
Chin. Ann. Math.
35B(6), 2014, 873–884
DOI: 10.1007/s11401-014-0866-4

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2014

Symplectic Group Actions on Homotopy Elliptic Surfaces∗

Yulai WU1 Ximin LIU1

Abstract In this paper, the authors study the homologically trivial symplectic group
actions on homotopy elliptic surfaces E(n) and get some rigidity results.

Keywords Symplectic action, Homologically trivial, g-Signature theorem, Fixed-
point data

2000 MR Subject Classification 57R57, 57M60, 57R15

1 Introduction

Let X be a compact closed oriented simply connected topological 4-manifold, and G be a
finite group. When studying actions on manifold of a finite group, one can consider an induced
action on some algebraic invariants associated with the manifold, and it is often important and
beneficial. Furthermore, a central problem is to describe the structure of the fixed point set
(fixed point data, early noted in [7]) and the action around it. Various investigations have been
conducted under different conditions and cases such as the certain manifold carries a geometric
structure, or the group may be fundamental like G ≡ Zp for some prime p or other simple cases.
One may also see the recent surveys of [3, 6].

Moreover, a specific question may be concerned with the homological rigidity that whether
an action is trivial if the induced action is trivial on homology. In the case of holomorphic
actions, K3 surfaces provide a classical example that every homologically trivial automorphism
of a K3 surface is trivial (see [2]). There are no locally linear, homologically trivial involutions
on a homotopy K3 surface while a locally linear Zp-action is automatically homologically trivial
on a homotopy K3 surface for p > 23 by the decomposition of the integral Zp-representation
on H2(K3) (see [15, 19]). Peters extended homological rigidity of holomorphic actions to
the elliptic surfaces in [18]. McCooey [16] established homological rigidity for locally linear
topological actions for non-Abelian groups. Edmonds [5] showed that for any prime p > 3,
there exists a locally linear, pseudofree and homologically trivial topological Zp-action.

For symplectic actions, some recent results have been obtained as well. Chen and Kwasik
[4] proved that there are no homologically trivial, symplectic actions of a finite group on the
standard K3 surface (with respect to any symplectic structure), partially extending Peters’
results in [18] to the symplectic category.

Let X = E(n) be the relatively minimal elliptic surface with rational base, where the elliptic
surface E(n) is defined as the n-fold fiber sum of copies of E(1), and E(1) is CP 2 � 9CP 2 being
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equipped with an elliptic fibration. Note that E(n) is spin if and only if n is even. The
elliptic surface E(n) is known to have many exotic smooth structures, where the E(n) with
an exotic smooth structure is also called a homotopy elliptic surface, which is homeomorphic,
but not diffeomorphic, to the standard elliptic surface. It is well-known that there are two
methods to produce exotic smooth structures on E(n): Logarithmic transformations (see [9])
and Fintushel-Stern’s knot surgery construction (see [8]).

In [13–14], Nakamura and the second author studied the locally linear actions on elliptic
surfaces E(n) and proved that there exists a locally linear cyclic group action on E(n) which is
nonsmoothable with respect to infinitely many smooth structures on E(n). In this paper, some
symplectic Zp-actions of prime orders on homotopy elliptic surfaces E(n) are studied. In the
meantime, we investigate the symplectic actions on the homotopy E(4) surfaces, and get some
rigidity result. Our main results are stated as following.

Theorem 1.1 Let G = Zp, and X = E(n) be a homotpy elliptic surface with c21 = 0 and n
is even.

(1) For p = 3, there is no homologically trivial, pseudofree, symplectic G-action on X.
(2) For p = 5, if X admits a symplectic, nontrivial, homologically trivial, pseudofree ac-

tion of G. Then the fixed point set of the G-action consists of 4n fixed points, each with
local representation (z1, z2) �→ (μk

5z1, μ
2k
5 z2) and 8n fixed points, each with local representation

(z1, z2) �→ (μ−k
5 z1, μ

4k
5 z2) for some k �= 0 mod 5.

Theorem 1.2 Let X be the symplectic 4-manifold (E(4), ω) with c21 = 0 and c1(K)·[ω] < 16,
where ω defines an integral class [ω] ∈ H2(X ; R). Then there are no nontrivial homologically
trivial actions of a finite group on X which preserve the symplectic structure ω.

