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Abstract In this paper, the synchronization for a kind of first order quasilinear hyperbolic

system is taken into account. In this system, all the equations share the same positive wave

speed. To realize the synchronization, a uniform constructive method is adopted, rather

than an iteration process usually used in dealing with nonlinear systems. Furthermore,

similar results on the exact boundary synchronization by groups can be obtained for a

kind of first order quasilinear hyperbolic system of equations with different positive wave

speeds by groups.
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1 Introduction

Synchronization is a widespread natural phenomenon that was first observed by Huygens

[3] in 1665. The theoretical research on synchronization phenomenon in the mathematical

perspective dates back to Wiener [17] in the 1950s. While almost all the previous works focused

on systems described by ODEs, for systems governed by PDEs, the study of synchronization

was initiated by Li and Rao, who proposed the concept of exact boundary synchronization,

the aim of which is to achieve synchronization in a limited time period by means of boundary

controls, such that, after switching off all the controls, the state of synchronization remains.

They considered the exact boundary synchronization for a coupled system of wave equations

with Dirichlet boundary controls in any given space dimensions in the framework of weak

solutions (see [9, 11]), and also acquired related results for the same system with all kinds of

boundary controls in one space dimension in the framework of classical solutions (see [2, 13]).

Moreover, there are some results on the exact boundary synchronization by groups (see [10, 12]).

These results are all restricted to coupled systems of linear wave equations. While, Hu, Li and

Qu [1] derived the local exact boundary synchronization for 1-D coupled system of quasilinear

wave equations with all kinds of boundary controls by an iteration process based on a uniform

constructive method, and the fixed point theory. In this paper, the synchronization for a kind

of first order linear and quasilinear hyperbolic system is taken into account. Noting that all

the equations in the system share the same positive wave speed, we can directly get the local

exact boundary synchronization by a constructive method rather than an iteration process.
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Furthermore, similar results on the exact boundary synchronization by groups can be obtained

for a kind of first order quasilinear hyperbolic system of equations with different positive wave

speeds.

Consider the following 1-D first order quasilinear hyperbolic system:

Ut + a(U)Ux = A(U)U, (1.1)

where U = (u1, · · · , un)
T is an unknown vector function of (t, x), a(U) is a C1 function of U ,

A(U) = (aij(U)) is an n × n C1 matrix of U . Obviously, U = 0 is an equilibrium for system

(1.1).

(1.1) can be also written as

uit + a(U)uix =

n∑

j=1

aij(U)uj , i = 1, · · · , n, (1.2)

which can be regarded as a first order coupled system of quasilinear hyperbolic equations with

the same propagation speed a(U). Assume that on the domain under consideration, we have

a(U) > 0. (1.3)

Boundary controls are added on one end x = 0 as

x = 0 : U = H(t), (1.4)

where

H(t) = (h1(t), · · · , hn(t))
T,

and hi (i = 1, · · · , n) are C1 functions of t.

For the forward mixed initial-boundary value problem (1.1), (1.4) and the initial condition

t = 0 : U = Φ(x), 0 ≤ x ≤ L, (1.5)

where

Φ(x) = (ϕ1(x), · · · , ϕn(x))
T

is a C1 vector function of x, the conditions of C1 compatibility at the point (t, x) = (0, 0) are

ϕi(0) = hi(0), i = 1, · · · , n (1.6)

and
n∑

j=1

aij(Φ(0))ϕj(0)− a(Φ(0))ϕ′
i(0) = ḣi(0), i = 1, · · · , n. (1.7)

Lemma 1.1 Under the assumptions mentioned above, assume that the conditions of C1

compatibility (1.6)–(1.7) at the point (t, x) = (0, 0) are satisfied, and that the forward mixed

initial-boundary value problem (1.1), (1.4) and (1.5) admits a unique global C1 solution U =

U(t, x) on the domain D = {(t, x) | t ≥ 0, 0 ≤ x ≤ L}, which satisfies

‖U‖C1[D] ≤ C(‖Φ‖C1[0,L] + ‖H‖C1[0,+∞)), (1.8)

where C is a positive constant depending only on L, provided that the C1 norms ‖Φ‖C1[0,L] and

‖H‖C1[0,+∞) are small.
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Proof Noting (1.3), by changing the status of t and x, the system (1.1) can be rewritten

as

Ux +
1

a(U)
Ut =

1

a(U)
A(U)U. (1.9)

Correspondingly, we solve the rightward mixed initial-boundary value problem (1.9) with the

initial data

x = 0 : U = H(t), t ≥ 0 (1.10)

and the boundary condition (1.5) on the domain D = {(t, x) | t ≥ 0, 0 ≤ x ≤ L}. According to

the theory on the semi-global C1 solution (see [4–5]), as long as ‖Φ‖C1[0,L] and ‖H‖C1[0,+∞) are

small (depending on L), we can get a unique rightward semi-global C1 solution U = U(t, x) on

D. This solution is exactly the global C1 solution to the mixed initial-boundary value problem

(1.1), (1.4) and (1.5), which satisfies (1.8).

