# CONDITIONED SUPERPROCESSES\*\*\*

LI CUNHANG\* WU RONG\*\*

#### Abstract

A class of superprocesses which dies out is investigated. Under the condition of norextinction, a new superprocess is constructed, its life time is infinite, and its distribution is determined by the moment function. Several limit theorems about this superprocess and its occupation time process are obtained.

Keywords Superprocess, Extinction time, Occupation time process 1991 MR Subject Classification 60G07, 60F Chinese Library Classification 0211.6, 0211.4

### §1. Introduction

Let E be a topological Lusin space and M(E) denote the space of finite measures on Ewith the topology of weak convergence.  $\mathcal{B}(E)$  is the space of bounded nonnegative Borelmeasurable functions on E. Suppose that  $\xi = (\Omega, \mathcal{F}, \mathcal{F}_t, \theta_t, \xi_t, P^x)$  is a Borel right Markov process with state space  $(E, \mathcal{B}(E))$  and semigrop  $(S_t)$  such that  $S_t 1 = 1$ , so that  $\xi$  has infinite lifetime. The superprocesses  $X = (\mathcal{W}, g, g_t, \Theta_t, X_t, P^\mu)$  arising from  $\xi$  is determined by the following Laplace functional

$$E^{\mu}[\exp(-\langle X_t, f \rangle)] = \exp(-\langle \mu, u_t \rangle).$$
(1.1)

Here  $u_t$  is the unique positive solution of the following equation

$$\frac{\partial}{\partial t}u_t = Au_t - u_t^2, 
u(0) = f,$$
(1.2)

where A is the infinite generator for  $\xi$ ,  $f \in \mathcal{B}(E)$ ,  $\mu \in M(E)$ .

We have known that  $X_t$  is an M(E)-valued right Markov process (see [5]). From [10, p. 286], it is extinct eventually.

Let T be the extinction time for  $X_t$ . For  $\mu \in M(E) - \{0\}$ , write

$$P_t^{\mu}[\cdot] = P^{\mu}\left[\cdot \mid t < T < \infty\right].$$

Since  $P^{\mu}(T = \infty) = 0$ , we have

$$P_t^{\mu}[\cdot] = P^{\mu}[\cdot \mid t < T].$$
(1.3)

Manuscript received April 9, 1994. Revised July 23, 1996.

<sup>\*</sup>College of Business and Administration, South China University of Technology, Guangzhou 510641, China.

<sup>\*\*</sup>Department of Mathematics, Nankai University, Tianjin 300071, China.

<sup>\*\*\*</sup>Project supported by the National Natural Science Foundation of China.

Under the condition of non-extinction, we will construct a class of superprocesses (which we call conditioned superprocesses), and investigate its property and the limit property of its occupation time process

# §2. The Construction of Conditioned Superprocesses

Write  $E_t^{\mu}$  as the expectation corresponding to the law  $P_t^{\mu}$ , and

$$X_t(f) = \langle X_t, f \rangle.$$

We first give a lemma.

**Lemma 2.1** If  $X_t = 0$   $P^{\mu}$  a.s (t > 0) for  $\mu \in M(E)$ , then for s > t $X_s = 0$   $P^{\mu}$  a.s.

**Proof.** For  $\lambda > 0$ , by (1.1) and (1.2), we get

$$E^{\mu}[\exp(-\lambda X_{s}(1))] = E^{\mu}[E^{\mu}(\exp(-\lambda X_{s}(1) \mid X_{t})]$$
  
=  $E^{\mu}[E^{X_{t}}\exp(-\lambda X_{s-t}(1))]$   
=  $E^{\mu}\Big[\exp\Big(-\langle X_{t}, \frac{\lambda}{1+\lambda(s-t)}\rangle\Big)\Big] = 1.$ 

Hence

$$X_s = 0 P^{\mu}$$
 a.s.