The current paper is organized as follows: In Section 2, we provide some preliminaries and
tools. In Section 3, we initiate basic knowledge of Seiberg-Witten theory from Taubes, and
restate the results of Chen and Kwasik about the structures of the union of finitely many J-
holomorphic curves ∪

i
Ci and the fixed point set F under the symplectic actions. Then we give

the proof of the main results of this paper in Section 4. At last, some calculation results and
the mean contributions to the g-signature theorem are introduced in Section 5 as an appendix.

2 Preliminaries and Tools

In this section, we collect some results about Lefschetz fixed point theorem and g-signature
theorem which we will use as the main tools (see [1, 10–11]).

Let X be a closed, oriented smooth 4-manifold, and let cyclic group G ≡ Zp of prime
order act on X effectively via orientation-preserving diffeomorphisms. Then the fixed point
set F = XG, if nonempty, will consists of isolated points and surfaces. If a generator g of G
is fixed, each fixed point m ∈ F is associated with a nonzero integers pair (am, bm), where
−p < am, bm < p, and they are uniquely determined up to a change of order or a change
of sign simultaneously, such that the induced g-action on the tangent space at m is given by
the complex linear transformation (z1, z2) �→ (μam

p z1, μ
bm
p z2), where μp = exp

(
2πi
p

)
. For each

connected surface Y ⊂ F , the action of g on the normal bundle of Y in X is given by z �→ μcY
p z

for an integer cY with 0 < cY < p, which is uniquely determined up to a sign modulo p. The
following is the Lefschetz fixed point theorem.

Theorem 2.1 (Lefschetz Fixed Point Theorem) Let T : X → X generate an action of Zp
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on X, a closed, simply-connected 4-manifold. Then L(T,X) = χ(F ), where χ(F ) is the Euler
characteristic of the fixed point set F and L(T,X) is the Lefschetz number of the map T , which
is defined by

L(T,X) =
4∑

k=0

(−1)ktr(g)|Hk(X;R).

Theorem 2.2 (G-signature Theorem) Setting

σ(g,X) = tr(g)|H2,+(X;R) − tr(g)|H2,−(X;R),

then

σ(g,X) =
∑
m∈F

− cot
(amπ

p

)
· cot

(bmπ
p

)
+

∑
Y ⊂F

csc2
(cY π

p

)
· (Y · Y ),

where Y · Y denotes the self-intersection number of Y.

The weaker version of the G-signature theorem is used more often since the convenient for
calculation.

Theorem 2.3 (G-signature Theorem-the Weaker Version)

|G| · σ(X/G) = σ(X) +
∑
m∈F

defm +
∑
Y ⊂F

defY ,

where the terms defm and defY are called signature defects. They are given by the following
formulae:

defm =
p−1∑
k=1

(1 + μk
p)(1 + μkq

p )

(1 − μk
p)(1 − μkq

p )
,

if the local representation of G at m is given by (z1, z2) �→ (μk
pz1, μ

kq
p z2), and

defY =
p2 − 1

3
· (Y · Y ).

3 Symplectic Zp-Actions on 4-Manifolds with c2
1 = 0

In this section, we restate the results by Chen and Kwasik [4] in a clear way to lay a
foundation of the proof to main results of this paper. We shall briefly initiate with the G-
equivariant Seigberg-Witten-Taubes theory, for more details one may see [20–21].

Let X be a 4-manifold equipped a symplectic structure ω with a G ≡ Zp action via sym-
plectomorphisms on it. If X is minimal with c21 = 0 and b+2 ≥ 2, and the induced action
on H2(M ; Q) is trivial, then, according to Taubes’ results in [20–21], for any G-equivariant
ω-compatible almost structure J , there exists a solution (A,ψ) to the G-equivariant Seiberg-
Witten equations

DAψ = 0, P+FA =
1
4
τ(ψ ⊗ ψ∗) + μ, (3.1)

with perturbation term μ = − i
4rω + P+FA0 for any r > 0. Here A is a G-equivariant U(1)-

connection and ψ ∈ Γ(S+) is a G-equivariant smooth section of S+. S+ and S− are associated
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U(2) vector G-bundles. DA : Γ(S+) → Γ(S−) is the Dirac operator. P+ is the orthogonal
projection.

