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Abstract

The global stability of Lipschitz continuous solutions with discontinuous initial data
for the relativistic Euler equations is established in a broad class of entropy solutions
in L∞ containing vacuum states. As a corollary, the uniqueness of Lipschitz solutions
with discontinuous initial data is obtained in the broad class of entropy solutions in
L∞.
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§ 1 . Introduction

We are concerned with the global stability of entropy solutions in L∞ containing vacuum
states for the relativistic Euler equations (cf. e.g. [10, 27–30])⎧⎪⎪⎨⎪⎪⎩

∂t

(
(p+ ρc2)

v2

c2(c2 − v2)
+ ρ
)

+ ∂x

(
(p+ ρc2)

v

c2 − v2

)
= 0,

∂t

(
(p+ ρc2)

v

c2 − v2

)
+ ∂x

(
(p+ ρc2)

v2

c2 − v2
+ p
)

= 0,
(1.1)

where ρ, p, and v represent the proper energy density, the pressure, and the particle speed
respectively, and are in the physical region

V = {U = (ρ, v) : 0 ≤ ρ < ρmax, |v| < c}, (1.2)

where the constant c is the speed of light,

ρmax = sup{ρ : p′(ρ) ≤ c2},
Manuscript received January 17, 2005.

∗Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China.
E-mail: ycli@sjtu.edu.cn

∗∗Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China.
E-mail: wlbhj@sjtu.edu.cn

∗∗∗Project supported by the National Natural Science Foundation of China (No.10101011) and the Natural
Science Foundation of Shanghai (No.04ZR14090).



492 LI, Y. C. & WANG, L. B.

which means that the sound speed
√
p′(ρ) is less than the light speed c.

In this paper, we study System (1.1) and establish the stability of Lipschitz continuous
solutions with discontinuous initial data in a broad class of entropy solutions in L∞ con-
taining the vacuum states for (1.1). This broad class of entropy solutions requires only that
the solutions are weak solutions and satisfy one physical entropy inequality.

For the classical (nonrelativistic) Euler equations, similar problems have been studied.
Chen in [3] first introduced an effective method to handle with such entropy solutions in L∞

and showed the stability of rarefaction waves. Li in [20] further developed Chen’s method and
solved the stability problem for Lipschitz continuous solutions with discontinuous initial data
in a broad class of entropy solutions in L∞ containing the vacuum states. One of the main
motivations for the stability problem for the Euler equations is the instability of solutions of
the corresponding classical Navier-Stokes equations containing vacuum as discussed in [3].
Also see [13].

In this paper we study the relativistic Euler equations and extend the results for the
classical Euler equations to the relativistic case. As we will see below, the relativistic Euler
equations are much more complicated and have more rich phenomena, while the classical
Euler equations are just the limit system of the relativistic Euler equations as the light speed
tends to infinity. One of the main difficulties is that strict hyperbolicity of System (1.1) fails
at the vacuum, which yields additional singularity.

One of the main new ingredients in this paper is to analyze the singularity and other
behaviors of solutions in detail in the relativistic regime, that is, in the regime when the light
speed is finite. In particular, for the general case, we identify the invariant regions for the
Riemann solutions to the system. Another new ingredient is to identify a global Lyapunov
functional for the stability problem for the relativisitic Euler equations so that any solution
in the family of Lipschitz continuous solutions with discontinuous initial data is globally
stable under the Lyapunov functional norm, a weighted L2-norm, and thus is unique in the
broad class of entropy solutions in L∞. To achieve this, we require the generalized Gauss-
Green theorem for divergence-measure fields recently established in [4] since the solutions
are not in BV .

The organization of this paper is the following. In Section 2, we review and discuss
some basic properties of System (1.1) of the relativistic Euler equations, analyze the Rie-
mann problems with vacuum for subsequent development. In Section 3, the existence of
a global Lipschitz continuous solution with vacuum and discontinuous initial data to the
Cauchy problem is shown under some monotone conditions on the data which exclude the
propagation of the discontinuity. Finally, in Section 4, we prove the stability and uniqueness
of global Lipschitz continuous solutions with discontinuous initial data in a broad class of
entropy solutions in L∞ containing vacuum states by the use of an appropriate Lyapunov
functional and the monotonicity of this functional.

About the uniqueness and stability of Riemann solutions staying away from vacuum, see
[10, 11]. For the classical non-relativistic case, see [4, 6–8, 13–15, 17]. Other related results
and discussions regarding vacuum problems can be found in [1–3, 5, 9, 13, 16, 18, 19, 21–25].
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§ 2 . The System of Relativistic Euler Equations and
the Riemann Problem with Vacuum

In this section, let us first review some basic and important properties of the system of
relativistic Euler equations (1.1). Then we analyze the Riemann problem of System (1.1)
containing vacuum states.

