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Abstract Let u(t, x) be the solution to the Cauchy problem of a scalar conservation law
in one space dimension. It is well known that even for smooth initial data the solution
can become discontinuous in finite time and global entropy weak solution can best lie in
the space of bounded total variations. It is impossible that the solutions belong to, for
example, H1 because by Sobolev embedding theorem H1 functions are Hölder continuous.
However, the author notes that from any point (t, x), he can draw a generalized charac-
teristic downward which meets the initial axis at y = α(t, x). If he regards u as a function
of (t, y), it indeed belongs to H1 as a function of y if the initial data belongs to H1. He
may call this generalized persistence (of high regularity) of the entropy weak solutions.
The main purpose of this paper is to prove some kinds of generalized persistence (of high
regularity) for the scalar and 2× 2 Temple system of hyperbolic conservation laws in one
space dimension.
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1 Introduction

The Cauchy problem for system of conservation laws in one space dimension takes the form

ut + f(u)x = 0, (1.1)

u(0, x) = u0(x). (1.2)

Here u = (u1, · · · , un) is the vector of conserved quantities, while the components of f =

(f1, · · · , fn) are the fluxes. We assume that the flux function f : Rn → Rn is smooth and that

the system is hyperbolic, i.e., at each point u the Jacobian matrix A(u) = ∇f(u) has n real

eigenvalues

λ1(u), · · · , λn(u) (1.3)

and a bases of right and left eigenvectors ri(u), li(u), normalized so that

li · rj = δij , (1.4)
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where δij stands for Kroneker’s symbol. We make an assumption that all the eigenvalues and

eigenvectors are smooth functions of u, which in particular holds when the eigenvalues are all

distinct, i.e., the system is strictly hyperbolic.

It is well known that the solution can develop singularities in finite time even with smooth

initial data, see Lax [11], John [8] and Li [12]. Therefore, global solutions can only be construct-

ed within a space of discontinuous functions. Global weak solutions to the Cauchy problem is a

subject of a large literature, notably, Lax [10], Glimm [7], DiPerna [6], Dafermos [4], Bressan [2],

Bianchini and Bressan [1]. We refer to the classical monograph of Dafermos [5] for references.

In the classical paper of Kruzkov [9], global entropy weak solutions to a scalar equation

are constructed by a vanishing viscosity method. That is, the entropy weak solutions of the

hyperbolic equation actually coincide with the limits of solutions to the parabolic equation

ut + f(u)x = εuxx (1.5)

by letting the viscosity coefficients ε → 0. The same result is also proved for n × n strictly

hyperbolic systems in a celebrated paper of Bianchini and Bressan [1] for small BV initial data.

Although the one dimension theory of systems of hyperbolic conservation laws has by now

quite matured, the multi-dimensional problem is still very challenging except for the scalar

case. In recent years, much progress has been made to understand the formation of shocks

for the compressible Euler equations for small initial data, see Sideris [14] and Christodoulou

[3]. However, the problem of constructing entropy weak solutions beyond the time of shock

formation is still largely open and even so in the radial symmetric case. The main difficulty

is that on one hand the weak solution can best lie in BV, on the other hand, the BV space

is not a scaling invariant space for the system. Especially, in n space dimensions, Ẇ 1,n is the

critical space. This motivates us to study systems of hyperbolic conservation laws in one space

dimension for W 1,p (1 < p < +∞) data as a first step towards the multidimensional problem.

Let u(t, x) be the solution to the Cauchy problem of a scalar conservation law in one space

dimension. It is well known that even for smooth initial data the solution can become discon-

tinuous in finite time and global entropy weak solution can best lie in the space of bounded

total variations. It is impossible that the solution belongs to W 1,p (1 < p < +∞) because by

Sobolev embedding theorem W 1,p functions are Hölder continuous. However, we note that from

any point (t, x) we can draw a generalized characteristic downward which meets the initial axis

at y = α(t, x). If we regard u as a function of (t, y), it indeed belongs to W 1,p as a function

of y if the initial data belongs to W 1,p. We may call this generalized persistence (of high reg-

ularity) of the entropy weak solutions. The main purpose of this paper is to prove some kind

of generalized persistence of W 1,p regularity of entropy weak solutions for 2× 2 Temple system

of hyperbolic conservation laws in one space dimension. Some interesting hyperbolic system

arising in applications which satisfies the Temple condition can be found in Serre [13].