Denoting ψ =
√
r(α, β) ∈ Γ(K ⊕ C), the zero locus α−1(0), if nonempty, will pointwise

converge to a union of finitely many J-holomorphic curves with multiplicity representing the
Poincare dual of c1(K) as r → +∞. We denote the union of the J-holomorphic curves as ∪

i
Ci

for finitely many i, and categorize the components {Λα} of ∪
i
Ci as the following three types.

(A) {Λα} is either an embedded torus, or a nodal sphere, or a cusp sphere, all with self-
intersection 0.

(B) {Λα} is a union of two embedded (−2)-spheres intersecting at a single point with
tangency of order 2.

(C) {Λα} is a union of embedded (−2)-spheres intersecting transversely.
If each sphere Ci ⊂ Λα corresponds to a vertex vi and each intersection point of Ci ∩ Cj

corresponds to an edge connecting vi and vj , then the union of intersecting spheres can be
represented by a graph. Moreover, we can associate a positive semi-definite matrix Qα = (qij),
where qij = 1 for i = j, qij = − 1

2 for i �= j and Ci ·Cj �= 0 and qij = 0 for i �= j and Ci ·Cj = 0,
noting that we assume c21 = 0 in the main theorem implies that the annihilator exists for Lemma
2.10 in [2]. By Lemma 2.12 (ii) of [2], the graph must be one of the figures (with weights) listed
as follows.
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The cases about the structures of ∪
i
Ci and the fixed point set F are as follows:

(1) Isolated fixed points not contained in ∪
i
Ci, with local representations

(z1, z2) �→ (μk
pz1, μ

−k
p z2)

for some k �= 0 mod p, i.e., with local representations contained in SL2(C).
(2) The connected components Λα of ∪

i
Ci may include:

(I) A torus with self-intersection 0, if not entirely fixed by G, contributing four isolated fixed
points all with same local representation (z1, z2) �→ (μk

pz1, μ
−k
p z2) for some k �= 0 mod p when

p = 2, or three isolated fixed points all with same local representation (z1, z2) �→ (μk
pz1, μ

k
pz2)

or (z1, z2) �→ (μk
pz1, μ

2k
p z2) for some k �= 0 mod p when p = 3, to XG.

(II) A cusp sphere with self-intersection 0, contributing two isolated fixed points to XG

only when p ≥ 5, one of which is the cusp singularity with local representation (z1, z2) �→
(μ2k

p z1, μ
3k
p z2) for some k �= 0 mod p, while the other with local representation (z1, z2) �→

(μ−k
p z1, μ

6k
p z2) for some k �= 0 mod p.

(III) A nodal sphere with self-intersection 0, contributing one fixed point as the double point
with local representation (z1, z2) �→ (μk

pz1, μ
−k
p z2) for some k �= 0 mod p.

(IV) Two (−2)-spheres intersecting at a point with order 2, contributing the intersection
point to XG with local representation (z1, z2) �→ (μ−k

p z1, μ
−2k
p z2) for some k �= 0 mod p if p = 3,

or (z1, z2) �→ (μ−k
p z1, μ

4k
p z2) for some k �= 0 mod p if p > 3.

(V) A union of embedded (−2)-spheres intersecting transversely with each other.
(i) Λα contains a 2-dimensional component of F , with n = 4 mod p if Λα is represented by

a type D̃n graph and n = −1 mod p if Λα is represented by a type Ãn graph.
(ii) Λα is of type Ãn and the intersection of each pair of spheres is an isolated fixed point,

with rotation numbers (1, p− 1) associated to either sphere.
(iii) Λα is of type Ã2, where the three spheres intersect at a single point; there are four

isolated fixed points, one occurs at the intersection point and each of the other three is contained
in each one of the three spheres, with the rotation numbers associated to each sphere being
(1, 1) at the intersection point and (1, |p− 3|) at each of the other three fixed points. This case
occurs only if p �= 3.

(iv) Λα is of type Ã1 which contains four isolated fixed points. The rotation number at each
fixed point is (1, 1), and this case occurs only if p = 2.

The structure of the fixed point set for a symplectic cyclic action of prime order on a minimal
symplectic 4-manifold X with c21 = 0 and b+2 ≥ 2, which induces a trival action on H2(X ; Q),
was described by Chen and Kwasik in [4]. We invoke the result for the case of pseudofree
actions below.