Suppose that G is  $g_t$ -measurable. For s, t > 0, since the path of  $X_t$  is right continuous, by Lemma 2.1 and (1.3), we get

$$\begin{split} E_{s+t}^{\mu}\left(G\right) &= E^{\mu}[G \mid s+t < T] \\ &= \frac{E^{\mu}\left(G\right) - E^{\mu}\left[G;T \leq s+t\right]}{1 - P^{\mu}(T \leq s+t)} \\ &= \frac{E^{\mu}\left(G\right) - E^{\mu}\left[G;X_{s+t} = 0\right]}{1 - P^{\mu}(X_{s+t} = 0)} \end{split}$$

and by the Markov property of  $X_t$ ,

$$\begin{split} E^{\mu}[G; X_{s+t} &= 0] &= E^{\mu}[GE^{\mu}[I_{(X_{s+t}=0)} \mid g_t]] \\ &= E^{\mu}[GE^{\mu}[I_{(X_{s+t}=0)} \mid X_t]] \\ &= E^{\mu}[GE^{X_t}[I_{(X_s=0)}]] \\ &= E^{\mu}[GP^{X_t} \left(X_s = 0\right)] \\ &= E^{\mu}[G \cdot \exp(-X_t(1) \cdot s^{-1})]. \end{split}$$

Hence for  $\mu \in M(E) - \{0\}$ ,

$$E_{s+t}^{\mu}(G) = \frac{E^{\mu}[G(1 - \exp(-X_t(1) \cdot s^{-1}))]}{1 - \exp[-\mu(1) \cdot (s+t)^{-1}]}.$$
(2.1)

Write

$$E_{\infty}^{\mu}\left(G\right) = \lim_{s \to \infty} E_{s+t}^{\mu}\left(G\right).$$

Then we get

**Theorem 2.1.** For  $\mu \in M(E) - \{0\}$ , there exists a probability measure  $P^{\mu}_{\infty}$  on  $\mathcal{W}$  with the expectation  $E^{\mu}_{\infty}$  such that

(1) on  $g_t$ 

$$P_{\infty}^{\mu}\left[\cdot\right] = \mu(1)^{-1} P^{\mu}\left[\cdot X_{t}(1)\right];$$

(2) if G is nonegative  $g_t$ -measurable, and  $E^{\mu}[GX_t(1)] < \infty$ , then

$$E_{\infty}^{\mu}(G) = \mu(1)^{-1} E^{\mu}[GX_t(1)].$$

**Proof.** Applying the inequality

$$x - \frac{x^2}{2} < 1 - e^{-x} < x \quad (x > 0),$$

for fixed t > 0, and  $s > \max(\frac{\mu(1)}{2}, t)$ , we get

$$0 \le G \frac{1 - \exp(-X_t(1)s^{-1})}{1 - \exp[-\mu(s+t)^{-1}]}$$
$$\le G \frac{X_t(1)s^{-1}}{\frac{\mu(1)}{s+t} \left[1 - \frac{\mu(1)}{2(s+t)}\right]}$$
$$\le 4\mu(1)^{-1}GX_t(1).$$

Let  $s \to \infty$  in (2.1). By the dominated convergence theorem, we get (2) immediately. Hence there exists a probability measure  $P^{\mu}_{\infty}$  with the corresponding expectation  $E^{\mu}_{\infty}$  such that (1) holds (see [5]).

**Remark.** From Theorem 2.1 we have constructed a new class of superprocesses conditioned superprocesses, and it is the original superprocess  $X_t$  under the condition of probability measure  $P^{\mu}_{\infty}$ .

**Theorem 2.2.** For  $\mu \in M(E) - \{0\}, f \in \mathcal{B}(E)$ , we have

$$E^{\mu}_{\infty} \left[ X_t(f) \right]^n = \mu(1)^{-1} E^{\mu} \left[ (X_t(f))^n \cdot X_t(1) \right], \quad t > 0, \quad n \in \mathbb{N}$$

and the distribution of  $X_t(f)$  under  $P^{\mu}_{\infty}$  is determined by the moments.

**Proof.** Denote  $||f|| = \sup_{x \in E} |f(x)|$ . Then

$$X_t(f) \le \|f\| X_t(1).$$

Since  $EX_t^n(1)$  exists, by Theorem 2.1(2), the equality in Theorem 2.2 holds.

Applying the property of series of power which is absolutely continuous and uniformly convergent in the radius of convergence, we easily get that the radius of convergence of series of power for  $E_{\infty}^{\mu} [X_t(f)]^n$  is larger than zero. By [11, Theorem 1], the distribution of  $X_t(f)$  under  $P_{\infty}^{\mu}$  is determined by all the moments.

