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Abstract Convergence and analytic extension are of fundamental importance in the math-
ematical construction and study of conformal field theory. The author reviews some main
convergence results, conjectures and problems in the construction and study of conformal
field theories using the representation theory of vertex operator algebras. He also reviews
the related analytic extension results, conjectures and problems. He discusses the con-
vergence and analytic extensions of products of intertwining operators (chiral conformal
fields) and of q-traces and pseudo-q-traces of products of intertwining operators. He also
discusses the convergence results related to the sewing operation and the determinant line
bundle and a higher-genus convergence result. He then explains conjectures and problems
on the convergence and analytic extensions in orbifold conformal field theory and in the
cohomology theory of vertex operator algebras.
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1 Introduction

Quantum filed theory has become an important area in mathematics. Many mathematical

problems are deeply connected to structures studied in quantum field theory and have been

solved or are expected to be solved using the ideas and tools developed in the mathematical

study of quantum field theory.

The most successful quantum field theories are topological ones. Since the state spaces of

these quantum field theories are typically finite dimensional, topological field theories usually do

not involve convergence problems. On the other hand, since the state spaces of nontopological

quantum field theories must be infinite dimensional, convergence problems are often the most

basic ones that we have to solve first. For topological quantum field theories that are constructed

using some underlying nontopological quantum field theories, one might also need to solve some

convergence problems. Such convergence problems are in fact problems for the underlying

nontopological quantum field theories.

Convergence results and problems in mathematics are usually related to existence results

and problems. Such existence results and problems are always of fundamental importance in

mathematics. For example, the first fundamental problem for a differential equation is the

existence of solutions under suitable conditions. Though one can still derive many important

results by assuming the existence of a mathematical structure, such results in mathematics are

Manuscript received April 7, 2022.
1Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA.
E-mail: yzhuang@math.rutgers.edu



1102 Y. -Z. Huang

still conjectures unless the existence is proved. In a problem related to analysis, the existence

is often a problem about convergence. For example, the existence of a solution of a differential

equation is mostly a problem about the convergence of a sequences of functions obtained from a

suitable iteration procedure. In some cases, even though the further development of a problem

was studied using algebraic methods, without the existence established by proving suitable

convergence results, the subsequent important results would still be conjectures.

One main nontopological conformal field theory for which we have precise definitions and

substantial mathematical results is two-dimensional conformal field theory. In this paper, for

simplicity, we shall omit the words “two-dimensional” so that by conformal field theory, we

always mean two-dimensional conformal field theory. Conformal field theory was studied in

physics using the approach of operator product expansion starting from the work of Belavin-

Polyakov-Zamolodchikov [3]. The fundamental early works of Friedan-Shenker [12], Verlinde

[39], Moore-Seiberg [35] and others led to some major conjectures on rational conformal field

theories. Around the same time, the representation theory of vertex operator algebras was

developed starting from the works of Borcherds [4] and Frenkel-Lepowsky-Meurman [11]. The

representation theory of vertex operator algebras is now one of the main mathematical ap-

proaches for the construction and study of conformal field theory.

In the construction and study of conformal field theories using the representation theory of

vertex operator algebras, almost in every major step, we have to prove a convergence result.

Moreover, these convergence results are always obtained together with some analytic extension

results that are necessary and important for proving further results on conformal field theories.

To further develop conformal field theory and apply conformal field theory to solve mathematical

problems, many convergence and analytic extension conjectures and problems still need to be

proved and solved. Without the proofs of these conjectures and the solutions to these problems,

we would not and will not be able to solve many of the mathematical problems related to

conformal field theory.

In this paper, we review some main convergence results, conjectures and problems in the

construction and study of two-dimensional conformal field theories using the representation

theory of vertex operator algebras. We also discuss the related analytic extension results, con-

jectures and problems. These analytic results and problems are of the fundamental importance

in the study of conformal field theory and the representation theory of vertex operator algebras.

We believe that in the future study and applications of conformal field theory, the results and

problems on convergence and analytic extensions will play an even more important role.

For the definitions and basic properties of vertex operator algebras, (lower-bounded and

grading-restricted) generalized V -modules and (logarithmic) intertwining operators, see for ex-

ample, [10, 24, 26]. For simplicity, in this paper, we shall call a logarithmic intertwining operator

an intertwining operator.

This paper is organized as follows: In Section 2, as a comparison with the main convergence

results that we shall discuss in later sections, we discuss the convergence of products of vertex

operators for vertex operator algebras and modules. We also briefly discuss the generalizations

this type of convergence in this section. In Sections 3–4, we discuss the convergence and analytic

extensions of products of intertwining operators and the convergence and analytic extensions
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of q-traces and pseudo-q-traces of products of intertwining operators, respectively. In Section

5, we discuss the convergence related to the sewing operation of spheres with punctures and

local coordinates vanishing at the punctures and to the determinant line bundle. In Section 6,

a higher-genus convergence result proved by Gui is discussed. The convergence and analytic

extension conjectures and problems in orbifold conformal field theory and the convergence

problems in the cohomology theory of vertex operator algebras are discussed in Sections 6 and

7, respectively.