Our main theorem can be stated as follows.

Theorem 1.1 Consider the Cauchy problem (1.1)–(1.2) for systems of two conservation

laws. Suppose that the 2× 2 matrix A(u) is hyperbolic, smoothly depending on u and possessing

a complete sets of smooth eigenvalues and eigenvectors as well as two global Riemann invariants.

Suppose that the Temple condition

〈li, rjurj〉 ≡ 0, ∀ i 6= j (1.6)
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is satisfied. Suppose furthermore that

|u0|L∞(R) ≤ D < +∞ (1.7)

and there exists 1 < p ≤ +∞ such that

|u′
0|Lp(R) = M < +∞. (1.8)

Then, the Cauchy problem (1.1)–(1.2) admits a global entropy weak solution which can be rep-

resented as

u = U(W1(t, α1(t, x)),W2(t, α2(t, x))), (1.9)

where U is a smooth function of Riemann invariants W1, W2, α1(t, x), α2(t, x) are local-

ly bounded monotone increasing function of x and W1(t, α), W2(t, α) are Hölder continuous

functions of α, moreover,

|∂αW1(t, α)|Lp(R) + |∂αW2(t, α)|Lp(R) . M. (1.10)

Theorem 1.1 will be proved by a vanishing viscosity approach.

Remark 1.1 Theorem 1.1 is also true for the initial boundary value problems with periodic

boundary conditions, with (1.8) replaced by

|u′
0|Lp(T ) = M < +∞. (1.11)

The same proof applies.

Remark 1.2 With additional assumption (1.8), Theorem 1.1 gives an alternative proof of

global existence of entropy weak solution for 2 × 2 Temple system without using the so called

compensated compactness method.

This paper is organized as follows: In Section 2, we will discuss generalized persistence of

a scalar conservation law in one space dimension in various high regularity spaces. In Section

3, we will discuss related problem for a scalar conservation law in multi-dimensions. Finally, in

Section 4, we will discuss the 2× 2 Temple system in one space dimension and prove our main

result.

Notations: Let f(x) be a scalar or vector function of x ∈ R, we denote

|f |Ẇ 1,p(R) = |f ′|Lp(R), (1.12)

|f |W 1,p(R) = |f |Ẇ 1,p(R) + |f |Lp(R) (1.13)

and Ḣ1 = Ẇ 1,2. We denote A . B, if there exist a positive constant C such that A ≤ CB.

2 Scalar Equation in One Space Dimension

We consider the following Cauchy problem for a scalar conservation law in one space dimen-

sion:

ut(t, x) + (f(u(t, x)))x = 0, (2.1)



502 Y. Zhou

u(0, x) = u0(x), (2.2)

where u0 is a suitably smooth function. It is well known that the global solution is the limit of

the viscous approximations

uε(t, x)t + f(uε(t, x))x = εuε
xx, (2.3)

uε(0, x) = u0(x). (2.4)

By maximum principle, we have

|uε|L∞(R+×R) ≤ |u0|L∞ . (2.5)

We write

uε(t, x) = Uε(t, αε(t, x)) (2.6)

for simplicity of notation, here we denote Uε(t, αε(t, x)) just by U(t, α(t, x)). Substitubing (2.6)

to (2.3), we get

U(t, α)t − εα2
xU(t, α)αα = −U(t, α)α(αt + f ′(u)αx − εαxx). (2.7)

We take αε(t, x) to be the solution to the following Cauchy problem

αε
t + f ′(uε)αε

x − εαε
xx = 0, (2.8)

αε(0, x) = x, (2.9)

then, Uε(t, α) will satisfy

Uε(t, α)t − εΘε2Uε(t, α)αα = 0, (2.10)