**Theorem 2.3.** For  $\mu \in M(E) - \{0\}$ , we have

$$P^{\mu}_{\infty} \ll P^{\mu} \ on \ g_t \ (t > 0).$$

**Proof.** Since  $X_t$  is extinct, there exists an r such that r > t, so that

$$X_r(1) \le 1 P^{\mu}$$
 a.s.

For  $A \in g_t \subset g_r$ , by Theorem 2.1

$$P^{\mu}_{\infty}(A) = E^{\mu}_{\infty}(I_A) = \mu(1)^{-1}E^{\mu}[I_A X_r(1)]$$
  
$$\leq \mu(1)^{-1}E^{\mu}(I_A) = \mu(1)^{-1}P^{\mu}(A)$$

Hence on  $g_t$ 

$$P^{\mu}_{\infty} \ll P^{\mu}.$$

If  $\xi$  is a *d*-dimensional Browinan motion on  $\mathbb{R}^d$ , and  $\mathcal{B}(\mathbb{R}^d)$  is the Borel  $\sigma$ -field, then the superprocess arising from  $\xi$  is a super-Brownian motion. By Theorem 2.3 and [8, Theorem 7.3], we get

**Corollary 2.1.** Suppose that  $X_t$  is a super-Brownian motion. For  $A \in \mathcal{B}(\mathbb{R}^d), \mu \in M(\mathbb{R}^d) - \{0\}$ , if  $\lambda(A) = 0$  ( $\lambda$  is Lebesgue measure), we have

$$X_t(A) = 0 \ P^{\mu}_{\infty}$$
 a.s  $(t > 0)$ .

## §3. Some Limit Theorems

**Theorem 3.1.** For  $\mu \in M(E) - \{0\}$ , we have

(1) for s > 0, under  $P_{s+t}^{\mu}$ 

$$t^{-1}X_t(1) \xrightarrow{W} \xi,$$

where  $\xrightarrow{W}$  denotes convergence in distribution,  $\xi$  is an exponential distribution with parameter 1;

(2) under  $P^{\mu}_{\infty}$ 

$$t^{-1}X_t(1) \xrightarrow{W} \xi + \eta,$$

where  $\eta$  is a copy of  $\xi$ ;

(3) for  $a \in (0, 1)$ , under  $P_t^{\mu}$ 

$$t^{-1}X_{ta}(1) \xrightarrow{W} U + V,$$

where U and V are exponential distributions with parameters  $\frac{1}{a}$  and  $\frac{1}{a(1-a)}$  respectively, and are independent of each other.

$$\begin{aligned} \mathbf{Proof.} \ & \text{For } s > 0, \mu \in M(E) - \{0\}, \text{ by } (2.1) \\ & E_{s+t}^{\mu}[\exp(-\lambda t^{-1}X_t(1))] \\ &= \frac{E^{\mu}[\exp(-\lambda t^{-1}X_t(1))] - E^{\mu}[\exp(-(\lambda t^{-1} + s^{-1})X_t(1))]}{1 - \exp[-\mu(1)(t + s)^{-1}]} \\ &= \frac{\exp[-\mu(1)\lambda(\lambda + 1)^{-1}t^{-1}] - \exp[-\mu(1)(\lambda t^{-1} + s^{-1})(1 + \lambda + ts^{-1})^{-1}]}{1 - \exp[-\mu(1)(t + s)^{-1}]}. \end{aligned}$$

(1) For a fixed s > 0, we have

$$E_{t+s}^{\mu} \left[ \exp(-\lambda t^{-1} X_t(1)) \right] \xrightarrow{t \to \infty} \frac{1}{1+\lambda}$$

We note that  $\frac{1}{1+\lambda}$  is the Laplace functional of  $\xi$ . Hence under  $P_{t+s}^{\mu}$ 

$$t^{-1}X_t(1) \xrightarrow{W} \xi.$$

(2)

$$\begin{split} E_{t+s}^{\mu} \left[ \exp(-\lambda t^{-1} X_t(1)) \right] \\ &= \frac{\exp[-\mu(1)\lambda(\lambda+1)^{-1}t^{-1}] \cdot \left[1 - \exp[-\mu(1)(1+\lambda)^{-1}[(1+\lambda)s+t]^{-1}]\right]}{1 - \exp(-\mu(1)(t+s)^{-1})} \\ \xrightarrow{s \to \infty} \exp[-\mu(1)\lambda(1+\lambda)^{-1}t^{-1}] \cdot \frac{1}{(1+\lambda)^2} \\ \xrightarrow{t \to \infty} \frac{1}{(1+\lambda)^2}, \end{split}$$

hence

$$E^{\mu}_{\infty} \left[ \exp(-\lambda t^{-1} X_t(1)) \right] \xrightarrow{t \to \infty} \frac{1}{(1+\lambda)^2}$$