2.1. Relativistic Euler equations

System (1.1) fits into the following general form of conservation laws

∂tU + ∂xF (U) = 0, (2.1)

by setting

U =
(
(p+ ρc2)

v2

c2(c2 − v2)
+ ρ, (p+ ρc2)

v

c2 − v2

)�
(2.2)

and

F (U) =
(
(p+ ρc2)

v

c2 − v2
, (p+ ρc2)

v2

c2 − v2
+ p
)�
. (2.3)

The equation of state is

p = p(ρ),

where p(ρ) is a smooth function of ρ and satisfies that, for ρ = 0 (vacuum states),

p(0) = 0, p′(0) = 0, lim
ρ→0

p′(ρ)
ρ2

= c1 > 0, (2.4)

and, for ρ > 0 (non-vacuum states),

p(ρ) > 0, (2.5)

p′(ρ) > 0, (2.6)

p′′(ρ) > 0. (2.7)

The condition (2.6) means the strict hyperbolicity, and the conditions (2.5)–(2.7) imply the
following genuine nonlinearity of System (1.1):

ρp′′(ρ) + 2p′(ρ) +
p(ρ)p′′(ρ) − 2p′(ρ)2

c2
> 0, (2.8)

when ρ > 0 and the sound speed
√
p′(ρ) is less than the light speed c.

For polytropic γ-law fluids with

p(ρ) = κργ , γ > 1, κ > 0,

it is easy to verify that p = p(ρ) clearly satisfies the conditions (2.4)–(2.7).
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If we rewrite (1.1) as

∂tu+A∂xu = 0, (2.9)

where

u = (ρ, v)�, A = (dU)−1dF (U),

dU :=
∂(U1, U2)
∂(ρ, v)

=
(
U1ρ U1v

U2ρ U2v

)
,

dF (U) :=
∂(F1(U), F2(U))

∂(ρ, v)
=
(
F1ρ F1v

F2ρ F2v

)
,

then it is not difficult to calculate the two eigenvalues of System (1.1):

λ1(u) =
c2(v −√p′(ρ) )
c2 − v

√
p′(ρ)

, λ2(u) =
c2(v +

√
p′(ρ) )

c2 + v
√
p′(ρ)

.

Since

λ2 − λ1 =
2c2(v2 − c2)

√
p′(ρ)

c4 − v2p′(ρ)
,

we know that System (1.1) is strictly hyperbolic in non-vacuum states in V ∩ {ρ > 0}. But,
from the condition (2.4), we have

lim
ρ→0

(λ2 − λ1) = 0,

which means that the strict hyperbolicity fails in vacuum states. We can also calculate the
two eigenvectiors corresponding to λj :

rj(u) = αj(ρ, v)
( (−1)j

c2 − v2
,

√
p′(ρ)

p+ ρc2

)�
, j = 1, 2.

By choosing

αj(ρ, v) =
2(c2 + (−1)j+1v

√
p′(ρ) )2(p+ ρc2)

√
p′(ρ)

c2(ρp′′(ρ) + 2p′(ρ)) + p(ρ)p′′(ρ) − 2(p′(ρ))2
> 0, j = 1, 2, (2.10)

we have ∇uλj(u) · rj = 1, j = 1, 2, so both families of System (1.1) are genuinely nonlinear.
On the other hand, we can also rewrite System (1.1) as

∂tU + ∇F (U) ∂xU = 0, (2.11)

where

∇F (U) :=
∂(F1(U), F2(U))

∂(U1, U2)
=
(
F1U1 F1U2

F2U1 F2U2

)
= dF (dU)−1

=

(
0 1

c4(p′−v2)
c4−p′v2

−2c2v(p′−c2)
c4−p′v2

)
. (2.12)
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In this case, the eigenvalues of the system keep unchanged, but the corresponding eigenvec-
tors are changed to

r̃j := dU · rj
=

αj(ρ, v)
c2(c2 − v2)2

(
(−1)j(c4 + p′(ρ)v2) + 2vc2

√
p′(ρ)

(−1)j(p′(ρ) + c2)vc2 + c2(c2 + v2)
√
p′(ρ)

)
, j = 1, 2, (2.13)

with
∇λj(U) · r̃j = ∇uλj(u)(dU)−1dU · rj = ∇uλj(u) · rj = 1.

We recall that an entropy-entropy flux pair for (1.1) is a pair of C1 functions (η(U), q(U))
satisfying

∇η(U)∇F (U) = ∇q(U).

In particular, the physical entropy-entropy flux pair (η∗(U), q∗(U)) of (1.1) is

η∗(U) = − c3√
c2 − v2

exp
(
c2
∫ ρ

0

ds

p(s) + c2s

)
+ c2U1, q∗(U) = η∗(U)v + c2F1(U), (2.14)

and we notice that the Newton limit of this pair is(1
2
ρv2 + ρ

∫ ρ

0

p(r)
r2

dx,
1
2
ρv3 + ρv

∫ ρ

0

p′(r)
r

dr
)
,

which is exactly the physical entropy-entropy flux pair of the following classical non-rela
-tivistic Euler equations {

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv2 + p(ρ)) = 0.