2 Rational Functions, Their Generalizations and Algebraic Conver-

gence

The convergence of an expansion of a rational functions (or suitable simple generalizations of

rational functions) is the simplest type of convergence appearing in the study of vertex operator

algebras, their modules and twisted modules. This type of convergence is simple, algebraic and

very useful, but unfortunately does not work for general intertwining operators. We begin our

discussion of the convergence in this paper with this type of convergence and the reader should

compare it with the convergence to be discussed in later sections.

Let C((z−1
1 , z2)) be the space of all Laurent series of the form

∑

m,n∈N

cmnz
−m0−m
1 zn0+n

2

for m0, n0 ∈ Z and cmn ∈ C for m,n ∈ N. Let h(z1, z2) ∈ C((z−1
1 , z2)). Assume that there is a

nonnegative integer N such that

(z1 − z2)
Nh(z1, z2) ∈ C[z1, z

−1
1 , z2, z

−1
2 ].

Then we see that h(z1, z2) is equal to the product of an element of C[z1, z
−1
1 , z2, z

−1
2 ] and the

expansion of (z1 − z2)
−N in C((z−1

1 , z2)) (that is, in nonnegative powers of the second variable

z2). This product can always be written as the expansion in C((z−1
1 , z2)) of a rational function

f(z1, z2) =
g(z1, z2)

zm1 z
n
2 (z1 − z2)l

, (2.1)

where g(z1, z2) ∈ C[z1, z2] and m,n, l ∈ N. In other words, h(z1, z2) is absolutely convergent in

the region |z1| > |z2| > 0 to the rational function f(z1, z2). The rational function f(z1, z2) is

an analytic function defined on the region M2 = {(z1, z2) ∈ C2 | z1, z2 6= 0, z1 6= z2} and thus

is the analytic extension to M2 of the sum of h(z1, z2) on the region |z1| > |z2| > 0.

This simple fact gives a method to prove the convergence of a suitable series h(z1, z2) ∈

C((z−1
1 , z2)): To prove this convergence, we need only find a nonnegative integer N such that

(z1 − z2)
Nh(z1, z2) is a Laurent polynomial in z1 and z2. Note that the algebraic formulation

of this convergence holds when we replace C by any field F of characteristic 0.

This method has been used extensively in the study of vertex operator algebras, modules,

twisted modules and some of their generalizations. See for example the books [6] and [31]

and the references there for details. Here we use the product of two formal Laurent series of
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operators acting on a lower-bounded graded vector space V =
∐

n∈n0+N

V(n) to demonstrate the

use of this method. Let

A1(z) =
∑

n∈Z

An
1 z

−n−1, A2(z) =
∑

n∈Z

An
2 z

−n−1 ∈ (End V )[[z, z1]],

and assume that An
1 and An

2 for n ∈ Z are operators on V of weight (degree) λ1 − n − 1 and

λ2−n− 1, where λ1, λ2 ∈ C. Then for v ∈ V and v′ ∈ V ′, 〈v′, A1(z)v〉, 〈v
′, A1(z)v〉 ∈ C[z, z−1],

〈v′, A1(z1)A2(z2)v〉 ∈ C((z−1
1 , z2)) and 〈v′, A2(z2)A1(z1)v〉 ∈ C((z−1

2 , z1)). Assume that A1(z)

and A2(z) satisfy the weak commutativity (or locality), that is, there exists N ∈ N such that

(z1 − z2)
N 〈v′, A1(z1)A2(z2)v〉 = (z1 − z2)

N 〈v′, A2(z2)A1(z1)v〉 (2.2)

for v ∈ V and v′ ∈ V ′. Since (z1−z2)
N is a polynomial in z1 and z2, the left- and right-hand sides

of (2.2) are in C((z−1
1 , z2)) and C((z−1

2 , z1)), respectively. Then (2.2) implies that both sides are

in C[z1, z
−1
1 , z2, z

−1
2 ]. Using the method we discussed above, we see that 〈v′, A1(z1)A2(z2)v〉 and

〈v′, A2(z2)A1(z1)v〉 are absolutely convergent in the region |z1| > |z2| > 0 and |z2| > |z1| > 0,

respectively, to a common rational function of the form (2.1).

We note that the application of this method depends heavily on the weak commutativity.

This method can be generalized immediately to the case that h(z1, z2) is in

K∑

k1,k2=0

J∑

j=1

z
rj
1 z

sj
2 (log z1)

k1(log z2)
k2C((z−1

1 , z2)) ⊂ C{z1, z2}[log z1, log z2], (2.3)

where rj , sj ∈ C for j = 1, · · · , J . Assume that there is a nonnegative integer N such that

(z1 − z2)
Nh(z1, z2) ∈

K∑

k1,k2=0

J∑

j=1

z
rj
1 z

sj
2 (log z1)

k1 (log z2)
k2C[z1, z

−1
1 , z2, z

−1
2 ].

