine Angew Math., 246 (1971), 46-75.
[6] Xu You, The equivalence of packing dimension and metric dimension in Euclidean space, Chinese Journal of Contemporary Mathematics, 13 (1992), 73-77.

[^0]: Manuscript received May 4, 1993. Revised October 25, 1993.
 *Institute of Mathematics, Fudan University, Shanghai 200433, China.
 **Project supported by the Science Found of Chinese Academy of Sciences