Theorem 3.1 (see [4]) Let X be a minimal symplectic 4-manifold with c21 = 0 and b+2 ≥ 2,
which admits a nontrival, pseudofree action of G = Zp, where p is a prime, such that the
symplectic structure is preserved under the action and the induced action on H2(X ; Q) is trivial.
Then the set of fixed points of G can be divided into groups, each of which belongs to the following
five possible types:

(1) One fixed point with local representation (z1, z2) �→ (μk
pz1, μ

−k
p z2) for some k �= 0 mod p,

i.e., with representation contained in SL2(C).
(2) Two fixed points with local representation

(z1, z2) �→ (μ2k
p z1, μ

3k
p z2), (z1, z2) �→ (μ−k

p z1, μ
6k
p z2)
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for some k �= 0 mod p, respectively. This type of fixed points occurs only when p > 5.
(3) Three fixed points, one with local representation (z1, z2) �→ (μk

pz1, μ
2k
p z2) and the other

two with local representation (z1, z2) �→ (μ−k
p z1, μ

4k
p z2) for some k �= 0 mod p. This type of

fixed points occurs only when p > 3.
(4) Four fixed points, one with local representation (z1, z2) �→ (μk

pz1, μ
k
pz2) and the other

three with local representation (z1, z2) �→ (μ−k
p z1, μ

3k
p z2) for some k �= 0 mod p. This type of

fixed points occurs only when p > 3.
(5) Three fixed points, each with local representation (z1, z2) �→ (μk

pz1, μ
k
pz2) for some k �=

0 mod p. This type of fixed points occurs only when p = 3.

The rigidity for the corresponding homologically trivial actions is as follows, and it shows
that symplectic symmetries are more restrictive than topological ones.

Theorem 3.2 (see [4]) Let X be a minimal symplectic 4-manifold with c21 = 0 and b+2 ≥ 2,
which admits a homologically trivial (over Q coefficients), pseudofree, symplectic Zp-action for
a prime p. Then the following conclusions hold:

(a) The action is trivial if p �= 1 mod 4, p �= 1 mod 6, and the signature of X is nonzero,
then for infinitely many primes p the manifold X does not admit any such nontrivial Zp-actions.

(b) The action is trivial as long as there exists a fixed point of type (1) in Theorem 3.1.

4 Proofs of the Main Results

Proof of Theorem 1.1 (1) First consider the Z3-case. The fixed points of a pseudofree
Z3-action on X can be divided into two types by considering their local representation:

The type (+): (1,2) or (2,1).
The type (−): (1,1) or (2,2).
Let k+, k− be the numbers of the fixed points of the type(+), type(−) in the fixed point

set separately. Let m and n be one fixed point of type (1,1) and (1,2), respectively. Then
defm = − 1

3 , defn = 1
3 . The formula in Theorem 2.3 is rewritten as

2 · σ(X) =
2
3
(k+ − k−).

Together with the Lefschetz fixed point theorem, we have the following inequality:

3|σ(X)| ≤ χ(F ) = χ(X) = 2 + b2(X),

or

|σ(X)| ≤ (b2(X) + 2)
3

.

Obviously, the elliptic surfaces do not satisfy that.
(2) By the assumption that the G-action on X = E(n) is pseudofree and with the G-

signature theorem, we have

|G| · σ(X/G) = σ(X) +
∑
m∈F

defm,

where G = Z5, and F = XG denotes the fixed point set.
The induced action on H2(X ; Q) is trivial. Then σ(X/G) = σ(X) and the Lefschetz fixed

point theorem leads to χ(F ) = χ(X). The fixed point set may consist of type (1), type (3)
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and type (4) fixed points in Theorem 3.1, actually there are no type (1) fixed points by the
assumption that the action is nontrivial and Theorem 3.2.

Let a3, a4 be the numbers of groups of fixed points of type (3) and type (4), respectively.
Then we have {

− 32n = −8a3 − 4a4,

12n = 3a3 + 4a4.
(4.1)

Here we use the fact that def(3) = −8 and def(4) = −4. The solutions for a3, a4 are a3 = 4n
and a4 = 0. Then the fixed point set consists of 4n groups of type (3) fixed points in Theorem
3.1, and then the theorem follows.

