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Abstract

A unicity theorem concerning the total derivative for entire functions of several
complex variables is proved.
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§ 1 . Introduction

Let f and g be two nonconstant entire functions on Cn, a ∈ C. If f −a and g−a have
same zeros counting multiplicities, we denote it by f = a ⇔ g = a. In [8] H. X. Yi proved
the following theorem.

Theorem A. Let f and g be two nonconstant entire functions on the complex plane,
and let k be a positive integer. If f = 0 ⇔ g = 0, f (k) = 1 ⇔ g(k) = 1, and δ(0, f) > 1/2,
then f (k) · g(k) ≡ 1 unless f ≡ g.

He also indicated that the assumption “δ(0, f) > 1/2” is the best possible.
In this paper, we try to generalize this kind of theorem to the entire function of several

complex variables. First we introduce the definition of total derivative.

Definition 1.1. Let f be an entire function on Cn, the total derivative Df of f is
defined by

Df(z) =
n∑

j=1

zjfzj (z),

where z = (z1, z2, · · · , zn) ∈ Cn, fzj is the partial derivative of f with respect to zj (j =
1, 2, · · · , n). The k-th order total derivative Dkf of f is defined inductively by

Dkf = D(Dk−1f), k = 2, 3, · · · .

In [2] and [3] we proved: If f is a transcendental entire function on Cn, then for any
positive integer k, Dkf is also a transcendental entire function on Cn. However the partial
derivative may not have this property. The total derivative has also an interesting property
that it does not change under the coordinate transformation (It is easy to be verified). The
main result in this paper is the following

Theorem 1.1. Let f and g be two nonconstant entire functions on Cn, and let k be
a positive integer. If f = 0 ⇔ g = 0, Dkf = 1 ⇔ Dkg = 1, and δ(0, f) > 1/2, then f ≡ g.
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§ 2 . Notations and Lemmas

For z = (z1, · · · , zn) ∈ Cn, define |z| = (|z1|2 + · · ·+ |zn|2)1/2. Let

Sn(r) = {z ∈ Cn; |z| = r}, Bn(r) = {z ∈ Cn; |z| ≤ r}.

Set d = ∂ + ∂̄ and dc = (∂ − ∂̄)/4πi. We define

ωn(z) = ddc log |z|2, σn(z) = dc log |z|2 ∧ ωn−1
n (z), νn(z) = ddc|z|2.

Then σn(z) is a positive measure on Sn(r) with the total measure one. Let a ∈ P1. If
f−1(a) 6= Cn, we denote by Zf

a the a-divisor of f , write Zf
a (r) = Bn(r) ∩ Zf

a and define

nf (r, a) = r2−2n

∫

Zf
a (r)

νn−1
n (z).

Then the counting function Nf (r, a) is defined by

Nf (r, a) =
∫ r

0

[nf (t, a)− nf (0, a)]
dt

t
+ nf (0, a) log r,

where nf (0, a) is the Lelong number of Zf
a at the origin. Then Jensen’s formula gives that

Nf (r, 0)−Nf (r,∞) =
∫

Sn(r)

log |f(z)|σn(z) + O(1).

We define the proximity function mf (r, a) by

mf (r, a) =





∫

Sn(r)

log+ 1
|f(z)− a|σn(z), if a 6= ∞;

∫

Sn(r)

log+ |f(z)|σn(z), if a = ∞.

We also define the characteristic function Tf (r) by

Tf (r) = mf (r,∞) + Nf (r,∞).

The first main theorem states that (cf. [4, Chapter 4, A5.1])

Tf (r) = mf (r, a) + Nf (r, a) + O(1).

Define

δ(a, f) = lim inf
r→∞

mf (r, a)
Tf (r)

= 1− lim sup
r→∞

Nf (r, a)
Tf (r)

.

We say f to be transcendental if

lim
r→∞

Tf (r)
log r

= ∞.

It is well known that an entire function f is not transcendental if and only if it is a
polynomial (cf. [5]).

In this paper, E is always viewed as a set with finite Lebesgue measure in [0,∞),
although it may vary in each appearance.
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Lemma 2.1. (cf. [2] and [3, Lemma 2.2]) Let f be a transcendental entire function on
Cn. Then for any positive integer k, Dkf is also a transcendental entire function on Cn,
and

mDkf/f (r,∞) = O(log rTf (r)), r∈̄E.