A direct calculation yields

∇2η∗(U) = α0(ρ, v)
(
c2(p′c2 + v2c2 + 2p′v2) −(c4 + 2p′c2 + p′v2)v
−(c4 + 2p′c2 + p′v2)v c4 + 3p′v2

)
, (2.15)

with

α0(ρ, v) =
c5 exp

(
c2
∫ ρ

1
ds

p(s)+c2s

)
√
c2 − v2(c4 − p′v2)(p+ ρc2)2

> 0. (2.16)

Thus η∗(U) is strictly convex in U in any compact domain of V ∩ {ρ > 0}.
2.2. Riemann problem containing vacuum states

We consider a special Cauchy problem–Riemann problem, which is the initial value
problem with initial data

U |t=0 = R0(x) ≡
{
U−, x < 0,

U+, x > 0,
(2.17)
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(ρ±, v±) ∈ V , U± = U(ρ±, v±), and U+ �= U−.
Given a state Ul, we consider all the possible states U that can be connected to state

Ul on the right by a centered rarefaction wave in the j-families, j = 1, 2. Consider the
self-similar solutions U(ξ), ξ = x

t , of the Riemann problem (1.1) and (2.17). We have the
ordinary differential equations{

ξ = λj(U)(ξ),

(ξI −∇F (U(ξ)))U ′(ξ) = 0,

with boundary conditions
U(λj(Ul)) = Ul,

and, on the j-family centered rarefaction waves,

∂U

∂x
=

1
t

dU

dξ
=

1
t
r̃j

(
U
(x
t

))
, j = 1, 2. (2.18)

For a rarefaction wave R(x
t ) with right state Ur, it holds that⎧⎪⎪⎨⎪⎪⎩

r(Ul) − s(Ur) > 0,

r(Ul) ≤ r(R(x
t )) ≤ r(Ur), s(Ul) ≤ s(R(x

t )) ≤ s(Ur),

r(R(x
t )) − s(R(x

t )) > 0,

where ⎧⎪⎪⎨⎪⎪⎩
r(ρ, v) =

c

2
ln
(c+ v

c− v

)
+ c2

∫ ρ

0

√
p′(s)

p(s) + c2s
ds,

s(ρ, v) =
c

2
ln
(c+ v

c− v

)
− c2

∫ ρ

0

√
p′(s)

p(s) + c2s
ds

(2.19)

are the Riemann invariants. So the two families of rarefaction wave curves corresponding to
the j-th characteristic families, j = 1, 2, can be given respectively by⎧⎪⎪⎪⎨⎪⎪⎪⎩

R1(ρ, v) :
c

2
ln
(c+ v

c− v

)
+ c2

∫ ρ

ρl

√
p′(s)

p(s) + c2s
ds = constant, 0 ≤ ρ < ρl,

R2(ρ, v) :
c

2
ln
(c+ v

c− v

)
+ c2

∫ ρ

ρl

√
p′(s)

p(s) + c2s
ds = constant, ρ > ρl.

(2.20)

Standardly, the Riemann solutions can be constructed as follows.
A. If ρ− > 0 and ρ+ = 0, then there exists a unique vc such that

R
(x
t

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U−,

x

t
< λ1(U−),

R1

(x
t

)
, λ1(U−) ≤ x

t
≤ vc,

vacuum,
x

t
> vc,

(2.21)

where R1(ξ) is the solution of the boundary value problem:

R′
1(ξ) = r1(R1(ξ)), ξ > λ1(U−); R1(λ1(U−)) = U−. (2.22)
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B. If ρ− = 0 and ρ+ > 0, then there exists a unique ṽc such that

R
(x
t

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vacuum,

x

t
< ṽc,

R2

(x
t

)
, ṽc ≤ x

t
≤ λ2(U+),

U+,
x

t
> λ2(U+),

(2.23)

where R2(ξ) is the solution of the boundary value problem:

R′
2(ξ) = r2(R2(ξ)), ξ < λ2(U+); R2(λ2(U+)) = U+. (2.24)

C. If ρ± > 0, there are two cases:
(C1) There exist unique vc1 , vc2 , vc1 < vc2 , such that

R
(x
t

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U−,
x

t
< λ1(U−),

R1

(x
t

)
, λ1(U−) ≤ x

t
≤ vc1 ,

vacuum, vc1 <
x

t
< vc2 ,

R2

(x
t

)
, vc2 ≤ x

t
≤ λ2(U+),

U+,
x

t
> λ2(U+),

(2.25)

where R1(ξ) and R2(ξ) are the solutions of the boundary value problems (2.22) and (2.24),
respectively.

(C2) There exists a unique UM = U(ρM , vM ), ρM > 0, such that

R
(x
t

)
≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U−,
x

t
< λ1(U−),

R1

(x
t

)
, λ1(U−) ≤ x

t
≤ λ1(UM ),

Uc, λ1(UM ) <
x

t
< λ2(UM ),

R2

(x
t

)
, λ2(UM ) ≤ x

t
≤ λ2(U+),

U+,
x

t
> λ2(U+),

(2.26)

where R1(ξ) and R2(ξ) are the solutions of the boundary value problems (2.22) and (2.24),
respectively.

Lemma 2.1. The regions∑
( r̃0, s̃0) = {(ρ, v) : r ≤ r̃0, s ≥ s̃0, r − s ≥ 0}

are invariant regions of the Riemann problem (1.1) and (2.17). That is, if the Riemann
data lies in

∑
( r̃0, s̃0), then the corresponding solution of the Riemann problem also lies in∑

( r̃0, s̃0).