Proof of Theorem 1.2 Suppose that there exists such an action, and without loss of
generality, we may assume the action is periodic with prime order p. We complete the proof in
two parts respectively: (i) When the action is pseudofree, and (ii) when the fixed point set F
contains 2-dimensional components. The tools we use are g-signature theorem and Lefschetz
fixed point formula.

For part (i), by Theorem 3.2, we may assume that there are no fixed points with local
representations contained in SL2(C). Then we exclude the cases when p = 2, since each type
of fixed point datum is (k,−k).

When p = 3, we assume all the fixed points with local representations of type (k, k). With
the contribution

I3,1 = −1
3
(3 − 1)(3 − 2) = −2

3
,

the signature of X is sign(X) = −32 and |F | = χ(X) = 48, a calculation of the weak version of
the g-signature theorem

(p− 1)sign(X) =
∑
m

defm

follows that −64 = −32 which is a contradiction.
When p > 3, the fixed points of (k,−k) type are ruled out as well. From Section 3, we

denote δ2, δ3 and δ4 to be the numbers of Λα as a cusp-sphere component, a union of two
(−2)-spheres, and a union of three spheres, respectively. The action is homologically trivial.
Then |F | = χ(X), and a contradiction is reached by

48 = χ = |F | = 2δ2 + 3δ3 + 4δ4 ≤ 2(δ2 + 2δ3 + 3δ4) ≤ 2c1(K) · [ω] < 32.

For part (ii), the fixed point set F contains a 2-dimensional component, and the g-signature
theorem is equivalent to the following equation:

−32(p− 1) =
∑
m

defm +
∑
Y

defY , (4.2)

where defm = Ip,q determined by corresponding type, and defY = p2−1
3 (Y · Y ). Note that a

toroidal fixed component makes no contribution to the signature defect. We may only con-
sider the cases that Λα contains only embedded (−2)-spheres components when calculating the
defects defY of the g-signature formula.

If p = 2, then each point with local representation contained in SL2(C) makes no contributes,
and every Y contributes

defY =
p2 − 1

3
· (Y · Y ) = −2
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to the g-signature theorem. Then the equation (4.2) follows that −32 = −2δY , where we denote
δY as the number of the fixed (−2)-spheres Y . Thus we reach a contradiction since there exist
at most 5 fixed (−2)-spheres under the restriction c1(K) · [ω] < 16.

If p = 3, then

defY =
p2 − 1

3
· (Y · Y ) = −16

3
for each Y , and there are two types of fixed points with local representations (z1, z2) �→
(μk

P z1, μ
k
pz2) and (z1, z2) �→ (μk

P z1, μ
−k
p z2), contributing − 2

3 and 2
3 , respectively. The restric-

tion c1(K) · [ω] < 16 follows that the number of fixed (−2)-spheres is at most 5. Note that
δm + 2δY = χ(X) = 48. We may reach a contradiction with a calculation to the g-signature
theorem

−64 = −32(p− 1) ≥ δm ·
(
− 2

3

)
+ δY ·

(
− 16

3

)
≥ 48 ·

(
− 2

3

)
+ 5 ·

(
− 16

3

)
= −176

3
.

If p = 5, then

defY =
p2 − 1

3
· (Y · Y ) = −16

and
I5,−1 = 4, I5,1 = −4, I5,2 = I5,3 = 0.

We denote δΓα to be the number of Γα components, where Γα stands for the corresponding type
of components as Ã4, Ã9, Ã14, D̃4 and Ẽ6 components. We also denote δ4 as the number of Ã2

components that three spheres intersecting at a single point, δ3 as the number of components
with type(B), t as the number of the fixed tori, and δ1 as the number of isolated fixed points
with representations contained in SL2(C). Then the restriction and the Lefschetz fixed point
theorem follow that

5δÃ4
+ 10δÃ9

+ 15δÃ14
+ 6δD̃4

+ 12δẼ6
+ 3δ4 + 2δ3 + t ≤ c1(K) · [ω] < 16,

5δÃ4
+ 10δÃ9

+ 15δÃ14
+ 6δD̃4

+ 8δẼ6
+ 4δ4 + 3δ3 + 2t+ δ1 = χ(X) = 48.