Lemma 2.2. (cf. [2, Theorem 3.1]) Let f be a transcendental entire function on Cn.
Then for any positive integer k,

Tf (r) ≤ Nf (r, 0) + NDkf (r, 1)−NDk+1f (r, 0) + O(log rTf (r)), r∈̄E.

Lemma 2.3. Let f be a transcendental entire function on Cn. Then for any positive
integer k,

NDkf (r, 0) ≤ TDkf (r)− Tf (r) + Nf (r, 0) + O(log rTf (r)), r∈̄E.

Proof. Since
1
f

=
1

Dkf
· Dkf

f
,

we have
mf (r, 0) ≤ mDkf (r, 0) + mDkf/f (r,∞). (2.1)

Therefore, from Lemma 2.1 and the first main theorem we have

Tf (r)−Nf (r, 0) = mf (r, 0) + O(1) ≤ mDkf (r, 0) + O(log rTf (r))

= TDkf (r)−NDkf (r, 0) + O(log rTf (r)), r∈̄E.

Hence
NDkf (r, 0) ≤ TDkf (r)− Tf (r) + Nf (r, 0) + O(log rTf (r)), r∈̄E.

Lemma 2.4. Let f be a transcendental entire function on Cn. Then for any positive
integer k,

TDkf (r) ≤ Tf (r) + O(log rTf (r)), r∈̄E, (2.2)

NDkf (r, 0) ≤ Nf (r, 0) + O(log rTf (r)), r∈̄E. (2.3)

Proof. From Lemma 2.1 we have

TDkf (r) = mDkf (r,∞) ≤ mf (r,∞) + mDkf/f (r,∞) = Tf (r) + O(log rTf (r)), r∈̄E,

which deduces (2.2). Hence

TDkf (r)− Tf (r) ≤ O(log rTf (r)), r∈̄E.

From Lemma 2.3 and the above inequality we get (2.3).

Lemma 2.5. Let f and g be two transcendental entire functions on Cn. If f = 0 ⇔
g = 0 and Dkf = 1 ⇔ Dkg = 1, then

Tg(r) = O(Tf (r)), r∈̄E.
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Proof. From Lemma 2.2 we have

Tg(r) ≤ Ng(r, 0) + NDkg(r, 1) + O(log rTg(r)), r∈̄E.

Since Ng(r, 0) = Nf (r, 0) and NDkg(r, 1) = NDkf (r, 1), from the above inequality and (2.2)
we have

(1 + o(1))Tg(r) ≤ Ng(r, 0) + NDkg(r, 1),

= Nf (r, 0) + NDkf (r, 1) ≤ Tf (r) + TDkf (r) + O(1)

≤ 2Tf (r) + O(log rTf (r)) = (2 + o(1))Tf (r), r∈̄E.

Hence
Tg(r) = O(Tf (r)), r∈̄E.

Lemma 2.6. Let f and g be two nonconstant entire functions on Cn. If f = 0 ⇔ g = 0
and Dkf = 1 ⇔ Dkg = 1, then f is transcendental if and only if g is transcendental.

Proof. Suppose that f is transcendental. If g were not transcendental, then it is a
polynomial, hence Dkg is also a polynomial. Therefore Tg(r) = O(log r) and TDkg(r) =
O(log r).

Since Nf (r, 0) = Ng(r, 0) and NDkf (r, 1) = NDkg(r, 1), from Lemma 2.2 we have

Tf (r) ≤ Nf (r, 0) + NDkf (r, 1) + O(log rTf (r))

= Ng(r, 0) + NDkg(r, 1) + O(log rTf (r))

≤ Tg(r) + TDkg(r) + O(log rTf (r)) = O(log rTf (r)), r∈̄E,

which gives a contradiction. Hence g is transcendental.
In the same way we can prove that if g is transcendental, then f is transcendental.

Lemma 2.7. Let f1, f2, f3 be linearly independent entire functions on Cn. If f1 +f2 +
f3 ≡ 1, then

T (r) ≤
3∑

j=1

Nfj (r, 0) + O(log rT (r)), r∈̄E,

where T (r) = max
1≤j≤3

Tfj (r).

Proof. Define a holomorphic map f : Cn → P 2(C) by

f(z) = [f1(z), f2(z), f3(z)].

As usual, we define the characteristic function of f by

T (r, f) =
∫

Sn(r)

log ‖f(z)‖σn(z) + log ‖f(0)‖.

Let H = {[z1, z2, z3] ∈ P 2(C) | a1z1 + a2z2 + a3z3 = 0} be a hyperplane in P 2(C). We
denote by Nf (r,H) the counting function of the divisor defined by a1z1 + a2z2 + a3z3 = 0.