The proof of Lemma 2.1 needs the following two lemmas.



498 LI, Y. C. & WANG, L. B.

Lemma 2.2. As long as the genuine nonlinearity condition (2.8) is satisfied, on the
U1 − U2 plane the 1-rarefaction wave curve R1 is concave and the 2-rarefaction wave curve
R2 is convex, where R1 and R2 are defined by (2.20).

Proof. (1) First we show the concavity of R1.
It is easy to know from (2.20) that, along R1,

vρ = −(c2 − v2)

√
p′(ρ)

p(ρ) + ρc2
, (2.27)

and
dU2

dU1
=
∂U2/∂ρ+ (∂U2/∂v)(∂v/∂ρ)
∂U1/∂ρ+ (∂U1/∂v)(∂v/∂ρ)

.

Noticing that

∂U2

∂ρ
=

(p′(ρ) + c2)v
(c2 − v2)

,
∂U1

∂ρ
=

(p′(ρ) + c2)v2

c2(c2 − v2)
+ 1,

and
∂U2

∂v
=

(p(ρ) + ρc2)(c2 + v2)
(c2 − v2)2

,
∂U1

∂v
=

2v(p(ρ) + ρc2)
(c2 − v2)2

,

we can obtain

dU2

dU1
=
c2(v −√p′(ρ) )
c2 − v

√
p′(ρ)

. (2.28)

From
d2U2

dU2
1

=
d(dU2

dU1
)

dρ

/dU1

dρ
,

and a detailed calculation, we arrive at

d2U2

dU2
1

= −c
6(c2 − v2)2[ρp′′(ρ) + 2p′(ρ) + (p(ρ)p′′(ρ) − 2p′(ρ)2)/c2]

2
√
p′(ρ)(p(ρ) + ρc2)(c2 − v

√
p′(ρ) )4

, (2.29)

whose sign is negative from (2.8), thus R1 is concave on the U1 − U2 plane.
(2) Next we show the convexity of R2.
Similar computation shows that, along R2,

vρ = (c2 − v2)

√
p′(ρ)

p(ρ) + ρc2
, (2.30)

dU2

dU1
=
c2(v +

√
p′(ρ) )

c2 + v
√
p′(ρ)

, (2.31)

and then

d2U2

dU2
1

=
c6(c2 − v2)2[ρp′′(ρ) + 2p′(ρ) + (p(ρ)p′′(ρ) − 2p′(ρ)2)/c2]

2
√
p′(ρ) (p(ρ) + ρc2)(c2 − v

√
p′(ρ) )4

, (2.32)

which is positive from (2.8), thus R2 is convex on the U1 − U2 plane.
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Lemma 2.3. The mapping (ρ, v) −→ (U1, U2) is one-to-one.

This is because the Jacobian of the mapping is nonsingular in the region V :

J = det
∂(U1, U2)
∂(ρ, v)

= det

(
c4+v2p′(ρ)
c2(c2−v2)

2v(p(ρ)+ρc2)
(c2−v2)2

(p′(ρ)+c2)v
(c2−v2)

(p(ρ)+ρc2)(c2+v2)
(c2−v2)2

)
(2.33)

=
(p(ρ) + ρc2)(c4 − v2p′(ρ))

c2(c2 − v2)2
�= 0.

Then Lemma 2.1 follows immediately from Lemma 2.2 and Lemma 2.3 (cf. [13, 16]).

§ 3 . The Global Existence of Lipschitz Solutions

Let us first identify a class of monotone initial data which can allow discontinuity and
may generate vacuum.

The given initial data is

U |t=0 = V0(x) = (U1(ρ0(x), v0(x)), U2(ρ0(x), v0(x)))
�
, (3.1)

where (ρ0(x), v0(x)) ∈ V , such that

r(ρ0(x), v0(x)) =

{
r0, x ≤ 0,

r0(x), x > 0,
(3.2)

s(ρ0(x), v0(x)) =

{
s0(x), x ≤ 0,

s0, x > 0,
(3.3)

where r(ρ, v) and s(ρ, v) are the Riemann invariants, r0(x) and s0(x) are the nondecreasing
piecewise continuous functions of x, r0 and s0 are constants, and it holds that

r0 ≤ r0(x) ≤ rsup, sinf ≤ s0(x) ≤ s0, (3.4)

r0(0) �= r0, s0(0) �= s0. (3.5)

In this section, we first construct the approximate solutions, and then obtain the existence
of Lipschitz solutions via the uniform boundedness estimates of the approximate solutions.