Some results may follow from the two formulae above that 0 ≤ δY ≤ 3,

δ1 = 48 −
∑

(n+ 1)δÃn
− 6δD̃4

− 8δẼ6
− 2t− 4δ4 − 3δ3 − 2δ2

≥ 48 − 2
(∑

(n+ 1)δÃn
+ 6δD̃4

+ 12δẼ6
+ t+ 3δ4 + 2δ3 + δ2

)
≥ 48 − 2 · 15 = 18,

and the number of other isolated points in ∪
i
Ci satisfying

δm′ = χ(M) − δ1 − 2δY ≤ 48 − 18 − 2 · 0 = 30.

Note that defm′ ≥ min{I5,q | q = 1, 2, 3} = −4. We may easily obtain the inequality

−128 = (p− 1) · sign(X) =
∑
m

defm +
∑
Y

defY

= δ1 · I5,−1 +
∑
m′

defm′ + δY · defY

≥ 18 · 4 + 30 · (−4) + 3 · (−16) = −96,
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which is a contradiction.
If p ≥ 7, there are no types more than Ãn (n = −1 mod p), D̃4, Ẽ6. We may introduce

a mean contribution of each type to the defect of g-signature theorem (see Section 5) to carry
through the proof. If we set defΓα

weightΓα

as the mean contribution for each type of Γα, then we
claim that

defΓα

weightΓα

≥ −1
3
(p− 1)p (4.3)

for each type of Ãn, D̃4, Ẽ6 with fixed 2-dimensional components (for explicit fixed point datum
of certain types, one may see [17]). Note that

def(k) ≥ −2k
3

(p− 1) (4.4)

for k = 2, 3, 4, where def(k) denotes the corresponding defect of the cusp sphere type, type
(B) with two spheres intersecting at a point of order 2, and the Ã2 type with three spheres
intersecting at a single point, respectively. The Lefschetz fixed point theorem and the restriction
c1(K) · ω < 16 follow that

6δD̃4
+

∑
n=−1mod p

(n+ 1)δÃn
+ 12δẼ6

+ 3δ4 + 2δ3 + (t+ δ2) ≤ c1(K) · [ω] < 16,

6δD̃4
+

∑
n=−1 mod p

(n+ 1)δÃn
+ 8δẼ6

+ 4δ4 + 3δ3 + 2(t+ δ2) + δ1 = χ(X) = 48.

Similar results may follow the two formulae above that δ1 ≥ 18,

4∑
k=2

kδk ≤ χ(X) − δ1 ≤ 30,

and
∑
Γα

weighttΓα · δΓα < 16 with Γα taking over all the types of Ãn, D̃4 and Ẽ6. Substituting

equations (4.3)–(4.4) into the g-signature theorem, we may reach a contradiction as follows
obviously:

−32(p− 1) = def(1)δ1 +
4∑

k=2

def(k)δk +
∑
Γα

defΓαδΓα +
∑
torus

deftorus · t

= def(1)δ1 +
4∑

k=2

def(k)

k
· kδk +

∑
Γα

defΓα

weightΓα

· δΓαweightΓα

≥ 1
3
(p− 1)(p− 2) · δ1 +

(
− 2

3
(p− 1)

) 4∑
k=2

kδk +
(
− 1

3
(p− 1)p

)∑
Γα

weightΓα
δΓα

≥ 18 · 1
3
(p− 1)(p− 2) + 30 ·

(
− 2

3
(p− 1)

)
+ 15 ·

(
− 1

3
(p− 1)p

)
= (p− 32)(p− 1)

⇔ p ≤ 0,

and complete the proof of Theorem 1.2.

For more details, we give the specifications of zooming the mean contribution to the g-
signature theorem for each type in Section 5.
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Remark 4.1 In the pseudofree case in part (i), we may replace the restriction to c1(K)·[ω] <
24, and the rigidity property still remains. In fact, if the minimal symplectic manifold is
(E(n), ω) with c21 = 0, b+2 ≥ 2 and c1(K) · [ω] < 6n, we can maintain that there are no
nontrivial homologically trivial pseudofree actions of a finite group on E(n) surface, which
preserve the symplectic structure ω.

Remark 4.2 In fact, for the case that p = 5, we can also reach a contradiction to the
g-signature theorem by resizing the mean contributions in Section 5.