Since the Laplace functional of  $\xi + \eta$  is  $\frac{1}{(1+\lambda)^2}$ , Theorem 3.1(2) follows.

(3) Similarly, as (2.1), we get

$$E_t^{\mu} \left[ \exp(-\lambda t^{-1} X_{ta}(1)) \right]$$

$$= \frac{E^{\mu} \left[ \exp(-\lambda t^{-1} X_{ta}(1)) \right] - E^{\mu} \left[ \exp\left[-\left(\frac{\lambda}{t} + \frac{1}{t(1-a)}\right) X_{ta}(1)\right] \right]}{1 - P^{\mu} (X_t = 0)}$$

$$= \frac{\exp\left[-\mu(1)\lambda t^{-1} (1 + \lambda a)^{-1}\right] - \exp\left[-\mu(1)t^{-1} (\lambda + \frac{1}{1-a})(1 + \lambda a + \frac{a}{1-a})^{-1} \right]}{1 - \exp(-\mu(1)t^{-1})}$$

$$\stackrel{t \to \infty}{\longrightarrow} (1 + \lambda a)^{-1} \cdot \left[1 + a(1 - a)\lambda\right]^{-1}.$$

Similarly, as (1.2), under  $P_t^{\mu}$ 

$$t^{-1}X_{ta}(1) \xrightarrow{W} U + V.$$

**Remark.** Theorem 3.1(2) and (3) is similar to [1, Theorem I.14.3 and I.15.1].

We have known that  $X_t$  is extinct for  $\mu \in M(E)$ , but for the occupation time process  $Y_t$ :

$$\langle Y_t, f \rangle = \int_0^t \langle X_s, f \rangle ds, \ f \in \mathcal{B}(E).$$

We will investigate its limit property.

**Theorem 3.2.** For  $\mu \in M(E) - \{0\}$ , we have

(1) For any s > 0, under  $P_{t+s}^{\mu}$ 

$$t^{-2}Y_t(1) \xrightarrow{W} \xi_1.$$

Here  $\xi_1$  has the following Laplace functional

$$\phi_1(\lambda) = \frac{4\sqrt{\lambda}e^{2\sqrt{\lambda}}}{e^{4\sqrt{\lambda}} - 1} \quad (\lambda > 0).$$

(2) Under  $P^{\mu}_{\infty}$ 

$$t^{-2}Y_t(1) \xrightarrow{W} \xi_2.$$

Here  $\xi_2$  has the following Laplace functional

$$\phi_2(\lambda) = \frac{4e^{2\sqrt{\lambda}}}{(e^{2\sqrt{\lambda}} + 1)^2} \quad (\lambda > 0).$$

**Proof.** By [3, (1.43) and (1.44)], for  $r \ge 0, \lambda > 0, \mu \in M(E)$ ,

$$E^{\mu}[\exp(-rX_t(1) - \lambda Y_t(1))] = \exp(-\langle \mu, u_t \rangle), \qquad (3.1)$$

where  $u_t$  is the unique positive solution of the following evolution equation

$$\frac{\partial}{\partial t}u(t) = Au(t) - u^2(t) + \lambda,$$

$$u(0) = r.$$
(3.2)

It is easy to see that the solution is

$$u_t = \frac{\sqrt{\lambda}[(\sqrt{\lambda} + r)e^{2\sqrt{\lambda}t} - (\sqrt{\lambda} - r)]}{(\sqrt{\lambda} + r)e^{2\sqrt{\lambda}t} + (\sqrt{\lambda} - r)}.$$
(3.3)