By the theory on the local exact boundary controllability for quasilinear hyperbolic system

(see [4]), the system (1.1) and (1.4) possesses the local exact boundary controllability under the

assumption that the number of boundary controls equals that of unknown variables. Generally

speaking, the exact boundary controllability can not be realized with lack of controls. However,

we can study the local exact boundary synchronization for the system (1.1) and (1.4).

Definition 1.1 If there exists T > 0 such that for any given initial data Φ(x) with small

C1[0, L] norm, we can find a part of control functions in H(t) with compact support on [0, T ] in

essence, the C1[0,+∞) norm of which is also small, such that the corresponding mixed initial-

boundary value problem (1.1), (1.4) and (1.5) admits a unique C1 solution U = U(t, x) with

small C1 norm on the domain D = {(t, x) | t ≥ 0, 0 ≤ x ≤ L}, and for t ≥ T , this solution

satisfies

u1(t, x) ≡ · · · ≡ un(t, x)
def.
= ˜̃u(t, x), 0 ≤ x ≤ L, (1.11)

where ˜̃u(t, x) is a priori unknown, then, the coupled system (1.1) and (1.4) is called to possess

the exact boundary synchronization for t ≥ T , while ˜̃u(t, x) is called the state of exact boundary

synchronization.

Especially, if

˜̃u(t, x) ≡ 0, (1.12)

then, the coupled system (1.1) and (1.4) is called to possess the exact boundary null controlla-

bility for t ≥ T .

In [4, 6–8], the two-sided exact boundary controllability, the one-sided exact boundary

controllability, the two-sided exact boundary controllability with fewer controls, and the exact

boundary null controllability are realized, respectively, by a constructive method. For the case

considered in this paper, we have specially the following result.

Lemma 1.2 Let

T >
L

a(0)
. (1.13)
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For any given initial data Φ(x) with small C1[0, L] norm, there exists a C1 boundary control

H(t) on x = 0 with compact support on [0, T ], satisfying the conditions of C1 compatibility at

the point (t, x) = (0, 0) and

‖H‖C1[0,+∞) ≤ C(T )‖Φ‖C1[0,L], (1.14)

where C(T ) is a positive constant depending only on T , such that the system (1.1) and (1.4) is

exact boundary null controllable for t ≥ T .

The aim of this paper is to realize the local exact boundary synchronization for the corre-

sponding system with fewer boundary controls by properly specifying the constructive method

mentioned before.

Remark 1.1 In order to study the synchronization, we may fix the boundary function

h1(t) beforehand and take hi(t) (i = 2, · · · , n) as the boundary controls, and assume that

hi(t) − h1(t) (i = 2, · · · , n) have compact supports on [0, T ]. Assuming that the system (1.1)

and (1.4) is exactly boundary synchronizable at the time t = T for t ≥ T , although all the

boundary controls are not necessarily equal to zero, but hi(t) ≡ h1(t) (i = 1, · · · , n), thus the

state of synchronization remains.

Remark 1.2 If the system (1.1) and (1.4) is exactly boundary synchronizable, but not

exactly boundary null controllable, then the given boundary function h1(t) 6≡ 0 for t ≥ T .

2 Synchronization for Linear System

First, we consider the linear system

Ut + aUx = AU, (2.1)

where a > 0 is a constant, A = (aij) is an n × n matrix with constant elements. (2.1) can be

written as

uit + auix =
n∑

j=1

aijuj, i = 1, · · · , n. (2.2)

Theorem 2.1 If there exists T > 0, such that the linear system (2.1) and (1.4) possesses

the exact boundary synchronization for t ≥ T , that is, for any given C1 initial data Φ(x), we

can find a C1 boundary control H(t) such that the C1 solution U = U(t, x) to the corresponding

mixed initial-boundary value problem (2.1), (1.4) and (1.5) satisfies (1.11) for t ≥ T , but it

is not exact boundary null controllable, then the coupling matrix A = (aij) should satisfy the

following condition of compatibility (the sum of elements in every row is equal to each other),

called the row sum condition:

n∑

j=1

aij
def.
= ˜̃a, i = 1, · · · , n, (2.3)

where ˜̃a is a constant independent of i = 1, · · · , n.
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Proof If the system (2.1) and (1.4) is exactly boundary synchronizable for t ≥ T , then we

have

˜̃ut + a˜̃ux =
( n∑

j=1

aij

)
˜̃u, i = 1, · · · , n (2.4)

for t ≥ T . Therefore, for i, k = 1, · · · , n, we have

( n∑

j=1

akj −

n∑

j=1

aij

)
˜̃u = 0 (2.5)

for t ≥ T . By assumption, this system is not exactly boundary null controllable, namely, at

least for some C1 initial data Φ(x), the corresponding ˜̃u 6≡ 0, thus we get

n∑

j=1

akj =
n∑

j=1

aij , i, k = 1, · · · , n, (2.6)

which is the condition of compatibility (2.3).