Then the same argument as above shows that h(z1, z2) is equal to the expansion in (2.3) of a

function

f(z1, z2) =

K∑

k1,k2=0

J∑

j=1

g(z1, z2)

z
m−rj
1 z

n−sj
2 (z1 − z2)l

(log z1)
k1(log z2)

k2 , (2.4)

where g(z1, z2) ∈ C[z1, z2] and m,n, l ∈ N. The discussion above treats the series h(z1, z2) as

a formal series and the function f(z1, z2) as an element of the localization of the ring (2.3) by

positive powers of z1− z2. If we use complex variables, we need to take values of z
rj
1 , zs22 , log z1

and log z2. For any such values, we see that h(z1, z2) evaluated at z1 and z2 using these values

is absolutely convergent in the region |z1| > |z2| > 0 to the function (2.4) evaluated using the

same values of z
rj
1 , zs22 , log z1 and log z2. This generalization has been used in the study of

twisted modules for a vertex operator algebras and also in the study of the product of one

vertex operator for a module and one intertwining operator.

There is also a generalization to abelian intertwining operator algebras introduced by Dong

and Lepowsky in [6]. We still consider h(z1, z2) in (2.3). But we assume that there is a complex

number N instead of a nonnegative integer such that

(z1 − z2)
Nh(z1, z2) ∈

K∑

k1,k2=0

J∑

j=1

z
rj
1 z

sj
2 (log z1)

k1 (log z2)
k2C[z1, z

−1
1 , z2, z

−1
2 ],
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where (z1 − z2)
N is understood as the binomial expansion of (z1 − z2)

N in nonnegative powers

of z2, that is, the expansion of (z1−z2)
N in the region |z1| > |z2| > 0. Then the same argument

as above shows that h(z1, z2) is equal to the expansion as a series in powers of z1 and z2 with

only finitely many negative real parts of the powers of z2 of a function

f(z1, z2) =

K∑

k1,k2=0

J∑

j=1

g(z1, z2)

z
m−rj
1 z

n−sj
2 (z1 − z2)l

(log z1)
k1(log z2)

k2 ,

where g(z1, z2) ∈ C[z1, z2], m,n ∈ N and l ∈ C. In other words, h(z1, z2) evaluated using any

values z
rj
1 , zs22 , (z1−z2)

−l, log z1 and log z2 is absolutely convergent in the region |z1| > |z2| > 0

to the function f(z1, z2) evaluated using the same values. But in practice, it is not easy to apply

this method in this general case since the generalization of the weak commutativity in this case

is not easy to verify. In fact, since the power N is not a nonnegative integer anymore, the

expansion of (z1 − z2)
N in the regions |z1| > |z2| > 0 and |z2| > |z1| > 0 are very different. In

this case, the weak commutativity for two (multivalued) fields A1(z1) and A2(z2) is of the form

(z1 − z2)
NA1(z1)A2(z2) = (−z2 + z1)

NA2(z2)A1(z1),

where (z1 − z2)
N is the binomial expansion of (z1 − z2)

N in nonnegative powers of z2 and

(−z2 + z1)
N is the binomial expansion of (−z2 + z1)

N in nonnegative powers of z1. In general,

this weak commutativity is not always easy to verify since (z1 − z2)
N and (−z2+ z1)

N are very

different.

For general intertwining operators (for example, intertwining operators among modules for

the affine vertex operator algebras and Virasoro vertex operator algebras), even weak commu-

tativity for abelian intertwining operator algebras is not satisfied. This is the main reason why

we need the method in the next section to prove the convergence of products of intertwining

operators. Even in some special cases that we expect the intertwining operators to form an

abelian intertwining operator algebra, because of the difficulty to verify the weak commutativ-

ity mentioned above, we still need the method in the next section to prove the convergence of

products of intertwining operators.

Our discussions above are for series in only two complex variables or products of two series

of operators. But they can be generalized easily to the case of an arbitrary number of complex

variables or products of an arbitrary number of series of operators.

3 Convergence of Products of Intertwining Operators

The convergence discussed in the preceding section does not work for general intertwining

operators. We have to use a completely different method. In this section, we discuss the con-

vergence of products of intertwining operators and their analytic extensions using this method.

Let V be a vertex operator algebra, W1, W2, W3, W4 and W5 be generalized V -modules

and Y1 and Y2 (logarithmic) intertwining operators of type
(

W4

W1W5

)
and

(
W5

W2W3

)
, respectively.

For w1 ∈ W1 and w2 ∈ W2,

Y1(w1, z1) ∈ hom(W5,W4)[log z1]{z1}
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and

Y1(w2, z2) ∈ hom(W3,W5)[log z2]{z2}.

Then

Y1(w1, z1)Y1(w2, z2) ∈ hom(W3,W4)[log z2, log z2]{z1, z2}.