For s > 0, by (2.1), (3.1) and (3.3), we get

$$\begin{split} & E_{s+t}^{\mu} \left[ \exp(-\lambda t^{-2} Y_t(1)) \right] \\ &= \frac{E^{\mu} \left[ \exp(-\lambda t^{-2} Y_t(1)) \right] - E^{\mu} \left[ \exp(-\lambda t^{-2} Y_t(1) + s^{-1} X_t(1)) \right]}{1 - \exp[-\mu(1)(t+s)^{-1}]} \\ &= \frac{\exp[-\mu(1) \frac{\sqrt{\lambda}}{t} \cdot \frac{e^{2\sqrt{\lambda}} - 1}{e^{2\sqrt{\lambda}} + 1} \right] - \exp[-\mu(1) \frac{\sqrt{\lambda}}{t} \cdot \frac{(\sqrt{\lambda} t^{-1} + s^{-1}) e^{2\sqrt{\lambda}} - (\sqrt{\lambda} t^{-1} - s^{-1})}{(\sqrt{\lambda} t^{-1} + s^{-1}) e^{2\sqrt{\lambda}} + (\sqrt{\lambda} t^{-1} - s^{-1})} \right]}{1 - \exp[-\mu(1)(t+s)^{-1}]} \\ & \xrightarrow{t \to \infty} \frac{4\sqrt{\lambda} e^{2\sqrt{\lambda}}}{e^{4\sqrt{\lambda}} - 1}; \end{split}$$

this proves Theorem 3.2(1).

Similarly, as the proof of Theorem 3.1(2), we have

$$\begin{split} E_{s+t}^{\mu} \left[ \exp(-\lambda t^{-2} Y_t(1)) \right] & \stackrel{s \to \infty}{\longrightarrow} \frac{4e^{2\sqrt{\lambda}}}{(e^{2\sqrt{\lambda}} + 1)^2} \cdot \exp[-\mu(1) \frac{\sqrt{\lambda}}{t} \cdot \frac{e^{2\sqrt{\lambda}} - 1}{e^{2\sqrt{\lambda}} + 1}] \\ & \stackrel{t \to \infty}{\longrightarrow} \frac{4e^{2\sqrt{\lambda}}}{(e^{2\sqrt{\lambda}} + 1)^2}. \end{split}$$

Hence

$$E^{\mu}_{\infty} \exp(-\lambda t^{-2}Y_t(1))] \xrightarrow{t \to \infty} \frac{4e^{2\sqrt{\lambda}}}{(e^{2\sqrt{\lambda}}+1)^2}.$$

**Theorem 3.3.** For  $\mu \in M(E) - \{0\}$ , under  $P^{\mu}$ 

$$Y_t(1) \xrightarrow{W} \xi,$$

where  $\xi$  has the probability density

$$\phi(x) = \frac{\mu(1)}{2\sqrt{\pi}x^{\frac{3}{2}}} \exp\left[-\frac{\mu(1)^2}{4x}\right], \ x > 0.$$

**Proof.** From (3.1), (3.2) and (3.3), we have

$$E^{\mu}[\exp(-\lambda Y_t(1))] = \exp(-\langle \mu, u_t \rangle), \quad \lambda > 0, \tag{3.4}$$

where  $u_t$  is the unique positive solution of the following evolution equation

$$\frac{\partial}{\partial t}u(t) = Au(t) - u^2(t) + \lambda,$$
  
$$u(0) = 0.$$
 (3.5)

Its solution is

$$u_t = \sqrt{\lambda} \cdot \frac{e^{2t\sqrt{\lambda}} - 1}{e^{2t\sqrt{\lambda}} + 1}.$$

Hence

$$E^{\mu}[\exp(-\lambda Y_t(1))] = \exp(-\mu(1)\sqrt{\lambda} \cdot \frac{e^{2t\sqrt{\lambda}} - 1}{e^{2t\sqrt{\lambda}} + 1})$$
$$\stackrel{t \to \infty}{\longrightarrow} \exp(-\mu(1)\sqrt{\lambda}).$$

Since the r.v. $\xi$  with the probability density  $\phi(x)$  has the representation  $\exp(-\mu(1)\sqrt{\lambda})$  of Laplace functional, we have under  $P^{\mu}$ 

$$Y_t(1) \xrightarrow{W} \xi.$$

For a particular class of superprocesses, we can investigate the limit property for  $Y_t$ . In the following we give an example.