Let

C1 =




1 −1
1 −1

. . .

1 −1




(n−1)×n

(2.7)

denote the matrix of synchronization. C1 is a matrix with full row-rank.

Lemma 2.1 (see [14]) For any given N ×N matrix A and any given full row-rank M ×N

(where M < N) matrix C, there exists a unique M ×M matrix A, such that

CA = AC (2.8)

if and only if Ker(C) is an invariant subspace of A :

AKer(C) ⊆ Ker(C). (2.9)

The elements of A in (2.8) is given by

A = CAC+, (2.10)

where C+ denotes the Moore-Penrose generalized inverse of C,

C+ = CT(CCT)−1. (2.11)

Corollary 2.1 The following facts are equivalent:

(1) Condition of compatibility (2.3) holds.

(2) There exists a unique (n− 1) matrix A such that

C1A = AC1. (2.12)

A = (aij) is called the reduced matrix of A, the elements of which can be precisely given by

aij =

n∑

p=j+1

(ai+1,p − aip) =

j∑

p=1

(aip − ai+1,p), i, j = 1, · · · , n− 1. (2.13)
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Theorem 2.2 Under the condition of compatibility (2.3), let

T >
L

a
. (2.14)

For any given C1 initial data Φ(x), without loss of generality, suppose that the C1 boundary

function h1(t) is fixed beforehand on the end x = 0, which satisfies the corresponding conditions

of C1 compatibility at the point (t, x) = (0, 0). Then there exist (n − 1) C1 boundary controls

h2(t), · · · , hn(t), the differences of which with h1(t) have compact supports on [0, T ], and

‖hi(t)− h1(t)‖C1[0,+∞) ≤ C(T )‖Φ‖C1[0,L], i = 2, · · · , n, (2.15)

and thus

‖hi‖C1[0,+∞) ≤ C(T )(‖Φ‖C1[0,L] + ‖h1‖C1[0,+∞)), i = 2, · · · , n, (2.16)

such that the system (2.1) and (1.4) is exactly boundary synchronizable for t ≥ T . Here and

hereafter, C(T ) denotes a positive constant depending only on T .

Proof Under the condition of compatibility (2.3), let

W = C1U.

By Corollary 2.1, the original system (2.1), (1.4) and (1.5) for the variable U can be reduced

to the following self-closed problem for the variable W :





Wt + aWx = AW,

x = 0 : W = H,

t = 0 : W = W0, 0 ≤ x ≤ L,

(2.17)

where H = C1H , W0 = C1Φ, and A is given by (2.12). In this way, the exact boundary

synchronization of the original system (2.1) and (1.4) for U and t ≥ T is equivalent to the

exact boundary null controllability of the reduced system (2.17) for W and t ≥ T . Hence, by

Lemma 1.2, applying the same constructive method to this linear system, we get that for any

given initial data W0, the system (2.17) can realize the exact boundary null controllability by

properly choosing the C1 boundary control H = (h1(t), · · · , hn−1(t))
T with compact support

on [0, T ]. Moreover,

‖H‖C1[0,T ] ≤ C(T )‖Φ‖C1[0,L]. (2.18)

Noting that C1 has full row-rank, when fixing h1(t) beforehand, H can be solved by H = C1H .

This H is exactly the boundary control which can realize the exact boundary synchronization

for the system (2.1) and (1.4). Furthermore, (2.15) follows from (2.18), and hi(t) − h1(t) (i =

2, · · · , n) have compact supports on [0, T ].

3 Exact Boundary Synchronization for Quasilinear Hyperbolic System

According to the discussion above, the condition of compatibility (2.3) is a necessary and

sufficient condition of exact boundary synchronization for the linear hyperbolic system (2.1)

and (1.4). For the corresponding quasilinear system, we naturally assume that such condition
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still holds, that is, on the domain under consideration (namely, in a neighborhood of U = 0),

we have

n∑

j=1

aij(U)
def.
= ˜̃a(U), i = 1, · · · , n, (3.1)

where ˜̃a(U) is independent of i = 1, · · · , n. By Corollary 2.1, there exists a unique matrix A(U)

of order (n− 1), such that

C1A(U) = A(U)C1, (3.2)

where A(U) = (aij(U)) is the reduced matrix of A(U), the elements of which can be explicitly

given by

aij(U) =
n∑

p=j+1

(ai+1,p(U)− aip(U)) =

j∑

p=1

(aip(U)− ai+1,p(U)), i, j = 1, · · · , n− 1. (3.3)

Theorem 3.1 Under the condition of compatibility (3.1), let

T >
L

a(0)
. (3.4)

For any given initial data Φ(x) with small C1[0, L] norm, without loss of generality, assume

that the C1 boundary function h1(t) with small C1[0,+∞) norm is fixed beforehand on the end

x = 0, which satisfies the corresponding conditions of C1 compatibility at the point (t, x) = (0, 0).

