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Abstract

It is proved that if E ⊂ R, F ⊂ Rn, then P(E × F, φ1φ2) ≤ c · P(E,φ1)P(E,φ2), where
P(·, φ) denotes the φ-packing measure, φ belongs to a class of Hausdorff functions, the positive
constant c deponds only on φ1, φ2 and n.

Keywords Packing measure, Hausdorff measure, Cartesian product set

1991 MR Subject Classification 28A12, 28A35

Chinese Library Classification O174.1

§1. Introduction

In the geometry of fractals, Hausdorff measure and dimension play a very important

role. On the other hand, the recent introduction of packing measures has led to a greater

understanding of the geometric theory of fractals, as packing measures behave in a way that is

‘dual’ to Hausdorff measures in many respects[2]. For example, denoting Hausdorff dimension

and packing dimension by dim and Dim respectively, we have dim(E×F ) ≥ dimE+dimF ,

while Dim(E × F ) ≤ DimE +DimF . It is well-knowen that if E ⊂ Rm, F ⊂ Rn, then

H(E × F,φ1φ2) ≥ b · H((E,φ1)H(F,φ2)

for some Hausdorff functions and constant b, whereH(·, φ) denotes the φ-Hausdorff measure.

Taylor conjectures that we should have

P(E × F,φ1φ2) ≤ c · P(E,φ1)P(F,φ2).

In this paper, it is shown that if E or F is a subset of R, then the conjecture is correct.

§2. Packing Premeasure

We restrict our attention to subsets of Euclidean space Rd(d ≥ 1). The Cartesian product

of sets E ⊂ Rm and F ⊂ Rn is denoted by E × F . We use |E| to denote the diameter of

E and ∥x∥ to denote the distance from 0 to x ∈ Rn. The open ball with center at x and

radius r > 0 is denoted by

Br(x) = {y ∈ Rn : ∥x− y∥ < r}.

Ω stands for the class of balls:

Ω(E) = {Br(x) : r > 0, x ∈ E}.
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Γ∗ stands for the class of dyadic cubes in Rd, C ∈ Γ∗ if it has side length 2−n, n ∈
N, and each of its projections projiC on the ith axis is a half-open interval of the form

[ki2
−n, (ki+1)2−n) with ki ∈ Z. un(x) denotes the unique cube which is in Γ∗ and contains

x with side legnth 2−n.

Γ∗(E) = {un(x) : x ∈ E,n ∈ N}.

Γ∗∗ stands for the class of semidyadic cubes in Rd, C ∈ Γ∗∗ if it has side legnth 2−n

and projiC = [ 12ki2
−n, ( 12ki + 1)2−n) with ki ∈ Z. vn(x) is the unique cube in Γ∗∗ of

side legnth 2−n such that on the i-th axis the complement of projiC is at distance 2−n−2

from un+2(projix) ⊂ R. It is not difficult to see that if x ∈ Rm+n and n ∈ N, then

projRn(vn(x)) = vn(projRnx), where vn(projRnx) is in Rn.

Γ∗∗ = {vn(x) : x ∈ E, n ∈ N}.

Φ denotes the class of functions φ : [0,+∞) → R which are increasing, continous with

φ(0) = 0 and

φ(2x) < c0φ(x) for some c0 > 0 and 0 < x <
1

2
. (2.1)

We use B(Rn) to denote the family of bounded subsets of Rn. For R ⊂ B(Rn), put

∥R∥ = sup{|E| : E ∈ R} and

φ(R) =
∑
R∈R

φ(|E|). (2.2)

We say R ⊂ B(Rn) is a packing of E if for all F ∈ R,E ∩ F ̸= ∅, and the sets in R are

disjoint. Put

τ(E,φ, ε) = sup{φ(R) : ∥R∥ ≤ ε,R is a packing of E}. (2.3)

Particularly, if R ⊂ Ω(E) or R ⊂ Γ∗∗(E), the corresponding τ(E,φ, ε) is denoted by

P (E,φ, ε) or P ∗∗(E,φ, ε).