3.1. The construction of approximate solutions

In order to obtain the approximate solution sequences of (1.1) and (3.1), we consider the
Cauchy problems with initial data

U |t=0 ≡ V0

((
j − 1

2

)
h
)

def= V 0
j− 1

2
, (j − 1)h < x ≤ jh. (3.6)

Then the self-similar solutions of (1.1) and (3.6) can be described as follows.
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A. (Fig. 1) There exists unique vc1 and vc2 , such that

V h(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1
−j+ 1

2

(
x+jh

t

)
, −jh+ λ1

(
V 0
−j− 1

2

)
t ≤ x < −jh+ λ1

(
V 0
−j+ 1

2

)
t,

j = 1, 2, · · · ,
V 0
−j+ 1

2
, −jh+ λ1

(
V 0
−j+ 1

2

)
t ≤ x < −(j − 1)h+ λ1

(
V 0
−j+ 1

2

)
t,

j = 1, 2, · · · ,
R1

0

(
x
t

)
, λ1

(
V 0
− 1

2

)
t ≤ x < vc1t,

vacuum, vc1t ≤ x < vc2t,

R2
0

(
x
t

)
, vc2t ≤ x < λ2

(
V 0

1
2

)
t,

V 0
j− 1

2
, (j − 1)h+ λ2

(
V 0

j− 1
2

)
t ≤ x < jh+ λ2

(
V 0

j− 1
2

)
t,

j = 1, 2, · · · ,
R2

j− 1
2

(
x−jh

t

)
, jh+ λ2

(
V 0

j− 1
2

)
t ≤ x < jh+ λ2

(
V 0

j+ 1
2

)
t,

j = 1, 2, · · · .

(3.7)

B. (Fig. 2) There exists unique vc1 and vc2 , such that

V h(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1
−j+ 1

2

(
x+jh

t

)
, −jh+ λ1

(
V 0
−j− 1

2

)
t ≤ x < −jh+ λ1

(
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D. (Fig. 4) There exists unique vc1 and vc2 , such that
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3.2. Uniform bounds for the approximate solutions and the existence of
global Lipschitz solutions

In order to obtain the global Lipschitz solution, we need to estimate the uniform bounds
of the approximate solution sequences and its derivatives. Let us first give the uniform
bounds of the approximate solution sequence V h(x, t) itself.

Lemma 3.1. Given initial data (ρ0(x), v0(x)) satisfying (3.1)–(3.5), there exists a con-
stant C > 0, such that

|V h(x, t)| ≤ C. (3.11)

Proof. Noticing that rsup ≥ r > s ≥ sinf (where r, s are the Riemann invatiants), from
Lemma 2.1 we have

sinf ≤ c

2
ln
c+ v

c− v
≤ rsup,

thus
2
c
sinf ≤ ln

c+ v

c− v
≤ 2
c
rsup.
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Then we can solve

−c < c = c
e

2
c sinf − 1
e

2
c sinf + 1

≤ v ≤ c
e

2
c rsup − 1
e

2
c rsup + 1

= c < c, (3.12)

that is, v is strictly away from the light speed c. Therefore there exists a constant C1 > 0,
such that

1
c2 − v2

≤ C1. (3.13)

From the construction of V h(x, t), we obtain the uniform boundedness of V h(x, t) immedi-
ately.

Lemma 3.2. Given initial data (ρ0(x), v0(x)) satisfying (3.1)–(3.5), there exists a con-
stant C > 0, such that

|� V h(x, t) | ≤ C

t
. (3.14)

Proof. We need to prove that
∣∣∂V h(x,t)

∂x

∣∣ ≤ C
t and

∣∣∂V h(x,t)
∂t

∣∣ ≤ C
t .

From (2.18), we first show the uniform boundedness of r̃j . Noticing the expression (2.13)
of r̃j(V h(x, t)), we see that the boundedness of

c2(c2 − v2)2,

(−1)j(c4 + p′(ρ)v2) + 2vc2
√
p′(ρ)

and
(−1)j(p′(ρ) + c2)vc2 + c2(c2 + v2)

√
p′(ρ)

is obvious from (3.13) and the fact
√
p′(ρ) < c and |v| < c, even near ρ = 0 (vacuum states).

From the formula (2.11) of αj(ρ, v), we have

αj(ρ, v) =
2(c2 + (−1)j+1v

√
p′(ρ) )2(p(ρ) + ρc2)

√
p′(ρ)

(p(ρ) + ρc2)p′′(ρ) + 2p′(ρ)(c2 − p′(ρ)2)
.

Then it is easy to obtain its uniform boundedness for ρ > 0. But near ρ = 0, because

αj(ρ, v) ≤ 2c4
√
p′(ρ)

p′′(ρ)
,

from (2.4) we know that

lim
ρ→0

αj(ρ, v) ≤ c4√
c1
.

Therefore we can have the uniform boundedness of r̃j . Then
∣∣∂V h(x,t)

∂x

∣∣ ≤ C
t . From (1.1)

and (3.12), it follows that
∣∣∂V h(x,t)

∂t

∣∣ ≤ C
t .

From Lemma 3.1 and Lemma 3.2, we have the following theorem immediately.

Theorem 3.1. Consider the problem (1.1) and (3.1). For any given initial data (ρ0(x),
v0(x)) satisfying (3.1)–(3.5), there exists a global Lipschitz continuous solution V (x, t) =
U(ρ(x, t), v(x, t)) of (1.1) and (3.1) satisfying

|V (x, t)| ≤ C, |� V (x, t) | ≤ C.
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§ 4 . Global Stability of Lipschitz Solution with Discontinuous
Initial Data Containing Vacuum

In this section, we show the global stability of Lipschitz continuous solutions with dis-
continuous initial data in a broad class of entropy solutions in L∞ containing vacuum states.