There exist (n − 1) C1 boundary controls h2(t), · · · , hn(t), the differences of which with h1(t)

have compact supports on [0, T ], and

‖hi − h1‖C1[0,+∞) ≤ C(T )‖Φ‖C1[0,L], i = 2, · · · , n, (3.5)

and thus

‖hi‖C1[0,+∞) ≤ C(T )(‖Φ‖C1[0,L] + ‖h1‖C1[0,+∞)), i = 2, · · · , n, (3.6)

such that the problem (1.1), (1.4) and (1.5) admits a unique global C1 solution U = U(t, x)

with small C1 norm on the domain D = {(t, x) | t ≥ 0, 0 ≤ x ≤ L}, which possesses the exact

boundary synchronization shown by (1.11) for t ≥ T .

Proof Noting (3.4), there exists ε0 > 0 so small that

T > T1, (3.7)

where

T1 = sup
|U|≤ε0

L

a(U)
. (3.8)

Let

W = C1U. (3.9)
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The mixed problem (1.1), (1.4) and (1.5) for U can be reduced to the following mixed problem

for W :





Wt + a(U)Wx = A(U)W,

x = 0 : W = H,

t = 0 : W = W0, 0 ≤ x ≤ L,

(3.10)

where A(U) = (aij(U)) is given by (3.2), while

W0 = C1Φ, H = C1H = (h1, · · · , hn−1)
T. (3.11)

Thus, noting that if the solution to the problem (3.10) satisfies

W ≡ 0, t ≥ T (3.12)

(namely, the system (3.10) is exactly boundary null controllable for t ≥ T ), then the system

(1.1) and (1.4) should be exactly boundary synchronizable for t ≥ T . Hence, in order to get

Theorem 3.1, we need only to prove the following things.

(1) For any given C1 function U = U(t, x) with |U(t, x)| ≤ ε0, we can properly construct

a boundary control H independent of U(t, x), such that the system (3.10) is exactly boundary

null controllable for t ≥ T and any given initial data W0 with small C1[0, L] norm.

Consider the corresponding rightward mixed initial-boundary value problem, by the unique-

ness of the C1 solution to the Cauchy problem (see [15]), if we can find a C1 control function

H = H(t) independent of U on x = 0, such that

H(t) ≡ 0, t ≥ T0

and the C1[0, T0] norm of H(t) is small, in which

T0 = T − T1 > 0.

Besides, the conditions of C1 compatibility at the point (t, x) = (0, 0) are satisfied, then it is

easy to get (3.12).

In a similar way to (1.6)–(1.7), for the mixed problem (3.10), the conditions of C1 compat-

ibility at the point (t, x) = (0, 0)

{
H(0) = C1Φ(0),

H
′
(0) = A(Φ(0))C1Φ(0)− a(Φ(0))C1Φ

′(0)
(3.13)

depend only on Φ(0) and Φ′(0), and are independent of U = U(t, x). By the value of H(0) and

H
′
(0) given by (3.13) and the fact that H(T0) = H

′
(T0) = 0 at the time t = T0, we can use

Hermite interpolation to construct a C1 function H(t) on [0, T0] as follows:

hi(t) = big1(t) + cig2(t), 0 ≤ t ≤ T0, i = 1, · · · , n− 1, (3.14)

where

g1(t) =
(
1 +

2t

T0

)( t− T0

T0

)2

,

g2(t) = t
( t− T0

T0

)2
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and

bi = ϕi(0)− ϕi+1(0), i = 1, · · · , n− 1,

ci =

n−1∑

j=1

aij(Φ(0))(ϕj(0)− ϕj+1(0))− a(Φ(0))(ϕ′
i(0)− ϕ′

i+1(0)), i = 1, · · · , n− 1.

By (3.14), it is easy to see that

‖hi‖C1[0,T ] ≤ C(T )‖Φ‖C1[0,L], i = 1, · · · , n− 1. (3.15)

(2) The corresponding value of H(t) with small C1[0, T ] norm can be determined by H(t)

acquired above.

Noting (3.11), the value of C1 boundary controls hi(t) (i = 2, · · · , n) on x = 0 can be solved

by

hi+1(t) = hi(t)− hi(t), i = 1, · · · , n− 1, (3.16)

where h1(t) is a beforehand fixed boundary function with small C1[0,+∞) norm, satisfying the

corresponding conditions of C1 compatibility at the point (t, x) = (0, 0).

By (3.3) and (3.15), it is easy to see that hi(t) (i = 2, · · · , n) and h1(t) satisfy (3.5) and the

conditions of C1 compatibility (1.6)–(1.7) at the point (t, x) = (0, 0).