Uε(0, α) = u0(α), (2.11)

where we denote Θε = αε
x. By (2.8)–(2.9), we get

Θε
t + (f ′(uε)Θε)x − εΘε

xx = 0, (2.12)

Θε(0, x) = 1. (2.13)

Then by maximum principle, Θε is a positive function, and moreover, by (2.8)–(2.9),

x+M1t ≤ αε(t, x) ≤ x+M2t, (2.14)

where M1 = inf
|u|≤|u0|L∞

(−f ′(u)), M2 = sup
|u|≤|u0|L∞

(−f ′(u)). This is because x+M1t and x+M2t

is respectively a subsolution and supsolution of (2.8)–(2.9). Now, from (2.10), it is easy to see

V ε(t, α) = Uε(t, α)α satisfies

V ε(t, α)t − ε(Θε2V ε(t, α)α)α = 0. (2.15)
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Then, it is easy to get the following series of estimates

|Uε(t, ·)αα|L1(R) ≤ |u′′
0 |L1(R) (2.16)

and for any 1 ≤ p ≤ ∞,

|Uε(t, ·)α|Lp(R) ≤ |u′
0|Lp(R). (2.17)

Upon taking a subsequence, Uε(t, α) converges to U(t, α) and αε(t, x) converges to α(t, x). Then

u(t, x) = U(t, α(t, x)) is the solution to the Cauchy problem (2.1)–(2.2). We see immediately

that U(t, α)α is a function of bounded total variation for the variable α provided that u′
0 is a

function of bounded total variation and U(t, α)α is an Lp (1 < p ≤ ∞) function for the variable

α provided that u′
0 is an Lp function. Thus, U(t, α) can be much smoother then u(t, x). We

summarize our result in the following theorem

Theorem 2.1 Let

u0 ∈ L∞. (2.18)

Then the global entropy solution to system (2.1)–(2.2) can be represented as

u(t, x) = U(t, α(t, x)), (2.19)

where α(t, x) is a locally bounded monotone increasing function of x representing the generalized

characteristics and U(t, α) as a function of α satisfies

|U(t, ·)α|BV (R) ≤ |u′
0|BV (R) (2.20)

and for any 1 < p ≤ ∞,

|U(t, ·)α|Lp(R) ≤ |u′
0|Lp(R), (2.21)

provided that the left-hand side of the inequality is finite, i.e., u0 is suitable smooth. In partic-

ular, U(t, α) is Hölder continuous.

3 Scalar Conservation Law in Multi-Dimensions

In this section, we consider the initial boundary value problem with periodic boundary

conditions of a scalar conservation law in multi-dimensions

ut +

n∑

i=1

(fi(u))xi
= 0, (3.1)

u(0, x) = u0(x), x ∈ T n = [0, 1]n. (3.2)

As always, u is the limit of its viscous approximations:

uε
t +

n∑

i=1

(fi(u
ε))xi

= ε∆uε, (3.3)

uε(0, x) = u0(x), x ∈ T n, (3.4)
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where ∆ is the Laplacian operator in T n.

Due to the multi-dimensional nature of the problem, there no longer exists a transformation

y = α(t, x) like that in one space dimensions. Therefore, in this section, we are limited to

discuss regularity properties of solutions of the viscous approximations.

Let Θε(t, x) be the solution to the initial boundary value problem with periodic boundary

conditions of the following equation

Θε
t +

n∑

i=1

(f ′
i(u

ε)Θε)xi
= ε∆Θε, (3.5)

Θε(0, x) = 1. (3.6)

By maximum principle, Θε is a positive function, moreover, integrating (3.5) in x yields

|Θε(t, ·)|L1(Tn) = 1. (3.7)

Let

vε(t, x) = uε
x1
(t, x).