Set

Hj = {[z1, z2, z3] ∈ P 2(C) | zj = 0}, j = 1, 2, 3,

H4 = {[z1, z2, z3] ∈ P 2(C) | z1 + z2 + z3 = 0}.
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Since f1, f2, f3 are linear independent, then map f is non-degenerate. Obviously,
Hj (j = 1, 2, 3, 4) are in general position, hence by the second main theorem (cf. [7, Theorem
2]) we have

T (r, f) ≤
4∑

j=1

Nf (r,Hj) + O(log rT (r, f)). (2.4)

Since f1 + f2 + f3 = 1 and ‖f‖ ≥ |fj | (j = 1, 2, 3), we have |f1| + |f2| + |f3| ≥ 1, and
3‖f‖ ≥ |f1|+ |f2|+ |f3| ≥ 1. Therefore

Tfj
(r) = mfj

(r,∞) =
∫

Sn(r)

log+ |fj(z)|σn(z)

≤
∫

Sn(r)

log 3‖f(z)‖σn(z)

=
∫

Sn(r)

log ‖f(z)‖σn(z) + log 3 = T (r, f) + O(1), j = 1, 2, 3.

Then we deduce that
T (r) ≤ T (r, f) + O(1), (2.5)

where T (r) = max
1≤j≤3

Tfj (r).

By the definition of characteristic function, it is easy to see that

T (r, f) ≤ O(T (r)). (2.6)

Since f1 + f2 + f3 = 1, we have Nf (r,H4) = 0. Obviously, Nf (r,Hj) = Nfj (r, 0) (j =
1, 2, 3). Hence from (2.4), (2.5) and (2.6) we deduce the conclusion.

Lemma 2.8. Let f1, f2, f3 be three entire functions on Cn, and let at least one of
fj (j = 1, 2, 3) be transcendental. If f1 + f2 + f3 ≡ 1, and

3∑

j=1

Nfj (r, 0) ≤ (λ + o(1))T (r), r∈̄E,

where T (r) = max
1≤j≤3

Tfj (r) and the constant λ < 1, then f1, f2, f3 are linearly dependent.

Proof. Since at least one of fj (j = 1, 2, 3) is transcendental, we have

lim
r→∞

T (r)
log r

= ∞.

Assume that f1, f2, f3 were linearly independent. Then from Lemma 2.7 and the as-
sumption we have

T (r) ≤
3∑

j=1

Nfj (r, 0) + O(log rT (r)) ≤ (λ + o(1))T (r), r∈̄E,

which gives a contradiction.

Lemma 2.9. Let f and g be two entire functions on Cn, and let k be a positive integer.
(1) If Dkf is constant, then f is constant and Dkf ≡ 0;
(2) If Dkf ≡ Dkg, then f ≡ g + c, where c is a constant.
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Proof. (1) Since f is an entire function on Cn, we have a convergent series on Cn as
follows:

f(z) =
∞∑

m=0

Pm(z),

where Pm(z) is either identically zero or a homogeneous polynomial of degree m in z (m =
0, 1, 2, · · · ). By the homogeneity of Pm(z) we have

n∑

j=1

zjP
m
zj

(z) = mPm(z), m = 1, 2, · · · .

Hence we see that

Df(z) =
n∑

j=1

zjfzj
(z) =

∞∑
m=1

mPm(z).

By induction, we have

Dkf(z) =
∞∑

m=1

mkPm(z).

If Dkf is constant, every mkPm(z) must be identically zero, so is Pm(z) (m = 1, 2, · · · ).
Thus f is constant and Dkf ≡ 0.

(2) In the same way as (1), we have

g(z) =
∞∑

m=0

P̃m(z),

where P̃m(z) is either identically zero or a homogeneous polynomial of degree m in z (m =
0, 1, 2, · · · ), and

Dkg(z) =
∞∑

m=1

mkP̃m(z).

Since Dkf ≡ Dkg, we have

∞∑
m=1

mk(Pm(z)− P̃m(z)) ≡ 0.

Since Pm(z)− P̃m(z) is either identically zero or a homogeneous polynomial of degree m in
z (m = 1, 2, · · · ), then Pm(z)− P̃m(z) ≡ 0 (m = 1, 2, · · · ). Therefore

f ≡ g + c.