(3) The mixed initial-boundary value problem (1.1), (1.4) and (1.5) admits a unique global

C1 solution U = U(t, x) on the domain D = {(t, x) | t ≥ 0, 0 ≤ x ≤ L}, satisfying

|U | ≤ ε0. (3.17)

By the theory of semi-global C1 solution to the rightward mixed problem and the corre-

sponding estimation on its C1 norm (see [4–5]), as long as the C1 norm of Φ and h1 are small,

we have

‖U‖C1[D] ≤ C(T )(‖Φ‖C1[0,L] + ‖h1‖C1[0,+∞)). (3.18)

Then we get (3.17).

4 Synchronization by Groups

In the case of further losing boundary controls, we can consider the exact boundary

synchronization by p-groups (p ≥ 1; when p = 1, it goes back to the exact boundary synchro-

nization). This means that the components of U are divided into p groups:

(u1, · · · , um1
), (um1+1, · · · , um2

), · · · , (ump−1+1, · · · , ump
), (4.1)

where 0 = m0 < m1 < m2 < · · · < mp = n. The synchronization should be required for

every group of elements, respectively, and the states of synchronization by groups are mutually

independent.

Besides, in the case of synchronization by groups, all the components are not necessarily

required to share the same propagation speed, but those who correspond to the same state of
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synchronization should have the same propagation speed. In other words, we may consider the

exact boundary synchronization by p-groups for the following quasilinear hyperbolic system:

Ut + Λ(U)Ux = A(U)U, (4.2)

where

Λ(U) = diag {λ1(U)Im1
, λ2(U)Im2−m1

, · · · , λp(U)In−mp−1
} (4.3)

is a diagonal matrix of order n, and

λs(U) > 0, 1 ≤ s ≤ p (4.4)

are C1 functions of U , while Ii is the identity matrix of order i.

In a similar way to Lemma 1.1, we have the following result.

Lemma 4.1 Under the assumptions mentioned above, assume that the conditions of C1

compatibility are satisfied at the point (t, x) = (0, 0). As long as the C1 norms ‖Φ‖C1[0,L] and

‖H‖C1[0,+∞) are small, there exists a unique global C1 solution U = U(t, x) to the forward

mixed initial-boundary value problem (4.2), (1.4) and (1.5) on the domain D = {(t, x) | t ≥

0, 0 ≤ x ≤ L}, which satisfies

‖U‖C1[D] ≤ C(‖Φ‖C1[0,L] + ‖H‖C1[0,+∞)), (4.5)

where C is a positive constant depending only on L.

Definition 4.1 If there exists T > 0 such that for any given initial data Φ(x) with small

C1[0, L] norm, we can find a part of boundary controls in H(t) with small C1[0,+∞) norm,

such that the corresponding mixed initial-boundary value problem (4.2), (1.4) and (1.5) admits a

unique C1 solution U = U(t, x) with small C1 norm on the domain {(t, x) | t ≥ 0, 0 ≤ x ≤ L},

which satisfies

uk ≡ ul
def.
= ˜̃us, ms−1 + 1 ≤ k, l ≤ ms, 1 ≤ s ≤ p (4.6)

for t ≥ T , where ˜̃us (1 ≤ s ≤ p) are priori unknown, then the system (4.2) and (1.4) is called to

possess the exact boundary synchronization by p-groups for t ≥ T , and (˜̃u1, · · · , ˜̃up)
T is called

the state of exact boundary synchronization by p-groups.

Let Cp denote the following (N − p)×N matrix of synchronization by p-groups

Cp =




C1,1

C1,2

. . .

C1,p


 , (4.7)

where C1,s is an (ms −ms−1 − 1)× (ms −ms−1) matrix with full row-rank

C1,s =




1 −1
1 −1

. . .

1 −1


 , 1 ≤ s ≤ p. (4.8)
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Denoting

(es)j =

{
1, ms−1 + 1 ≤ j ≤ ms,

0, others,
1 ≤ s ≤ p, (4.9)

it is easy to see that

Ker(Cp) = Span{e1, · · · , ep} (4.10)

and (4.6) can be written as

t ≥ T : U =

p∑

s=1

˜̃uses. (4.11)

By [4], we have the following result.

Lemma 4.2 Let

T > L max
1≤s≤p

1

λs(0)
. (4.12)

For any given initial data Φ(x) with small C1[0, L] norm, there exists a C1 boundary control

H(t) on x = 0 with compact support on [0, T ], which satisfies the conditions of C1 compatibility

at the point (t, x) = (0, 0) and

‖H‖C1[0,T ] ≤ C(T )‖Φ‖C1[0,L], (4.13)

such that the system (4.2) and (1.4) is exactly boundary null controllable for t ≥ T .

4.1 Exact boundary synchronization by p-groups for linear system

First, we consider the linear system

Ut + ΛUx = AU, (4.14)

where

Λ = diag {λ1Im1
, λ2Im2−m1

, · · · , λpIn−mp−1
}

is a diagonal matrix of order n, and

λs > 0, 1 ≤ s ≤ p

are constants.