The first problem in the study of the product Y1(w1, z1)Y1(w2, z2) is the convergence of this

product in a suitable sense. Since the series Y1(w1, z1)Y1(w2, z2) contains nonintegral powers

of z1 and z2 and nonnegative integral powers of log z1 and log z2, we first need to choose values

of these powers of z1 and z2 and values of log z1 and log z2. In fact, if the values of log z1 and

log z2 are chosen to be lp(z1) = log |z1| + i arg z1 + 2πip and lq(z2) = log |z2| + i arg z2 + 2πiq,

where 0 ≤ arg z1, arg z2 < 2π, then these values also give values emlp(z1) and enlq(z2) of the

powers zm1 and zn2 of z1 and z2. Using these values, we obtain a series in C,

〈w′
4,Y1(w1, z1)Y1(w2, z2)w3〉|log z1=lp(z1), log z2=lp(z2) (3.1)

for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′
4 ∈ W ′

4. We want to know whether (3.1) is absolutely

convergent in a suitable region for z1 and z2.

In general, (3.1) might not be convergent. The method used in the preceding section works

only when it is possible to multiply a nonnegative integral powers (z1− z2)
N of z1− z2 to get a

finite sum. But in general (even in the case of abelian intertwining operator algebras), there is

no such N ; in general, there is even no polynomial in z1 and z2 that can be multiplied to (3.1)

to get a finite sum.

The method used to prove the convergence of (3.1) is to show that the series (3.1) satisfies

the expansion in the region |z1| > |z2| > 0 of a system of differential equations with coefficients

in the ring

R = C[z1, z
−1
1 , z2, z

−1
2 , (z1 − z2)

−1]

and with regular singular points at (z1, z2) = (∞, 0). In fact, since each coefficient of (3.1) as

a series in powers of z2 and log z2 is a finite sum, we need only prove the convergence of (3.1)

for fixed z1 ∈ C×. In particular, we need only derive a differential equation in the variable z2

with the regular singular point z2 = 0. Then by the theory of differential equations of regular

singular points, the formal series solution of the system of the differential equations of regular

singular points must be the expansion of an analytic solution of the system. In other words, the

series (3.1) is absolutely convergent in the region |z1| > |z2| > 0 to an analytic solution. Since

the coefficients of the system of differential equations are in the ring R, this solution on the

region |z1| > |z2| > 0 can be analytically extended to a multivalued analytic function on M2.

Moreover, this multivalued analytic extension also satisfies a system of differential equations

with coefficients in R and with regular singular points at (z2, z1 − z2) = (∞, 0). Then the

multivalued analytic extension can be expanded in the region |z1| > |z1 − z2| > 0 as a series

containing terms in powers of z2 and z1 − z2 and nonnegative integral powers of logarithms of

z1 and z2.

In the special case of Wess-Zumino-Witten models or minimal models, we have the Knizhnik-

Zamolodchikov equations (see [30]) or the Belevin-Polyakov-Zamolodchikov equations (see [3]),

respectively. The Knizhnik-Zamolodchikov equations were used by Tsuchiya and Kanie [38] to
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prove the convergence of products of intertwining operators (called vertex operators in [38]) a-

mong suitable modules for the affine Lie algebra ̂sl(2,C). The Belevin-Polyakov-Zamolodchikov

equations and Knizhnik-Zamolodchikov equations were used by the author [14] and by Lepowsky

and the author [25], respectively, to prove the convergence of products of intertwining operators

for vertex operator algebras for the minimal models and for the Wess-Zumino-Witten models.

But for general vertex operator algebras, products of intertwining operators might not satisfy

differential equations. Some conditions on the vertex operator algebras and modules must be

satisfied in order to have such differential equations.

Note that for a solution of a system of differential equations with coefficients in R, the

derivatives of the solution must span a finitely-generated module over the ring R. In particular,

if (3.1) indeed converges absolutely to a solution of such a system of differential equations,

the derivatives of (3.1) span a finitely-generated module over R. Together with the L(−1)-

derivative property of intertwining operators, it is not difficult to see from this fact that there

should be some finiteness conditions satisfied by the grading-restricted generalized V -modules

W1, W2, W3 and W ′
4. This is the reason why in [17], the following C1-cofiniteness condition

on W1, W2, W3 and W ′
4 is needed: For a grading-restricted generalized V -module W , we say

that W is C1-cofinite if dimW/C1(W ) < ∞, where C1(V ) is the subspace of W spanned by

elements of the form Resxx
−1YW (v, x)w for v ∈ V+ =

∐
n∈Z+

V(n) and w ∈ W . We also need

another condition on generalized V -modules in our precise statement of the theorem below:

A generalized V -module is said to be quasi-finite dimensional if for any N ∈ R, the subspace∐
ℜ(n)≤N

W[n] is finite dimensional. In the case that all irreducible generalized V -modules are

grading restricted, a generalized V -modules of finite length must be quasi-finite dimensional.