Obviously τ(E,φ, ε) is an increasing function of ε. Let

τ(E,φ) = lim
ε→0

τ(E,φ, ε),

P (E,φ) = lim
ε→0

P (E,φ, ε),

P ∗∗(E,φ) = lim
ε→0

P ∗∗(E,φ, ε). (2. 4)

§3. Packing Measure

For E ⊂ Rn, let

P(E, ϕ) = inf
{∑

P (Ei, φ) : Ei ∈ B(Rn), E ⊂ ∪Ei

}
, (3.1)

P∗∗(E,φ) = inf
{∑

P ∗∗(Ei, φ) : Ei ∈ B(Rn), E ⊂ ∪Ei

}
. (3.2)

Then they are two outer measures. We call P(E,φ) the φ-packing measure of E.

§4. Packing Measures of Cartesian Product Sets

Lemma 4.1.[3] Let E ⊂ Rn. Then there exist 0 < c1 ≤ c2 < +∞ such that

c1P (E,φ) ≤ P ∗∗(E,φ) ≤ c2P (E,φ). (4.1)
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c1 and c2 depend only on φ and n.

Proof. From the definition of vi(x), we can get B2−i−2(x) ⊂ vi(x) ⊂ Bρ·2−i(x), where

i ∈ N , and ρ = n
1
2 . So according to (2.3) and (2.4), the results is obvious.

Corollary 4.1.[3] Let E ⊂ Rn. Then there exist 0 < c1 ≤ c2 < +∞ such that

c1P(E,φ) ≤ P∗∗(E,φ) ≤ c2P(E,φ).

c1 and c2 depend only on φ and n.

Proof. Use (3.1), (3.2) and Lemma 4.1.

Lemma 4.2. Let E ⊂ [a, b],−∞ < a ≤ b < +∞, u = {Ui, i = 1, 2, 3, · · · } ⊂ Γ∗∗(E). Ui

and Uj may be the same set when i ̸= j, q > 0, ∥u∥ ≤ q. For all x ∈ [a, b],∑
Ui∈u

χUi(x) ≤ n, n ∈ N, (4.2)

where χUi(x) is the characteristic function of Ui. Then∑
Ui∈u

φ(|Ui|) ≤ n · P ∗∗(E,φ, q). (4.3)

Proof. Use mathematical induction.

If n = 1, then from (4.2) we know that u is a packing of E, so∑
Ui∈u

φ(|Ui|) ≤ P ∗∗(E,φ, q).

Suppose that the lemma is true when n = k − 1. Let n = k. Let u′ = {U1, U2, · · ·UN}.
Then ∑

Ui∈u′

χUi(x) ≤
∑
Ui∈u

χUi(x) ≤ k, x ∈ [a, b]. (4.4)

Let Ui = [ai, bi), i = 1, 2, · · ·N . We can assume that a1 ≤ a2 ≤ · · · ≤ aN−1 ≤ aN . Let

Ur1 = [a1, b1), Ur2 = [ar2 , br2), where r2 is the smallest number which satisfies ar2 ≥ b1.

Also we can get Ur3 = [ar3 , br3), where r3 is the smallest number such that ar3 ≥ br2 . In

such a way, we can get

Ur1 , Ur2 , · · ·Url , 1 = r1 < r2 < · · · ≤ rl ≤ N.

Let ũ = {Ur1 , Ur2 , · · · , Url}, u′′ = u′\ũ. Then ũ is a packing of E, so

l∑
i=1

φ(|Uri |) ≤ P ∗∗(E,φ, q). (4.5)

We need to prove ∑
U∈u′′

χUi(x) ≤ k − 1, x ∈ [a, b]. (4.6)

If x ∈
l∪

i=1

Uri , then (4.6) is obviously correct.