Theorem 4.1 Assume that the linear system (4.14) and (1.4) is exactly boundary synchro-

nizable by p-groups, but not exactly boundary synchronizable by (p − 1)-groups under any in-

vertible linear transformation of state variables u1, · · · , un. Then the coupling matrix A = (aij)

should satisfy the following condition of compatibility:

AKer(Cp) ⊆ Ker(Cp), (4.15)

or equivalently, there exists a unique matrix Ap of order (N − p), such that

CpA = ApCp. (4.16)
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Proof If the system (4.14) and (1.4) is exactly boundary synchronizable by p-groups for

t ≥ T , then, for t ≥ T , multiplying (4.14) by Cp, and noting (4.10), we get

p∑

r=1

˜̃urCpAer = 0. (4.17)

If for some given initial data Φ, the corresponding ˜̃u1, ˜̃u2, · · · , ˜̃up are linear independent, we

have

CpAer = 0, 1 ≤ r ≤ p. (4.18)

Then, (4.15) follows from (4.10). On the other hand, if for any given initial data Φ, ˜̃u1, · · · , ˜̃up

are linear dependent, then the linear dependence could be shown by (4.18), which contradicts

the fact that the system (4.14) and (1.4) is not exact boundary synchronizable by (p−1)-groups

under any invertible linear transformation of state variables. Thus (4.15) is proved.

Remark 4.1 By the condition of compatibility (4.15) or (4.16), there exist constants
˜̃asr (1 ≤ s, r ≤ p) such that

Aes =

p∑

r=1

˜̃asrer, 1 ≤ s ≤ p, (4.19)

or the following row sum conditions in the block sense hold:

ms∑

j=ms−1+1

aij = ˜̃asr, mr−1 + 1 ≤ i ≤ mr, 1 ≤ s, r ≤ p. (4.20)

In particular, when p = 1, the condition of compatibility (4.20) is exactly (2.3).

Theorem 4.2 Under the condition of compatibility (4.15), let

T > L max
1≤s≤p

1

λs

. (4.21)

For any given C1 initial data Φ(x), without loss of generality, assume that the C1 boundary

functions hms−1+1(t) (1 ≤ s ≤ p) on x = 0 are given beforehand, which satisfy the corresponding

conditions of C1 compatibility at the point (t, x) = (0, 0). Then there exist (n− p) C1 boundary

functions hi(t) (ms−1+2 ≤ i ≤ ms, 1 ≤ s ≤ p), the differences of which with the corresponding

hms−1+1(t) (1 ≤ s ≤ p) have compact supports on [0, T ], and

‖hi − hms−1+1‖C1[0,+∞) ≤ C(T )‖Φ‖C1[0,L], ms−1 + 2 ≤ i ≤ ms, 1 ≤ s ≤ p, (4.22)

and thus

‖hi‖C1[0,+∞) ≤ C(T )(‖Φ‖C1[0,L] + ‖hms−1+1‖C1[0,+∞)),

ms−1 + 2 ≤ i ≤ ms, 1 ≤ s ≤ p,
(4.23)

such that the corresponding mixed initial-boundary value problem (4.14), (1.4) and (1.5) admits

a unique global C1 solution U = U(t, x) on the domain {(t, x) | t ≥ 0, 0 ≤ x ≤ L}, which

possesses the exact boundary synchronization by p-groups defined by (4.6).
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Proof Under the condition of compatibility (4.15), let

W = CpU.

Noting

CpΛ = ΛCp, (4.24)

where

Λ = diag {λ1Im1−1, λ2Im2−m1−1, · · · , λpIn−mp−1−1} (4.25)

is a diagonal matrix of order (n − p), the original mixed problem (4.14), (1.4) and (1.5) for U

can be reduced to the following mixed problem for W :





Wt + ΛWx = ApW,

x = 0 : W = H,

t = 0 : W = W0, 0 ≤ x ≤ L,

(4.26)

where Ap is the reduced matrix of A defined by (4.16), and

W0 = CpΦ, H = CpH = (h1, · · · , hn−p)
T. (4.27)

The rest of the proof is similar to that of Theorem 2.2.

4.2 Exact boundary synchronization by p-groups for quasilinear system

For the quasilinear system (4.2) and (1.4), in order to consider its exact boundary syn-

chronization by p-groups, similar to (4.15), assume that the coupling matrix A(U) satisfies the

following condition of compatibility:

A(U)Ker(Cp) ⊆ Ker(Cp) (4.28)

on the domain under consideration (namely, in a neighborhood of U = 0), where Cp is defined

by (4.7).

Remark 4.2 By Lemma 2.1, the condition of compatibility (4.28) is equivalent to the fact

that there exists a unique C1 matrix Ap(U) of order (N − p), such that

CpA(U) = Ap(U)Cp. (4.29)

Or equivalently, the row sum conditions in the block sense are satisfied

ms∑

j=ms−1+1

aij(U) = ˜̃asr(U), mr−1 + 1 ≤ i ≤ mr, 1 ≤ s, r ≤ p. (4.30)

In particular, when p = 1, the condition of compatibility (4.30) is exactly (3.1).