Lemma 2.10. Let f1, f2 be two nonconstant entire functions on Cn, and let c1, c2, c3

be three nonzero constants. If c1f1 + c2f2 = c3, then

T (r) ≤ Nf1(r, 0) + Nf2(r, 0) + O(log rT (r)), r∈̄E,

where T (r) = max{Tf1(r), Tf2(r)}.
Proof. By the second main theorem for the holomorphic functions, we have

Tf1(r) ≤ Nf1(r, 0) + Nf1(r, c3/c1) + O(log rTf1(r)), r∈̄E.
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Noticing that Nf1(r, c3/c1) = Nf2(r, 0), we have

Tf1(r) ≤ Nf1(r, 0) + Nf2(r, 0) + O(log rT (r)), r∈̄E.

Similarly, we have

Tf2(r) ≤ Nf1(r, 0) + Nf2(r, 0) + O(log rT (r)), r∈̄E.

Hence we get the conclusion.

§ 3 . Proof of Theorem 1.1

First we consider the polynomial case.

Lemma 3.1. Let f and g be two nonconstant entire functions on Cn, and let k be a
positive integer. If f = 0 ⇔ g = 0, Dkf = 1 ⇔ Dkg = 1, and f is a polynomial, then f ≡ g.

Proof. Since f is a polynomial, from Lemma 2.6 g is also a polynomial. Set

h =
Dkf − 1
Dkg − 1

,

hence
Dkf − 1 = h(Dkg − 1).

Then h is a nowhere zero entire function. Since Dkf − 1 and Dkg − 1 are polynomials, we
have that h is a nowhere zero polynomial, hence h is a constant.

Notice that Dkf(0) = Dkg(0) = 0, hence h ≡ 1, therefore Dkf ≡ Dkg. From Lemma
2.9 we have f ≡ g+c. Notice that f and g are nonconstant polynomials, from f = 0 ⇔ g = 0
we deduce f ≡ g.

Lemma 3.2. Assume that the conditions of Theorem 1.1 are satisfied, and f is a
transcendental entire function on Cn. Then

Tf (r) = O(TDkf (r)), r∈̄E.

Proof. By the first main theorem, Lemma 2.1 and (2.2) we have

mf (r, 0) ≤ mDkf (r, 0) + O(log rTf (r)) ≤ TDkf (r) + o(Tf (r)), r∈̄E.

Since δ(a, f) = lim inf
r→∞

mf (r,a)
Tf (r) > 1/2, when r is large enough we have mf (r, a) ≥ 1

2Tf (r).
Hence from above inequality we have

1
2
Tf (r) ≤ TDkf (r) + o(Tf (r)), r∈̄E.

Thus
Tf (r) = O(TDkf (r)), r∈̄E.

Proof of Theorem 1.1. From Lemma 3.1 we need only to prove the case when f is
transcendental.

Let f be a transcendental entire function. Then from the assumption and Lemma 2.6,
g is also a transcendental entire function. Set

h =
Dkf − 1
Dkg − 1

, (3.1)
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hence
Dkf − 1 = h(Dkg − 1).

Then h is a nowhere zero entire function. Let f1 = Dkf, f2 = h, f3 = −hDkg. Then

f1 + f2 + f3 = 1, (3.2)

and
3∑

j=1

Nfj
(r, 0) = NDkf (r, 0) + NDkg(r, 0). (3.3)

From Lemma 2.3 we have

NDkf (r, 0) ≤ TDkf (r)− Tf (r) + Nf (r, 0) + O(log rTf (r)), r∈̄E. (3.4)

And from Lemma 2.4 and Lemma 2.5 we have

NDkg(r, 0) ≤ Ng(r, 0) + O(log rTg(r)) ≤ Ng(r, 0) + O(log rTf (r)), r∈̄E. (3.5)

Noticing that Ng(r, 0) = Nf (r, 0), from (3.3)–(3.5) we have

3∑

j=1

Nfj (r, 0) ≤ TDkf (r)− Tf (r) + 2Nf (r, 0) + O(log rTf (r)), r∈̄E. (3.6)

Since δ(0, f) = 1− lim sup
r→∞

Nf (r,0)
Tf (r) , we have Nf (r, 0) ≤ (1− δ(0, f)+ o(1))Tf (r), so that from

(3.6), (2.2) and Lemma 3.2 we deduce that

3∑

j=1

Nfj (r, 0) ≤ TDkf (r)− Tf (r) + [2(1− δ(0, f))]Tf (r) + o(Tf (r))

≤ TDkf (r)− (2δ(0, f)− 1)Tf (r) + o(Tf (r))

≤ TDkf (r)− (2δ(0, f)− 1)TDkf (r) + o(TDkf (r))

= [2(1− δ(0, f)) + o(1)]TDkf (r), r∈̄E.