Using the Jacobi identity for intertwining operators and vertex operators acting on modules,

we obtain certain identities for series of the form (3.1). For example, we have

〈w′
4,Y1(w1, z1)Y2(Resxx

−1YW1(u, x)w2, z2)w3〉

=
∑

k∈N

zk2 〈(Resxx
−1−kYW4(u, x))

′w′
4,Y1(w1, z1)Y2(w2, z2)w3〉

+
∑

k∈N

(−1)k(z1 − z2)
−1−k〈w′

4,Y1(Resxx
kYW2(u, x)w1, z1)Y2(w2, z2)w3〉

+
∑

k∈N

z−1−k
2 〈w′

4,Y1(w1, z1)Y2(w2, z2)Resxx
kYW2(u, x)w3〉,

where (Resxx
−1−kYW2 (u, x))

′ is the adjoint on W ′
4 of Resxx

−1−kYW4(u, x). Using these identi-

ties, the C1-cofiniteess condition, the quasi-finite-dimensionality of the generalized V -modules

involved and the L(−1)-derivative property, it was proved in [17] that the derivatives of (3.1)

span a finitely-generated module over R and thus must satisfy the expansion in the region

|z1| > |z2| > 0 of a system of differential equations with coefficients in R. Using more careful

examinations of the coefficients of the differential equations, it was proved in [17] that one can

always find such a system of differential equations such that the singular point (z1, z2) = (∞, 0)

or (z2, z1−z2) = (∞, 0) is regular. (As is mentioned above, in fact it is enough to show that for

fixed z1 ∈ C×, (3.1) satisfies a differential equation in the variable z2 with the regular singular

point z2 = 0.) Then we obtain the convergence and analytic extension result for products of
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two intertwining operators.

Below is the precise statement of the convergence and analytic extension result. It is essen-

tially the n = 2 case of [28, Theorem 11.8] with the category C being the category of grading-

restricted generalized V -modules. Its proof was in fact given in the proof of [17, Theorem

3.5], where it is proved in addition that when all N-gradable weak V -modules are complete-

ly reducible, there is no logarithms of the variables in the expansion near the singular point

(z2, z1 − z2) = (∞, 0).

Theorem 3.1 (see [17, 28]) Let V be a vertex operator algebra, W1, W2, W3, W4 and W5

be generalized V -modules and Y1 and Y2 (logarithmic) intertwining operators of type
(

W4

W1W5

)

and
(

W5

W2W3

)
, respectively. Assume that W1, W2, W3, W

′
4 are quasi-finite dimensional and

C1-cofinite. Then (3.1) is absolutely convergent when |z1| > |z2| > 0 and can be analytically

extended to a multivalued analytic function on M2.

The convergence and analytic extensions of products of more than two intertwining opera-

tors are proved similarly. The convergence and analytic extensions of iterates of intertwining

operators can be derived from Theorem 3.1 and properties of intertwining operators. See [27–

28].

4 Convergence of q-Traces and Pseudo-q-Traces of Products of Inter-

twining Operators

The multivalued analytic functions obtained from the analytic extensions of products of

intertwining operators discussed in the preceding section are in fact the genus-zero correlation

functions for the corresponding chiral conformal field theories. To construct genus-one cor-

relation functions from these genus-zero correlation functions, we need to take q-traces and

pseudo-q-traces of products of intertwining operators. Since grading-restricted generalized V -

modules in general are always infinite dimensional, the first problem one needs to solve is the

convergence of these q-traces and pseudo-q-traces.

As in the case of products of intertwining operators, we shall discuss only the case of q-traces

and pseudo-q-traces of products of two intertwining operators. The general case is similar.

Geometrically, products of intertwining operators correspond to genus-zero Riemann sur-

faces with punctures and local coordinates (see [15–16]) but the q-traces or pseudo-q-traces of

products of intertwining operators correspond to genus-one surfaces with punctures and local

coordinates. Since the standard description of genus-one Riemann surfaces is in terms of paral-

lelograms in the complex plane, not annuli in the sphere, to use intertwining operators to write

down genus-one correlation functions, we have to modify intertwining operators corresponding-

ly.

For a grading-restricted generalized V -module W , as in [18], let

UW (x) = (2πix)LW (0)e−L
+
W

(A) ∈ (EndW ){x}[log x],

where (2πi)L(0) = e(log 2π+iπ2 )L(0), xLW (0) = xLW (0)Se(log x)LW (0)N (LW (0)S and LW (0)N being

the semisimple and nilpotent, respectively, parts of LW (0)), L+
W (A) =

∑
j∈Z+

AjL(j) and Aj for
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j ∈ N are given by
1

2πi
log(1 + 2πiy) =

(
exp

( ∑

j∈Z+

Ajy
j+1 ∂

∂y

))
y.