Then differentiating (3.1) with respect to x1 yields

vεt +

n∑

i=1

(f ′
i(u

ε)vε)xi
= ε∆vε, (3.8)

vε(0, x) = u0x1
(x). (3.9)

A simple computation shows

( vε

Θε

)

t
+

n∑

i=1

f ′
i(u

ε)
( vε

Θε

)

xi

= ε(Θε)−2∇
(
Θε2∇

( vε

Θε

))
. (3.10)

Then by maximum principle, we get

|uε
x1
(t, x)|

Θε(t, x)
≤ |u0x1

|L∞(Tn) (3.11)

uniformly for all (t, x). In a same way, we have

|uε
xi
(t, x)|

Θε(t, x)
≤ |u0xi

|L∞(Tn), i = 1, · · · , n (3.12)

uniformly for all (t, x).

Let 1 < p < ∞, a further computation yields

( |v|p
Θp−1

)

t
+

n∑

i=1

(
f ′
i(u)

|v|p
Θp−1

)

xi

+ ε
4(p− 1)

p
Θ
(
∇
( |v| p2
Θ

p

2

))2

= ε∆
( |v|p
Θp−1

)
, (3.13)

where we write vε as v for simplicity of notation. Similar equality holds for uε
xi
, we integrate

the above equality to yield

∫

Tn

|uε
xi
(t, x)|p

(Θε(t, x))p−1
dx+ ε

4(p− 1)

p

∫ t

0

∫

Tn

Θε
(
∇
( |uε

xi
| p2

(Θε)
p

2

))2

dxdτ =

∫

Tn

|u0xi
|pdx. (3.14)
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(3.12), (3.14) give a kind of LP (1 < p ≤ ∞) bound for the derivatives of the solution. We

notice that by Hölder’s inequality and (3.7), for any 1 ≤ p1 < p,

(∫

Tn

|uε
xi
(t, x)|p1

(Θε(t, x))p1−1
dx

) 1
p1 ≤

( ∫

Tn

|uε
xi
(t, x)|p

(Θε(t, x))p−1
dx

) 1
p

. (3.15)

Thus, when ε → 0,
|uε

xi
(t,x)|p

(Θε(t,x))p−1dx will converge weakly to some measures Ωip(t) such that its

total measure is in an increasing order of p, and it in someway measures the high regularity

part of the solution.

4 2 × 2 Temple System in One Space Dimension

We consider the viscous approximations

uε
t +A(uε)uε

x = εuε
xx (4.1)

with initial conditions

uε(0, x) = u0ε(x) = Jε ∗ u0, (4.2)

where Jε is the Friedriches mollifier. We assume that there exist two Riemann invariants

Rε
1 = R1(u

ε), Rε
2 = R2(u

ε), and we assume that we can also write uε = U(Rε
1, R

ε
2). In the

following calculations, we just denote uε by u and Rε
i by Ri when there is no confusion of

notation. Taking li(u) = ∇uRi(u), we get

ux =

2∑

i=1

Rixri(u). (4.3)

Thus, we get

uxx =
2∑

j=1

Rjxxrj +
2∑

j,k=1

RjxRkxrjurk. (4.4)

Thus, taking inner product of (4.1) with li and noting the Temple condition, we get

Rit + λiRix = εRixx + εRix

2∑

j=1

DijRjx, (4.5)

where Dij are smooth functions of uε. Thus,

Rit + λ̃iRix = εRixx, (4.6)

where

λ̃i = λi − ε

2∑

j=1

DijRjx. (4.7)

Then, by maximum principle

|Ri|L∞ ≤ |Ri(u0ε)|L∞(R) . 1. (4.8)
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Thus, we have

|uε|L∞ . 1. (4.9)

We write

Ri(t, x) = Wi(t, αi(t, x)), (4.10)

then (4.6) becomes

Wit − εα2
ixWiαα = −Wiα(αit + λ̃iαix − εαixx). (4.11)

Thus, we get

W ε
it − ε(αε

ix)
2W ε

iαα = 0, (4.12)

if we choose αε
i to satisfy

αε
it + λ̃iα

ε
ix − εαε

ixx = 0. (4.13)

We impose the following initial conditions

t = 0 : αε
i = x, W ε

i = Ri(u0ε(x)). (4.14)