Similarly, we can equivalently transform the exact boundary synchronization by groups for

the system (4.2) and (1.4) to the exact boundary null controllability for its reduced system.
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Theorem 4.3 Under the condition of compatibility (4.28), let

T > L max
1≤s≤p

1

λs(0)
. (4.31)

For any given initial data Φ(x) with small C1[0, L] norm, without loss of generality, assume

that the C1 boundary functions hms−1+1(t) (1 ≤ s ≤ p) with small C1[0,+∞) norm on x = 0

are given beforehand, which satisfy the corresponding conditions of C1 compatibility at the point

(t, x) = (0, 0). Then there exist (n− p) C1 boundary functions hi(t) (ms−1 + 2 ≤ i ≤ ms, 1 ≤

s ≤ p), the differences of which with the corresponding hms−1+1(t) (1 ≤ s ≤ p) have compact

supports on [0, T ], and

‖hi − hms−1+1‖C1[0,+∞) ≤ C(T )‖Φ‖C1[0,L], ms−1 + 2 ≤ i ≤ ms, 1 ≤ s ≤ p, (4.32)

and thus

‖hi‖C1[0,+∞) ≤ C(T )(‖Φ‖C1[0,L] + ‖hms−1+1‖C1[0,+∞)),

ms−1 + 2 ≤ i ≤ ms, 1 ≤ s ≤ p,
(4.33)

such that the mixed initial-boundary value problem (4.2), (1.4) and (1.5) admits a unique global

C1 solution U = U(t, x) with small C1 norm on the domain {(t, x) | t ≥ 0, 0 ≤ x ≤ L}, which

satisfies the exact boundary synchronization by p-groups defined by (4.6).

Proof Noting (4.31), there exists ε0 > 0 so small that

T > T2, (4.34)

where

T2 = sup
|U|≤ε0

max
1≤s≤p

L

λs(U)
. (4.35)

Under the condition of compatibility (4.28), let

W = CpU.

Noting that

CpΛ(U) = Λ(U)Cp, (4.36)

where

Λ(U) = diag {λ1(U)Im1−1, λ2(U)Im2−m1−1, · · · , λp(U)In−mp−1−1} (4.37)

is a diagonal matrix of order (n − p), the mixed problem (4.2), (1.4) and (1.5) for U can be

reduced to the following mixed problem for W :





Wt + Λ(U)Wx = Ap(U)W,

x = 0 : W = H,

t = 0 : W = W0, 0 ≤ x ≤ L,

(4.38)
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where Ap(U) is the reduced matrix of A(U) (see Remark 4.2), and

W0 = CpΦ, H = CpH = (h1, · · · , hn−p)
T. (4.39)

Here, the corresponding conditions of C1 compatibility at the point (t, x) = (0, 0) are

{
H(0) = CpΦ(0),

H
′
(0) = A(Φ(0))CpΦ(0)− Λ(Φ(0))CpΦ

′(0).
(4.40)

In a similar way to Theorem 3.1, we can construct a boundary control H(t) as in (3.14), such

that

H(t) ≡ 0, t ≥ T0

and H(t) has a small C1[0, T0] norm, where

T0 = T − T2 > 0,

and the conditions of C1 compatibility at the point (t, x) = (0, 0) are satisfied, hence the system

(4.38) possesses the exact boundary null controllability for t ≥ T0, the rest of the proof is similar

to that of Theorem 3.1.

5 Stability of Synchronization Solution

By Lemma 1.1, the mixed initial-boundary value problem (1.1), (1.4) and (1.5) admits

a unique global classical solution on the domain {(t, x) | t ≥ 0, 0 ≤ x ≤ L}, therefore we can

consider the limit behavior of the solution as t → +∞.

Assume that the system possesses the synchronization state for t ≥ T ,

U = U(t, x)
def.
= ˜̃u(t, x)e1, (5.1)

where e1 = (1, · · · , 1)T. Then the synchronization solution U(t, x) satisfies





U t + a(U)Ux = A(U)U = ˜̃a(U)U,

x = 0 : U = h1(t)e1,

t = T : U = u1(x)e1, 0 ≤ x ≤ L,

(5.2)

where u1(x) is the initial data of the synchronization solution at t = T : u1(x) = ˜̃u(T, x).
Taking some small perturbations a(x) and b(t) to the initial data and the boundary data of

the synchronization solution U , respectively, we get a new solution U = U(t, x), satisfying






Ut + a(U)Ux = A(U)U,
x = 0 : U = h1(t)e1 + b(t),
t = T : U = u1(x)e1 + a(x), 0 ≤ x ≤ L.