Let W1,W2,W3,W4 be grading-restricted generalized V -modules. Let Y1 and Y2 be inter-

twining operators of types
(

W3

W1W4

)
and

(
W4

W2W3

)
, respectively. For z ∈ C, we shall use qz to

denote e2πiz. We call Y1(UW1(qz1)w1, qz1) and Y2(UW2(qz2)w2, qz2) for w1 ∈ W1 and w2 ∈ W2

geometrically-modified intertwining operators. For z1, z2, τ ∈ C, we have the q-trace (shifted

by − c
24 )

TrW3Y1(UW1 (qz1)w1, qz1)Y2(UW2 (qz2)w2, qz2)q
L(0)− c

24

=
∑

n∈C

Tr(W3)[n]
(πnY1(UW1(qz1)w1, qz1)Y2(UW2(qz2)w2, qz2)q

L(0)− c
24 |(W3)[n]

)

=
∑

n∈C

Tr(W3)[n]
(πnY1(UW1(qz1)w1, qz1)Y2(UW2(qz2)w2, qz2)q

n− c
24 e(log q)LW3(0)N |(W3)[n]

), (4.1)

where πn :W3 → (W3)[n] for n ∈ C is the projection from the algebraic completion

W 3 =
∏

n∈C

(W3)[n]

of

W3 =
∐

n∈C

(W3)[n]

to (W3)[n].

In general, we need to consider pseudo-q-traces of

Y1(UW1 (qz1)w1, qz1)Y2(UW2 (qz2)w2, qz2).

For a pseudo-q-trace, we need to consider a grading-restricted generalized V -module equipped

with a projective right module structure for a finite-dimensional associative algebra P over C.

We first define the pseudo-trace of an operator α ∈ EndPM on a finitely generated projective

right P -moduleM . Since P is projective, for such a right P -moduleM , there exists a projective

basis, that is, a pair of sets {wi}
n
i=1 ⊂ M , {w′

i}
n
i=1 ⊂ homP (M,P ) such that for all w ∈ M ,

w =
n∑

i=1

wi(w
′
i(w)). A linear function φ : P → C is said to be symmetric if φ(pq) = φ(qp) for all

p, q ∈ P . For a symmetric linear function φ, the pseudo-trace TrφMα of α ∈ EndPM associated

to φ is defined by

TrφMα = φ
( n∑

i=1

w′
i(α(wi))

)
.

For a grading-restricted generalized V -module W equipped with a projective right P -module

structure, its homogeneous subspaces W[n] for n ∈ C are finitely generated projective right P -

modules. Then for a given symmetric linear function φ on P , we have the pseudo-trace TrφMαn

of αn ∈ EndPW[n]. For α ∈ EndPW , we define the pseudo-q-trace
(
shifted by − c

24

)
of α by

TrφWαqLW (0)− c
24 =

∑

n∈C

TrφW[n]
(πnαq

LW (0)− c
24 |W[n]

)
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=
∑

n∈C

TrφW[n]
(πnαq

n− c
24 eLW (0)N log q|W[n]

).

Note that TrφWαqLW (0)− c
24 defined above is a series. To obtain the pseudo-q-trace of α as a

function of q, we have to prove its convergence.

What we are interested is the pseudo-q-trace
(
shifted by − c

24

)
,

TrφW3
Y1(UW1 (qz1)w1, qz1)Y2(UW2 (qz2)w2, qz2)q

L(0)− c
24

=
∑

n∈C

Trφ(W3)[n]
(πnY1(UW1(qz1)w1, qz1)Y2(UW2(qz2)w2, qz2)q

LW3(0)−
c
24 |(W3)[n]

)

=
∑

n∈C

Trφ(W3)[n]
(πnY1(UW1(qz1)w1, qz1)Y2(UW2(qz2)w2, qz2)q

n− c
24 e(log q)LW3(0)N |(W3)[n]

), (4.2)

where φ is a symmetric linear function on a finite-dimensional associative algebra P , W3 is a

projective right P -module such that its vertex operators and

Y1(UW1(qz1)w1, qz1)Y2(UW2(qz2)w2, qz2)

commute with the action of P on W3. Note that the q-trace (4.1) is the special case of (4.2)

for which P = {e}, where e is the identity element of P , and φ is given by φ(e) = 1. We want

to know whether (4.1) and (4.2) are absolutely convergent in a suitable region for z1, z2 and q.

In general, (4.1)–(4.2) might not be convergent. Just as in the case of products of inter-

twining operators, we also need some cofiniteness condition. When the confiniteness condi-

tion is satisfied, (4.1)–(4.2) are convergent in a suitable region. The method that we use to

prove this convergence is to show that the series (4.1)–(4.2) satisfy the expansion in the region

1 > |qz1 | > |qz2 | > |q| > 0 of a system of differential equations with coefficients in the ring

C[G4(τ), G6(τ), ℘2(z1 − z2; τ), ℘3(z1 − z2; τ)], where

G4(τ) =
∑

(k,l) 6=(0,0)

1

(kτ + l)4
,

G6(τ) =
∑

(k,l) 6=(0,0)

1

(kτ + l)6

are Eisenstein series and

℘2(z; τ) =
1

z
+

∑

(k,l) 6=(0,0)

( 1

(z − (kτ + l))2
−

1

(kτ + l)2

)
,

℘3(z; τ) = −
1

2

∂

∂z
℘2(z; τ)

are Weierstrass ℘-function and its derivative with respect to z multiplied by − 1
2 .