**Example.** Suppose that E is discrete. If the motion process  $\xi$  has the semigroup  $(P_t)$  such that  $P_t(x, \{y\}) = v(\{y\}), x, y \in E, \forall t$ , then

$$Y_t \xrightarrow{W} \xi \cdot v.$$

**Proof.** It is easy to see that v is a probability measure on E.

We note that for t > 0

$$P^{\mu}(Y_t = 0) = \lim_{\lambda \to +\infty} E^{\mu}[\exp(-\lambda Y_t(1))] = 0$$

Hence  $Y_t(f)/Y_t(1)$  is well defined under  $P^{\mu}$ .

For  $\varepsilon$ ,  $\delta > 0$ 

$$P^{\mu}\Big(\Big|\frac{Y_t(f)}{Y_t(1)} - v(f)\Big| > \varepsilon\Big) \le P^{\mu}(|Y_t(f) - v(f)Y_t(1)| > \delta\varepsilon) + P^{\mu}(Y_t(1) \le \delta),$$

where  $f \in C(E)$  (the space of continuous functions).

By Theorem 3.3

$$\lim_{t \to \infty} P^{\mu}(Y_t(1) \le \delta) = \int_0^{\delta} \frac{\mu(1)}{2\sqrt{\pi}x^{\frac{3}{2}}} \exp\left(-\frac{(\mu(1))^2}{4x}\right) dx$$
$$\longrightarrow 0 \text{ as } \delta \to 0,$$
$$E^{\mu}[Y_t(f) - v(f)Y_t(1)]^2 = E^{\mu}[\langle Y_t, f - v(f) \rangle]^2$$
$$= -\langle u''(t), \mu \rangle + \langle u'(t), \mu \rangle^2.$$

By [6]

$$\begin{split} u'(t) &= \int_0^t \left( P_s f - v(f) \right) ds, \\ \langle u''(t), \mu \rangle &= -2 \int_0^t \left\langle P_{t-s}[u'(s)]^2, \mu \right\rangle ds \end{split}$$

but

$$P_s f(x) = \int_E P_s(x, dy) f(y) = \int_E v(dy) f(y) = v(f)$$

Hence

$$u'(t) = 0, \qquad \langle u''(t), \mu \rangle = 0.$$

We get

$$E^{\mu}[Y_t(f) - v(f)Y_t(1)]^2 = 0$$

 $\quad \text{and} \quad$ 

$$P^{\mu}(|Y_t(f) - v(f)Y_t(1)| > \delta\varepsilon) = 0.$$

Therefore

$$\lim_{t \to \infty} P^{\mu} \left( \left| \frac{Y_t(f)}{Y_t(1)} - v(f) \right| > \varepsilon \right) = 0,$$

under  $P^{\mu}$ 

$$\frac{Y_t(f)}{Y_t(1)} \xrightarrow{P} v(f).$$

By Theorem 3.3 and [7, Theorem 4.2]

# $Y_t \xrightarrow{W} \xi \cdot v.$

#### References

- [1] Athreya, K. B., Branching processes, Springer-Verlag, 1972.
- [2] Dawson, D. A., Iscoe, I. & Perkins, E. A., Super-Brownian motion: path properties and hitting probabilities, Probab. Th. Rel. Fields, 83(1989), 135-205.
- [3] Dynkin, E. B., Branching particle systems and superprocesses, Ann. Probab., 19(1991a), 1157-1191.
- [4] Doetsch, G., Laplace transformation, Springer-Verlag, New York, 1974.
- [5] Fitzsimmons, P. J., Construction and regularity of measure valued branching processes, Israel J. Math., 64(1988), 337-361.
- [6] Iscoe, I., A weighted occupation time for a class of measure valued critical branching Brownian motion, Probab. Th. Rel. Fields, 71(1986a), 85-116.
- [7] Kallenberg, O., Random measures, 3rd ed., Akademie Verlag and Academic Press, 1983.
- [8] Reimers, M., Hyperfinite methods applied to the critical branching diffusion, Probab. Th. Rel. Fields, 81(1989), 11-27.
- [9] Sharpe, M. J., General theory of Markov processes, Academic Press, 1988.
- [10] Tribe, R., The behavior of superprocesses near extinction, Ann. Prob., 20(1992), 286-311.
- [11] Wang Zikun, The expansion of series of power for superprocesses (in Chinese), Acta. Math. Phys., 10:4(1990), 361-364.