4.1. Gauss-Green formula and normal traces for divergence-measure
fields in L∞

Since the solutions are not in BV space, we require the generalized Gauss-Green theorem
for divergence-measure fields recently established in [4]. For completeness, let us first review
divergence-measure fields in L∞, and the corresponding generalized Gauss-Green formula
and normal traces.

Definition 4.1. Let Ω ⊂ R
N be open. For F ∈ L∞(Ω; RN ), set

|divF |(Ω) := sup{ 〈F, ∇ϕ〉 : ϕ ∈ C1
0 (Ω), |ϕ(x)| ≤ 1, x ∈ Ω }.

We say that F is an L∞ divergence-measure field over Ω, i.e., F ∈ DM∞(Ω), if

‖F‖DM∞(Ω) := ‖F‖L∞(Ω;RN ) + |divF |(Ω) <∞, (4.1)

which means that divF is a Radon measure over Ω.
If F ∈ DM∞(Ω) for any open set Ω with Ω � D ⊂ R

N , then we say F ∈ DM∞
loc(D).

Here, for open sets A,B ⊂ R
N , the relation A � B means that the closure of A, A, is a

compact subset of B.

Definition 4.2. Let Ω ⊂ R
N be an open bounded subset. We say that ∂Ω is a deformable

Lipschitz boundary, provided that
( i ) ∀x ∈ ∂Ω, ∃ r > 0 and a Lipschitz map γ : R

N−1 → R such that, after rotating and
relabelling coordinates if necessary,

Ω ∩Q(x, r) = {y ∈ R
N : γ(y1, · · · , yN−1) < yN } ∩Q(x, r),

where Q(x, r) = {y ∈ R
N : |xi − yi| ≤ r, i = 1, · · · , N };

(ii) ∃Ψ : ∂Ω×[0, 1] → Ω such that Ψ is a homeomorphism bi-Lipschitz over its image and
Ψ(ω, 0) = ω for all ω ∈ ∂Ω. The map Ψ is called a Lipschitz deformation of the boundary
∂Ω.

Denote ∂Ωs ≡ Ψ(∂Ω × {s}), s ∈ [0, 1], and denote Ωs the open subset of Ω whose
boundary is ∂Ωs. We call Ψ a Lipschitz deformation of ∂Ω.

Definition 4.3. We say that the Lipschitz deformation is regular if

lim
s→0+

DΨs ◦ γ̃ = Dγ̃, in L1
loc(B), (4.2)

where γ̃ is a map as in Condition (i) of Definition 4.2, and Ψs denotes the map of ∂Ω into
Ω, given by Ψs(x) = Ψ(x, s). Here B denotes the greatest open set such that γ̃(B) ⊂ ∂Ω.
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Then we have the following results on generalized Gauss-Green formula and normal
traces.

Theorem 4.1. (see [4]) Let F ∈ DM∞(Ω). Let Ω ⊂ R
N be a bounded open set with

Lipschitz deformable boundary. Then there exists a function F · ν|∂Ω ∈ L∞(∂Ω) such that,
for any φ ∈ Lip(RN ),∫

∂Ω

F · ν|∂Ω φdHN−1 = 〈divF, φ〉Ω +
∫

Ω

∇φ · F dx. (4.3)

Moreover, let ν : Ψ(∂Ω × [0, 1]) → R
N be such that ν(x) is the unit outer normal to ∂Ωs at

x ∈ ∂Ωs, defined for a.e. x ∈ Ψ(∂Ω × [0, 1]). Let h : R
N → R be the level set function of

∂Ωs, that is,

h(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for x ∈ R

N − Ω,

1 for x ∈ Ω − Ψ(∂Ω × [0, 1]),

s for x ∈ ∂Ωs, 0 ≤ s ≤ 1.

Then, for any ψ ∈ Lip(∂Ω),

〈F · ν|∂Ω, ψ〉 = − lim
s→0

1
s

∫
Ψ(∂Ω×(0,s))

E(ψ)∇h · F dx, (4.4)

where E(ψ) is any Lipschitz extension of ψ to all R
N . Furthermore, the normal trace

F · ν|∂Ω is a function in L∞(∂Ω) satisfying ‖F · ν‖L∞(∂Ω) ≤ C‖F‖L∞(Ω), for some constant
C independent of F ; if ∂Ω admits a regular Lipschitz deformation, then C = 1. Furthermore,
for any field F ∈ DM∞(Ω),

〈F · ν|∂Ω, ψ〉 = ess lim
s→0

∫
∂Ωs

ψ ◦ Ψ−1
s F · ν dHN−1 for any ψ ∈ L1(Ω). (4.5)

4.2. The main stability theorem and the proof

We consider the Cauchy problem which is an initial L∞⋂L1(R) perturbation of (3.1):

U0(x) ≡ V0(x) + P0(x), P0(x) ∈ L∞ ∩ L1(R). (4.6)

Definition 4.4. A bounded measurable function U(x, t) is an entropy solution of (1.1)
and (4.6) in R

2
+, if U(t, x) ∈ V and satisfies the following:

( i ) The equations (1.1) and initial data (4.6) are satisfied in the weak sense in R
2
+, i.e.,

for all φ ∈ C1
0 (R2

+),∫ ∞

0

∫ ∞

−∞
(U∂tφ+ F (U)∂xφ) dx dt +

∫ ∞

−∞
U0(x)φ(x, 0)dx = 0 (4.7)

with U and F (U) defined by (2.2) and (2.3).
(ii) One physical entropy inequality holds in the sense of distributions in R

2
+, i.e., for

any nonnegative function φ ∈ C1
0 (R2

+),∫ ∞

0

∫ ∞

−∞
(η∗(U)∂tφ+ q∗(U)∂xφ) dx dt+

∫ ∞

−∞
η∗(U0)(x)φ(x, 0)dx ≥ 0, (4.8)



506 LI, Y. C. & WANG, L. B.

where (η∗, q∗) is the mechanical energy-energy flux pair defined by (2.14).

Then we have the following stability theorem.

Theorem 4.2. Let V (x, t) be the Lipschitz continuous solution of (1.1) and (3.1) con-
taining vacuum states, as constructed in Section 3. Let U(x, t) be any entropy solution of
(1.1) and (4.6) in the sense of Definition 4.4. Then, for any L > 0,∫

|x|≤L

α(U, V )(x, t) dx ≤
∫
|x|≤L+Kt

α(U0, V0)(x) dx, (4.9)

where K > 0 is independent of t, and

α(U,R) ≡ (U − V )�
( ∫ 1

0

∇2η∗(R+ τ(U −R)) dτ
)
(U − V ) > 0,

if U �= V and both are away from the vacuum.
In particular, if U0(x) = V0(x) a.e., then U(x, t) = V (x, t) a.e.

Proof. The proof is based on the normal traces and Gauss-Green formula in Subsection
4.1 for divergence-measure vector fields in L∞. Without loss of generality, we suppose that
the approximate solution V h(x, t) has the form of Case A.

Step 1. First we renormalize the mechanical energy-energy flux pair (η∗, q∗) through the
following relative entropy pair:

α(U, V ) = η∗(U) − η∗(V ) −∇η∗(V )(U − V ),

β(U, V ) = q∗(U) − q∗(V ) −∇η∗(V )(F (U) − F (V )),

and consider

μ = ∂tα(U(x, t), V h(x, t)) + ∂xβ(U(x, t), V h(x, t)),

ν = ∂tη∗(U(x, t)) + ∂xq∗(U(x, t)).

Since U(x, t) is an entropy solution, ν ≤ 0, and μ ≤ 0 in any region in which V h(x, t) is
constant, in the sense of distributions. Then by using the Schwartz lemma (see [26]) and the
product rule for divergence-measure fields in [4], we see that μ and ν are Radon measures,
and (β(U(x, t), V h(x, t)), α(U(x, t), V h(x, t))) and (q∗(U(x, t)), η∗(U(x, t))) are divergence-
measure vector fields on R

2
+.

For any L > 0, let

Πδ
L,t = { (x, s) : |x| < L+K(t− s), 0 < δ < s < t},

where
K ≥ K0 ≡ sup

h
‖β(U, V h)/α(U, V h)‖L∞(R2

+).

First, from the entropy inequality (4.8), the normal traces and Gauss-Green formula
for divergence-measure vector fields, and the convexity of η∗(U) in U , we notice that any
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entropy solution defined in Definition 4.4 assumes its initial data U0(x) strongly in L1
loc

(cf. [12]):

lim
t→0

∫
|x|≤L

|U(x, t) − U0(x)|dx = 0 for any L > 0. (4.10)

Furthermore, we use Theorem 4.1 again to conclude that

μ{Πδ
t,L} =

∫
|x|≤L

α(U(x, t), V h(x, t)) dx −
∫
|x|≤L+K(t−δ)

α(U(x, δ), V h(x, δ)) dx

+
∫

∂Πδ
t,L

(β, α) · ν dσ,

where ∂Πδ
t,L = {(x, s) : |x| = L + K(t − s), 0 < δ < s < t}, ν is the unit outward normal

field, and σ is the boundary measure. By choosing K ≥ K0 such that∫
∂Πδ

t,L

(β, α) · ν dσ ≥ 0,

we have

μ{Πδ
t,L} ≥

∫
|x|≤L

α(U(x, t), V h(x, t)) dx −
∫
|x|≤L+K(t−δ)

α(U(x, δ), V h(x, δ)) dx. (4.11)

Step 2. Set

Ω1
j = { (x, t) | − jh+ λ1(V 0

−j− 1
2
)t < x < −jh+ λ1(V 0

−j+ 1
2
)t, t > 0},

Ω1
0 = { (x, t) |λ1(V 0

− 1
2
) < x < vc1t, t > 0},

Ω2
0 = { (x, t) | vc2t < x < λ2(V 0

1
2
)t, t > 0},

Ω2
j = { (x, t) | jh+ λ2(V 0

j− 1
2
)t < x < jh+ λ2(V 0

j+ 1
2
)t, t > 0} (j = 1, 2, · · · )

the rarefaction wave regions of V h(x, t), and

Ω0 :=
{

(x, t) : vc1 <
x

t
< vc2 , t > 0

}
(4.12)

the vacuum region.
Then we have

μ{Πδ
t,L} = μ{constant states regions} + μ{rarefaction wave regions} + μ{vacuum region}.