The first convergence result on q-traces of products of vertex operators on a V -module was

obtained by Zhu [41] for V satisfying the conditions that V has no nonzero element of negative

weights, every lower-bounded generalized V -module is completely reducible and a cofiniteness

condition which is now called the C2-cofiniteness condition. Let C2(V ) be the subspace of V

spanned by elements of the form Resxx
−2YV (u, v)v for u, v ∈ V . If dimV/C2(V ) < ∞, we

say that V is C2-cofinite. The convergence result of Zhu was generalized by Miyamoto in [33]
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to a convergence result on q-traces of products of one intertwining operator and several vertex

operators on modules in the case that V satisfies the three conditions mentioned above in Zhu’s

paper [41]. It was also generalized by Miyamoto in [34] to a convergence result on pseudo-

q-traces of products of vertex operators on a V -module in the case that V has no nonzero

element of negative weights and is C2-cofinite. These convergence results are all proved in two

steps: (i) An algebraic recurrence relation is proved to reduce the convergence of (pseudo-)q-

traces of products of n vertex operators on a V -module (or products of n− 1 vertex operators

on a V -module and one intertwining operator) to the convergence of (pseudo-)q-traces of one

vertex operator (or one intertwining operator) on the same V -module. (ii) The convergence of

(pseudo-)q-traces of one vertex operator (or one intertwining operator) on the same V -module

is proved by using differential equations of regular singular points.

The proofs of the algebraic recurrence relations in step (i) above need the commutator

formula for vertex operators on V -modules or the commutator formula between vertex operators

on V -modules and intertwining operators. Since in general there is no commutator formula for

intertwining operators, there is no algebraic recurrence relation to reduce the convergence of

(4.1)–(4.2) to the convergence of (pseudo-)q-traces of intertwining operators. This difficulty is

the main reason why the modular invariance of the space of q-traces of products of at least two

intertwining operators had been a conjecture for many years after Zhu’s work [41].

In [18], the author proved the convergence of (4.1). In [8–9], using the same method,

Fiordalisi generalized the convergence of (4.1) proved in [18] to the convergence of (4.2). In fact,

certain formulas on q-traces of products of geometrically-modified intertwining operators are

proved in [18] and generalized in [8–9] to pseudo-q-traces of products of geometrically-modified

intertwining operators. For example, one such formula is

TrφW3
Y1(U(qz1)w1, qz1)Y2(U(qz2)Resxx

−2YW2(u, x)w2, qz2)q
L(0)− c

24

= −
∑

k∈Z+

(2k + 1)G̃2k+2(q)Tr
φ
W3

Y1(U(qz1)w1, qz1)Y2(U(qz2)Resxx
2kYW2(u, x)w2, qz2)q

L(0)− c
24

−
∑

m∈N

(−1)m(m+ 1)℘̃m+2(zi − zj ; q)

· TrφW3
Y1(U(qz1)Resxx

mYW1(u, x)w1, qz1)Y2(U(qz2)wn, qz2)q
L(0)− c

24 ,

where G̃2k+2(q) for k ∈ Z+ are the q-expansions of the Eisenstein seriesG2k+2(τ) and ℘̃m+2(z; q)

for m ∈ N are the q-expansions of

℘m+2(z; τ) =
(−1)m

(m+ 1)!

∂m

∂zm
℘2(z; τ).

These formulas together with the C2-cofiniteness of V are used in [8–9, 18] to show that the

modules over C[G4(τ), G6(τ), ℘2(z1−z2; τ), ℘3(z1−z2; τ)] generated by these (pseudo-)q-traces

are finitely generated. Another formula involving q ∂
∂q
, ∂

∂z1
, ∂

∂z2
, LW1(0) and LW2(0), the q-

expansion of the Eisenstein series G2(τ) and the q-expansion of the Weierstrass zeta-function

℘1(z; τ) was also proved in [18] and generalized in [8–9]. We refer the reader to [8–9, 18] for this

formula. This formula in fact gives how a modular invariant differential operator containing

q ∂
∂q
, ∂

∂z1
and ∂

∂z2
acts on q-traces and pseudo-q-traces of products of geometrically-modified
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intertwining operators. In [8–9, 18], the action of this differential operator and the result that

the module over C[G4(τ), G6(τ), ℘2(z1 − z2; τ), ℘3(z1 − z2; τ)] generated by these q-traces and

pseudo-q-traces is finitely generated are used to prove that (4.1)–(4.2) satisfy the expansion in

the region 1 > |qz1 | > |qz2 | > |qτ | > 0 of a modular invariant system of differential equations

with coefficients in C[G4(τ), G6(τ), ℘2(z1−z2; τ), ℘3(z1−z2; τ)]. The system can also be chosen

to be of regular singular point at each singular point. Then the convergence of (4.1)–(4.2)

follows.

Below is the precise statement of the convergence and analytic extension of (4.2). As is

mentioned above, (4.1) is a special case of (4.2). In the semisimple case that every lower-

bounded generalized V -module is completely reducible, (4.2) is the same as (4.1).