(5.3)

Lemma 5.1 (see [16]) Under the assumptions of Lemma 1.1, assume that there are two dif-

ferent initial data Φ(1)(x),Φ(2)(x) ∈ C1[0, L] and two different boundary data H(1)(t), H(2)(t) ∈

C1[0,+∞), both of which satisfy the conditions of C1 compatibility at the point (t, x) = (0, 0),

respectively. The corresponding solutions to the mixed initial-boundary value problem (1.1),
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(1.4) and (1.5) on the domain {(t, x) | t ≥ 0, 0 ≤ x ≤ L} are denoted by U (1)(t, x) and

U (2)(t, x), respectively. Then for any given δ > 0, there exists η > 0, such that when

‖Φ(1) − Φ(2)‖C1[0,L] + ‖H(1) −H(2)‖C1[0,+∞) ≤ η, (5.4)

we have

‖U (1)(t, ·)− U (2)(t, ·)‖C1[0,L] ≤ δ, ∀ t ∈ [0,+∞). (5.5)

Theorem 5.1 Assume that the mixed initial-boundary value problem (1.1), (1.4) and (1.5)

possesses the exact boundary synchronization for t ≥ T , and that the corresponding synchro-

nization solution U satisfies problem (5.2). Taking some small perturbations a(x) and b(t) to

the initial data and the boundary data, respectively, the corresponding perturbed solution to the

mixed problem (5.3) is denoted by U . Then for any given δ > 0, there exists η > 0, such that

when

‖a‖C1[0,L] + ‖b‖C1[T,+∞) ≤ η, (5.6)

we have

‖U(t, ·)− U(t, ·)‖C1[0,L] ≤ δ, ∀ t ∈ [T,+∞). (5.7)

Furthermore, for any given δ > 0, there exists η > 0, such that when

‖b‖C1[T,+∞) ≤ η, (5.8)

we have

‖U(t, ·)− U(t, ·)‖C1[0,L] ≤ δ, (5.9)

when the time t is large enough
(
t ≥ T + L

a(0)

)
.

Proof The former conclusion results from Lemma 5.1 directly.

Furthermore, consider the corresponding rightward mixed problem, noting the fact that all

the characteristics travel from left to right, the behavior of the solution essentially depends

on the boundary condition on x = 0 for time large enough, and has nothing to do with the

perturbation on the initial data at t = 0. Therefore, we need only to consider the solution to

the following rightward Cauchy problem:

{
U t + a(U)Ux = A(U)U ≡ ˜̃a(U)U,

x = 0 : U = h1(t)e1,
(5.10)

where

U = ˜̃ue1

and
{
Ut + a(U)Ux = A(U)U,
x = 0 : U = h1(t)e1 + b(t).

(5.11)

Thus, the latter conclusion can be proved by Lemma 5.1.
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Remark 5.1 In fact, for any given global solution U = (u1, · · · , un)
T (not necessarily

a synchronization solution), when time is large enough, the difference between its perturbed

solution and the solution itself depends only on the perturbation on the boundary condition.

If b(t) → 0 as t → +∞, then the perturbed solution U(t, x) approaches to U(t, x) itself at last.

The result mentioned above can be extended to the case of synchronization by groups,

namely, we have the following theorem.

Theorem 5.2 Under the assumptions of Theorem 4.3, assuming that the mixed initial-

boundary value problem (4.2), (1.4) and (1.5) possesses the exact boundary synchronization by

p-groups for t ≥ T , and for the corresponding synchronization solution U satisfying (4.6), we

have





U t + Λ(U)Ux = A(U)U,

x = 0 : U =
p∑

s=1
hms−1+1(t)es,

t = T : U =
p∑

s=1
us(x)es, 0 ≤ x ≤ L,

(5.12)

where us(x) is the initial data of the synchronization solution by p-groups at t = T : us(x) =
˜̃us(T, x) (1 ≤ s ≤ p). Taking some small perturbations a(x) and b(t) to the initial data and the

boundary data of the synchronization solution U by p-groups, respectively, the corresponding

perturbed solution U = U(t, x) satisfies





Ut + Λ(U)Ux = A(U)U,

x = 0 : U =
p∑

s=1
hms−1+1(t)es + b(t),

t = T : U =
p∑

s=1
us(x)es + a(x), 0 ≤ x ≤ L.

(5.13)

Then for any given δ > 0, there exists η > 0, such that when

‖a‖C1[0,L] + ‖b‖C1[T,+∞) ≤ η, (5.14)

we have

‖U(t, ·)− U(t, ·)‖C1[0,L] ≤ δ, ∀ t ∈ [T,+∞). (5.15)

Furthermore, for any given δ > 0, there exists η > 0, such that when

‖b‖C1[T,+∞) ≤ η, (5.16)

we have

‖U(t, ·)− U(t, ·)‖C1[0,L] ≤ δ (5.17)

for time t large enough
(
t ≥ T + L max

1≤s≤p

1
λs(0)

)
.
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