Since f1 = Dkf , from the above inequality we can derive

3∑

j=1

Nfj (r, 0) ≤ (λ + o(1))T (r), (3.7)

where T (r) = max
1≤j≤3

Tfj (r), and λ = 2(1− δ(0, f)) < 1.

Hence from Lemma 2.8 we know that f1, f2, f3 are linearly dependent, so there exist
three constants, not all zero, such that

c1f1 + c2f2 + c3f3 = 0. (3.8)

From Lemma 2.1 we know that f1 = Dkf is transcendental. From Lemma 2.1 and
Lemma 2.6, we can see that Dkg is transcendental. Now we prove that at least one of f2

and f3 is constant.



A UNICITY THEOREM FOR ENTIRE FUNCTIONS OF SEVERAL COMPLEX VARIABLES 491

Assume that f2 and f3 were not constants. First we prove that c1 6= 0 and c3 6= 0
under this assumption.

If c1 = 0, then c2f2 + c3f3 = 0. If c2 = 0, then f3 = −hDkg ≡ 0, so that Dkg ≡ 0,
which contradicts the fact that Dkg is transcendental. If c3 = 0, then f2 = h ≡ 0, which
contradicts the assumption. Therefore, c2 6= 0, c3 6= 0. In this case

f3 = −c2

c3
f2,

that is,
Dkg =

c2

c3
6= 0.

However, Dkg(0) = 0, we get a contradiction. Hence c1 6= 0.
If c3 = 0, then c1f1 + c2f2 = 0. It is easy to see that c1 6= 0, c2 6= 0. Hence

f1 = −c2

c1
f2,

that is,
Dkf = −c2

c1
h 6= 0.

However, Dkf(0) = 0, we get a contradiction. Hence c3 6= 0.
From (3.2) and (3.8) we have

(
1− c2

c1

)
f2 +

(
1− c3

c1

)
f3 = 1.

Obviously, c2 = c3 = c1 does not hold. If either c2 = c1 or c3 = c1, we can easily derive
that f2 or f3 is constant, which contradicts the assumption. Hence c2 6= c1 and c3 6= c1.
From Lemma 2.10 we have

Tfj (r) ≤ Nf2(r, 0) + Nf3(r, 0) + O(log rT (r)), r∈̄E, j = 2, 3, (3.9)

where T (r) = max
1≤j≤3

Tfj (r).

From (3.2) and (3.8) we have
(
1− c1

c3

)
f1 +

(
1− c1

c3

)
f2 = 1.

Obviously, c1 = c2 = c3 does not hold. If either c1 = c3 or c2 = c3, we can easily derive that
f1 or f2 is constant, which contradicts the assumption. Hence c2 6= c1 and c3 6= c1. From
Lemma 2.10 we have

Tfj (r) ≤ Nf1(r, 0) + Nf2(r, 0) + O(log rT (r)), r∈̄E, j = 1, 2. (3.10)

From (3.9) and (3.10) and (3.7) we have

T (r) ≤
3∑

j=1

Nfj (r, 0) + O(log rT (r)) ≤ (λ + o(1))T (r), r∈̄E, (3.11)

which is a contradiction.
Hence at least one of f2 and f3 is constant. If f3 = −hDkg is a constant, from

Dkg(0) = 0, we have f3 ≡ 0. Since h 6= 0, Dkg ≡ 0. From Lemma 2.9, g is a constant,
which contradicts the fact that g is transcendental.
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Hence f2 = h is a constant. Since Dkf − 1 = h(Dkg − 1) and Dkf(0) = Dkg(0) = 0,
we have h ≡ 1, that is, Dkf ≡ Dkg. From Lemma 2.9 we deduce f ≡ g + c.

If c 6= 0, by the second main theorem we have

Tf (r) ≤ Nf (r, 0) + Nf (r, c) + O(log rT (r))

= Nf (r, 0) + Ng(r, 0) + O(log rT (r))

= 2Nf (r, 0) + O(log rT (r))

≤ 2(1− δ(0, f))Tf (r) + o(Tf (r)), r∈̄E.

Hence 2(1− δ(0, f)) ≥ 1, which contradicts δ(0, f)) > 1/2.
Therefore c = 0, that is, f ≡ g. The proof is completed.
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