Let Θε
i = αε

ix, then,

Θε
it + (λ̃iΘ

ε
i )x − εΘε

ixx = 0, (4.15)

Θε
i (0, x) = 1. (4.16)

By Maximum principle, Θε
i > 0, which implies αε(t, x) is an increasing function of x. It also

follows from (4.12) that

|∂αW ε
i (t, α)|Lp(R) ≤ |∂xRi(u0ε(x))|Lp(R) . M. (4.17)

We start the proof of Theorem 1.1 with the parabolic estimate. By (4.1)–(4.2), we get

u(t, x) = E(t, x) ∗ Jε ∗ u0 −
∫ T

0

E(t− τ, x) ∗ (A(u)ux)(τ)dτ, (4.18)

where

E(t, x) =
1√
2πεt

exp
(
− x2

4εt

)
(4.19)

is the heat kernel. We take δ = δ(D) to be a constant depending only on D and δ ≪ D. We

consider first the equation on the time interval t ∈ [0, εδ], by (4.18), we have

ux(t, x) = ε−1E(t, x) ∗ J ′
ε ∗ u0 −

∫ T

0

Ex(t− τ, x) ∗ (A(u)ux)(τ)dτ. (4.20)

Therefore, we get

|ux(t)|L∞(R) . ε−1|u0|L∞(R) +

∫ T

0

1√
ε(t− τ)

|ux(τ)|L∞(R)dτ. (4.21)
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Thus, we have

sup
0≤t≤εδ

|ux(t)|L∞(R) . ε−1 +
√
δ sup
0≤t≤εδ

|ux(t)|L∞(R), (4.22)

which implies

sup
0≤t≤εδ

|ux(t)|L∞(R) . ε−1, (4.23)

provided that δ is taken to be small enough. Now, let t ≥ εδ, we consider the equation on the

time interval s ∈ [t− εδ, t], we have

u(s, x) = E(s− (t− εδ), x) ∗ u(t− ε)−
∫ s

t−εδ

E(s− τ, x) ∗ (A(u)ux)(τ)dτ, (4.24)

and thus,

ux(s, x) = Ex(s− (t− εδ), x) ∗ u(t− εδ)−
∫ s

t−εδ

Ex(s− τ, x) ∗ (A(u)ux)(τ)dτ. (4.25)

Therefore, we get

|ux(s)|L∞(R) .
1√

ε(s− t+ εδ)
|u(t− εδ)|L∞ +

∫ s

t−εδ

1√
ε(s− τ)

|ux(τ)|L∞(R)dτ. (4.26)

Thus, we have
√
s− t+ εδ|ux(s)|L∞(R)

. ε−
1
2 + ε−

1
2

√
s− t+ εδ sup

t−εδ≤s≤t

(
√
s− t+ εδ|ux(s)|L∞(R)), (4.27)

which implies

sup
t−εδ≤s≤t

(
√
s− t+ εδ|ux(s)|L∞(R)) . ε−

1
2 (4.28)

provided that δ is taken to be sufficiently small. Take s = t, we get

|ux(t)|L∞(R) . ε−1, ∀ t ≥ εδ. (4.29)

By (4.23) and (4.29), we finally arrive at

|ux(t)|L∞(R) . ε−1, ∀ t ≥ 0. (4.30)

It follows then |λ̃i| ≤ C3 for some constant C3 depending only on D. Thus, by maximum

principle

x− C3t ≤ αε
i (t, x) ≤ x+ C3t (4.31)

because the left-hand side is a subsolution and the right-hand side is a supsolution. Thus,

there exists a subsequence such that αε
i (t, x) converges to some αi(t, x) all most everywhere.

By (4.17), there exists a further subsequence such that W ε
i weakly converges to some Wi(t, α)

in Ẇ 1,p, by Sobolev embedding Theorem, W ε
i strongly converges to Wi(t, α) in Hölder space.

Therefore, taking limit in

uε(t, x) = U(W ε
1 (t, α

ε
1(t, x)),W

ε
2 (t, α

ε
2(t, x))), (4.32)

we conclude the proof of Theorem 1.1.
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