If x /∈
l∪

i=1

Uri , then there must exist ri such that x ∈ [bri , ari+1) ( If i = l, then let

ari+1 = b). So if x ∈ Ui ∈ u′′, then Ui must satisfy Ui

∩
[ari , bri) ̸= ∅; otherwise Ui should

have been selected into ũ before [ari+1 , bri+1). So if there are more than k−1 sets containing
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x in u′′, we can find a point b′ri in the left neighborhood of bri such that∑
Ui∈u′

χUi(b
′
ri) =

∑
Ui∈ũ

χUi(b
′
ri) +

∑
Ui∈u′′

χUi(b
′
ri) > 1 + (k − 1) = k, (4.7)

which contradicts (4.4). So we have∑
Ui∈u′′

χUi(x) ≤ k − 1

and (4.6) is correct. So ∑
Ui∈u′′

φ(|Ui|) ≤ (k − 1) · P ∗∗(E,φ, q),

and ∑
Ui∈u′

φ(|Ui|) =
∑
Ui∈ũ

φ(|Ui|) +
∑

Ui∈u′′

φ(|Ui|) ≤ k · P ∗∗(E,φ, q).

Letting N → +∞. we complete the proof.

Lemma 4.3. If E ⊂ R, F ⊂ Rn, then

P ∗∗(E × F,φ1φ2) ≤ c · P ∗∗(E,φ1) · P ∗∗(F,φ2), (4.8)

where 0 < c < +∞. c depends only on φ1, φ2 and n.

Proof. If E or F is an unbounded set, then P ∗∗(E,φ1) = +∞ or P ∗∗(F,φ2) = +∞ and

(4.8) holds. So we need only to consider the case that both E and F are bounded sets.

Let u = {Ui} ⊂ Γ∗∗(E × F ), ∥u∥ ≤ q and u be a packing of E × F . Put

P1(Ui) = projR(Ui), P2(Ui) = projRn(Ui), u1 = {P1(Ui) : Ui ∈ u}

and u2 = {P2(Ui) : Ui ∈ u}. Then

u1 ⊂ Γ∗∗(E), u2 ⊂ Γ∗∗(F ), ∥u1∥ ≤ q and ∥u2∥ ≤ q.

Suppose E ⊂ [a, b],−∞ < a ≤ b < +∞. For any fixed x ∈ [a, b], {P2(Ui) : x ∈ P1(Ui)} is

a packing of F . So∑
Ui∈u

φ2(|P2(Ui)|) · χP1(Ui)(x) ≤ P ∗∗(F,φ2, q), x ∈ [a, b]. (4.9)

For u we have∑
Ui∈u

φ1φ2(|Ui|) =
∑
Ui∈u

φ1(|Ui|) · φ2(|Ui|)

=
∑
Ui∈u

φ1(
√
n+ 1 |P1(Ui)|) · φ2(

√
n+ 1√
n

|P2(Ui)|). (4.10)

Let u′ = {U1, U2, · · · , UN}. Then∑
Ui∈u′

φ2(|P2(Ui)|) · χP1(Ui)(x) ≤ P ∗∗(F,φ2, q). (4.11)

Let φ2(|P2(Ui)|) = fi, i = 1, 2, · · · , N , and P ∗∗(F,φ2, q) = g. fi and g can be approxi-

mated by rational numbers di and h so that

h

1 + ε
≤ g ≤ h,

di
1 + ε

≤ fi ≤ di, i = 1, 2, · · · , N,

where ε is also a rational number. Then∑
Ui∈u′

di · χP1(Ui)(x) ≤ (1 + ε)h.
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Let M be the common demoninator of ε, h and di, i = 1, 2, · · · , N, di =
ki

M . Then∑
Ui∈u′

Mki · χP1(Ui)(x) ≤ (1 + ε)hM2.

Put (1 + ε)hM2 = K. Then K ∈ N . Using Lemma 4.2 we get∑
Ui∈u′

Mki · φ1(|P1(Ui)|) ≤ K · P ∗∗(E,φ1, q).

So ∑
Ui∈u′

di · φ1(|P1(Ui)|) ≤ (1 + ε)h · P ∗∗(E,φ1, q),∑
Ui∈u′

fi · φ1(|P1(Ui)|) ≤ (1 + ε)
2
g · P ∗∗(E,φ1, q).