5 Appendix

A calculation of signature defect we use in the g-signature theorem along this paper is
expressed in this section. We follow the notations above that for an isolated fixed point m ∈ F ,
the local representation at m is (z1, z2) �→ (μk

pz1, μ
kq
p z2) for some k �= 0 mod p and q �= 0 mod

p, then the signature defect defm of the g-signature theorem is given by

Ip,q ≡
p−1∑
k=1

(1 + μk
p)(1 + μkq

p )

(1 − μk
p)(1 − μkq

p )
.

It is obvious that Ip,−q = −Ip,q.
Recall the relationship between the defect and the Dedekind sum (see [11]) that Ip,q =

−4p · s(q, p). Some results are collected from the direct computation of the equation

6p · s(q, p) = (p− 1)
(
2pq − q − 3p

2

)
− 6fp(q),

where fp(q) =
p−1∑
k=1

k
[

kq
p

]
(see [4] for more details):

Ip,−1 =
1
3
(p− 1)(p− 2),

Ip,−2 =
1
6
(p− 1)(p− 5),

Ip,−3 =

{
r(r − 3), if p = 3r + 1,
r(r − 1), if p = 3r + 2,

Ip,−6 =

{
2r(r − 6), if p = 6r + 1,
2r2 + 4r + 4, if p = 6r + 5,

Ip,−4 =

⎧⎪⎨⎪⎩
4
3
r(r − 4), if p = 4r + 1,

2
3
(2r2 + 1), if p = 4r + 3,

Ip, p+3
2

=

{
2r(2 − r), if p = 6r + 1,
−2r2 + 4r + 4, if p = 6r + 5.

We take the results in a different statement and with the datum above directly evaluate the
defects of type Ã2, type (B) and the cusp sphere type to the g-signature formula when p ≥ 5,
that obviously summarize (4.4) as follows.
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The type Ã2 component contributes

def(4) = Ip,1 + 3Ip,−3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−8
3
(p− 1), if p = 1 mod 12,

−4
3
(p− 2), if p = 5 mod 12,

−8
3
(p− 1), if p = 7 mod 12,

−4
3
(p− 2), if p = 11 mod 12.

The type (B) component contributes

def(3) = Ip,2 + 2Ip,−4 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2(p− 1), if p = 1 mod 12,
−2(p− 1), if p = 5 mod 12,
2, if p = 7 mod 12,
2, if p = 11 mod 12.

The cusp sphere component contributes

def(2) = Ip, p+3
2

+ Ip,−6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−4
3
(p− 1), if p = 1 mod 12,

4
3
(p+ 1), if p = 5 mod 12,

−4
3
(p− 1), if p = 7 mod 12,

4
3
(p+ 1), if p = 11 mod 12.

Based on the datum above, we formulate the defects of type Ãn, D̃4 and Ẽ6 for p ≥ 5, which
obviously support (4.3).

A D̃4 type contributes a (−2)-sphere and 4 fixed points with the same type (1,−2) to XG.
With weight 6, the mean contribution

defD̃4

weightD̃4

=
1
6
(defY + 4Ip,−2) =

1
6

(p2 − 1
3

· (−2) + 4 · 1
6
(p− 1)(p− 5)

)
= −2

3
(p− 1).

An Ẽ6 type contributes a (−2)-sphere and 6 fixed points to XG, so that the total defects

defẼ6
≥ p2 − 1

3
· (−2) + 6 ·

(
− 1

3
(p− 1)(p− 2)

)
= −2

3
(p− 1)(4p− 5).

With weight 12, we have
defẼ6

weightẼ6

≥ −1
3
(p− 1)

(2p
3

− 5
6

)
.

An Ãn type, where n = −1 mod p, contributes a fixed (−2)-sphere and n− 1 fixed points.
Then

defÃn
≥ −2

3
(p2 − 1) − n− 1

3
(p− 1)(p− 2) = −1

3
(p− 1)((n+ 1)p− 2n+ 4).

With weight n+ 1, we resize the mean contribution of Ãn type as
defÃn

weightÃn

≥ −1
3
(p− 1) · (n+ 1)p− 2n+ 4

n+ 1
= −1

3
(p− 1)

(
p− 2n− 4

n+ 1

)
≥ −1

3
(p− 1)p,

independent of n.
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