(4.13)
Let

Ωk
j,δ(t) = Ωk

j ∩ Πδ
L,t, Ωk

j (t) = Ωk
j ∩ {(x, s) | 0 < s < t}, k = 1, 2,

Ω0,δ(t) = Ω0 ∩ Πδ
L,t.

Then we have
μ{rarefaction wave regions} = μ

{⋃
j,k

Ωk
j,δ(t)

}
, (4.14)

μ{vacuum region} = μ{Ω0,δ(t)}. (4.15)
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Over the rarefaction wave regions,

μ = ∂tα(U, V h) + ∂xβ(U, V h) = ν − (∂xV
h)�∇2η∗(V h)QF (U, V h), (4.16)

where QF (U, V h) = F (U)−F (V h)−∇F (V h)(U −V h), and we used the fact that ∇2η∗∇F
is symmetric. Recall that, for (x, t) ∈ Ωk

j , j = 0, 1, · · · , k = 1, 2,

∂V h(x, t)
∂x

=
1
t
r̃k(V h(x, t)), k = 1, 2. (4.17)

Then, for any Borel set E ⊂ Ωk
j , j = 0, 1, · · · , k = 1, 2, we have

μ(E) = ν(E) −
∫

E

1
t
r̃k(V h)�∇2η∗(V h)QF (U, V h)(x, t) dxdt. (4.18)

Hence we have

μ
{⋃

j,k

Ωk
j,δ(t)

}

= ν
{⋃

j,k

Ωk
j,δ(t)

}
−
∑
j,k

∫
Ωk

j,δ(t)

1
s
r̃j(V h)�∇2η∗(V h)QF (U, V h)(x, s) dxds. (4.19)

Over the vacuum region Ω0, ρh(x, t) = 0 := ρ̄(x, t), we may choose the velocity

vh(x, t) =
x

t
:= v̄(x, t), vc1 <

x

t
< vc2 .

Then a careful calculation as before yields

μ ≤ ν − 1
t

α3

(c2 − v2)2(c2 − v̄2)3/2
((c2 − v2)(c2 − v̄2)p(ρ) + c2(v − v̄)2(p+ c2ρ)),

where
α3 = 2c5 lim inf

ρ→0

p′(ρ)
ρp′′(ρ) + 2p′(ρ)

≥ 0.

This implies that, for any Borel set E ⊂ Ω0,

μ(E) ≤ ν(E) −
∫

E

1
t

α3

(c2 − v2)2(c3 − v̄2)3/2

· ((c2 − v2)(c2 − v̄2)p(ρ) + c2(v − v̄)2(p+ c2ρ))dxdt ≤ 0. (4.20)

Since V h(x, t) is constant in each component of Πδ
t,L −

{ ⋃
j,k

Ωk
j,δ(t)

⋃
Ω0,δ(t)

}
and ν ≤ 0,

we have
μ{Πδ

t,L} ≤ −
∑
j,k

∫
Ωk

j,δ(t)

1
s
r̃j(V h)�∇2η∗(V h)QF (U, V h)(x, s)dxds (4.21)

from (4.18) and (4.20).

Step 3. Now we are going to show that

μ{Πδ
t,L} ≤ 0. (4.22)
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In fact, a careful direct calculation from (2.13) and (2.15) yields

r̃2(V h)�∇2η∗(V h) = α0(ρ̄, v̄)α2(ρ̄, v̄)

√
p̄′(c4 − p̄′v̄2)
c2(c2 − v̄2)

(
c2(
√
p̄′ − v̄ ), c2 − v̄

√
p̄′
)

(4.23)

and

QF (U, V h) =
(

0
Θ

)
, (4.24)

where

Θ =
c2

(c4 − p̄′v̄2)(c2 − v2)
· ((c2 − v2)(c2 − v̄2)(p− p̄− p̄′(ρ− ρ̄)) + (v− v̄)2(c2 − p̄′)(p+ ρc2)).

Here we denote ρ̄ = ρh, v̄ = vh, and p̄ = p(ρh). Therefore, we have

hj(s, x) := r̃j(V h)�∇2η∗(V h)QF (U, V h)(s, x) ≥ 0. (4.25)

Then (4.22) follows immediately.

Step 4. Combining (4.11) and (4.22), we arrive at∫
|x|≤L

α(U(x, t), V h(x, t)) dx ≤
∫
|x|≤L+K(t−δ)

α(U(x, δ), V h(x, δ)) dx. (4.26)

Letting δ → 0, we see that (4.10) and (4.26) imply∫
|x|≤L

α(U(x, t), V h(x, t)) dx ≤
∫
|x|≤L+Kt

α(U0(x), V h(x, 0)) dx. (4.27)

Let h → 0 in (4.27). Using the strong convergence of V h(x, t) to V (x, t) as h → 0, we
have ∫

|x|≤L

α(U(x, t), V (x, t)) dx ≤
∫
|x|≤L+Kt

α(U0(x), V0(x)) dx. (4.28)

This completes the proof.
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