∑
Ui∈u′

φ2(|P2(Ui)|) · φ1(|P1(Ui)|) ≤ (1 + ε)
2
P ∗∗(F,φ2, q) · P ∗∗(E,φ1, q).

Let ε → 0 and then N → +∞. We get∑
Ui∈u

φ2(|P2(Ui)|) · φ1(|P1(Ui)|) ≤ P ∗∗(F,φ2, q) · P ∗∗(E,φ1, q). (4.12)

From (4.12),(4.10) and (2.1) we get∑
Ui∈u

φ1φ2(|Ui|) ≤
∑
Ui∈u

φ1(2
n|P1(Ui)|) · φ2(2|P2(Ui)|)

≤
∑
Ui∈u

c1
nφ1(|P1(Ui)|) · c2φ2(|P2(Ui)|)

≤ c · P ∗∗(E,φ1, q) · P ∗∗(F,φ2, q), (4.13)

where c = c1
n · c2 depends only on φ1, φ2 and n. (4.13) is valid for any packing u of E × F

on the condition that u ∈ Γ∗∗(E × F ), ∥u∥ ≤ q and q is small enough. So we have

P ∗∗(E × F,φ1φ2, q) ≤ c · P ∗∗(E,φ1, q) · P ∗∗(F,φ2, q). (4.14)

Let q → 0. We get

P ∗∗(E × F,φ1φ2) ≤ c · P ∗∗(E,φ1) · P ∗∗(F,φ2).

Corollary 4.2. If E ⊂ R, F ⊂ Rn, then

P (E × F,φ1φ2) ≤ c′ · P (E,φ1) · P (F,φ2), (4.15)

where 0 < c′ < +∞, c′ depends only on φ1, φ2 and n.

Proof. Use Lemma 4.1 and Lemma 4.3.

Now we can prove the main result.

Theorem 4.1. If E ⊂ R, F ⊂ Rn, then

P∗∗(E × F,φ1φ2) ≤ c · P∗∗(E,φ1) · P∗∗(F,φ2), (4.16)

where 0 < c < +∞. c depends only on φ1, φ2 and n.

Proof. According to (3.2), for any ε > 0 there exist {Ei, i = 1, 2, · · · } such that Ei ⊂
B(R), E ⊂ ∪Ei and

P∗∗(E,φ1) ≤
∑

P ∗∗(Ei) ≤ P∗∗(E,φ1) + ε.
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We can also get {Fi, i = 1, 2, · · · } so that Fi ⊂ B(Rn), F ⊂ ∪Fi and

P∗∗(F,φ2) ≤
∑

P ∗∗(Fi) ≤ P∗∗(F,φ2) + ε.

Let u = {Ei ×Fj , i, j = 1, 2, · · · }. Then Ei ×Fj ⊂ B(R×Rn) and E×F ⊂
∪
i

∪
j

Ei ×Fj .

So

P∗∗(E × F,φ1φ2) ≤
∑
i

∑
j

P ∗∗(Ei × Fj , φ1φ2).

From Lemma 4.3, we have

P ∗∗(Ei × Fj , φ1φ2) ≤ c · P ∗∗(Ei, φ1) · P ∗∗(Fj , φ2).

So

P∗∗(E × F,φ1φ2) ≤
∑
i

∑
j

c · P ∗∗(Ei, φ1) · P ∗∗(Fj , φ2)

≤ c · (P∗∗(E,φ1) + ε) · (P∗∗(F,φ2) + ε).

Let ε → 0. We get

P∗∗(E × F,φ1φ2) ≤ c · P ∗∗(E,φ1) · P ∗∗(F,φ2).

Theorem 4.2. If E ⊂ R, F ⊂ Rn, then

P(E × F,φ1φ2) ≤ c′ · P(E,φ1) · P(F,φ2),

where 0 < c′ < +∞, c′ depends only on φ1, φ2 and n.

Proof. Use Theorem 4.1 and Corollary 4.1.
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