Theorem 4.1 (see [8–9, 18]) Assume that the vertex operator algebra V has no nonzero

element of negative weights and is C2-cofinite. Then in the region 1 > |qz1 | > |qz2 | > |qτ | > 0,

the series (4.2) with q = qτ = e2πiτ is absolutely convergent and can be analytically extended

to a multivalued analytic function in the region given by ℑ(τ) > 0 (here ℑ(τ) is the imaginary

part of τ), z1 6= z2 + kτ + l for k, l ∈ Z. Moreover, the singular point z1 = z2 + kτ + l for each

k, l ∈ Z is regular, that is, any branch of the multivalued analytic function can be expanded in

a neighborhood of the singular point z1 = z2 + kτ + l as a series of the form

K∑

p=0

M∑

j=1

(z1 − z2 + kτ + l)rj (log(z1 − z2 + kτ + l))pfj,p(z1 − z2 + kτ + l),

where rj ∈ R for j = 1, · · · ,M and fj,p(z) for j = 1, · · · ,M , p = 0, · · · ,K are analytic

functions on a disk containing 0.

The convergence and analytic extensions of q-traces and pseudo-q-traces of products of more

than two intertwining operators are proved similarly. See [8–9, 18].

5 Convergence Results Associated to the Sewing Operations of Genus-

Zero Riemann Surfaces and Determinant Lines

Vertex operator algebras have a geometric definition in terms of the partial operad of the

moduli space of suitable genus-zero Riemann surfaces with punctures and local coordinates and

the determinant line bundle over this moduli space, see [15]. To prove that a vertex operator

algebra V indeed satisfies this geometric definition, associated to such surfaces, we need to

construct suitable linear maps from tensor powers of V to the algebraic completion of V using

vertex operators (corresponding to spheres with three punctures and standard local coordinates)

and Virasoro operators (corresponding to spheres with two punctures and local coordinates).

The main work is to prove that these linear maps satisfy some basic properties, including

a sewing axiom. Since there are conformal anomalies (corresponding to central charges for

the Virasoro operators), the determinant line bundle over the moduli space of such Riemann

surfaces and its powers are also involved.

The convergence results discussed in the preceding three sections are for the constructions

of correlation functions associated to genus-zero or genus-one Riemann surfaces with punctures

and standard local coordinates vanishing at the punctures. To construct and study correlation
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functions associated to Riemann surfaces with punctures and general local coordinates vanishing

at the punctures, we need to exponentiate suitable infinite sums of Virasoro operators and prove

that they behave exactly in the same way as the underlying surfaces and determinant lines. The

properties that one has to prove include in particular a convergence involving the exponentials

of suitable infinite sums of the Virasoro operators and another convergence involving the central

charge of the Virasoro algebra. These convergence problems related to the Virasoro operators

were solved by the author in [15].

For simplicity, we use genus-zero Riemann surfaces with only two punctures (one positively

oriented and the other negatively oriented) and local coordinates vanishing at the punctures

to describe these convergence results. Such a Riemann surface with punctures and local co-

ordinates is conformally equivalent to C ∪ {∞} with the positively oriented puncture 0 and

negatively oriented puncture ∞. Then the local coordinate vanishing at 0 becomes a univa-

lent analytic function f0(w) defined near 0 and vanishing at 0. Similarly the local coordinate

vanishing at ∞ becomes a univalent analytic function f∞(w) defined near ∞ and vanishing at

∞. It is further conformally equivalent to C ∪ {∞} with punctures 0 and ∞ and with local

coordinates given by f0(w) and f∞(w) as above such that the Laurent expansion of f∞(w) is

of the form 1
w
+ · · · , where · · · are higher order terms in 1

w
. We denote C ∪ {∞} with such

punctures and local coordinates by Σ. Such a genus-zero Riemann surface with two punctures

and local coordinates vanishing at the punctures are said to be canonical.

Let [Σ] be the conformal equivalence class of a canonical genus-zero Riemann surface Σ with

two punctures and local coordinates vanishing at the punctures. As in [15], we have

f0(w) = exp
( ∑

j∈Z+

A
(0)
j wj+1 d

dw

)
a
w d

dw
0 w,

f∞(w) = exp
( ∑

j∈Z+

A
(∞)
j

( 1

w

)j+1 d

d
(
1
w

)
) 1

w

for some A
(0)
j , A

(∞)
j ∈ C for j ∈ Z+ and a0 ∈ C×.

Given a vertex operator algebra V (or in general a lower-bounded Z-graded module for the

Virasoro algebra), we define a linear map ν[Σ] : V → V =
∏
n∈Z

V(n) (the algebraic completion of

V ) associated to [Σ] by

ν[Σ](v) = exp
(
−

∑

j∈Z+

A
(∞)
j LV (−j)

)
exp

(
−

∑

j∈Z+

A
(0)
j LV (j)

)
a
−LV (0)
0 v.

Let Σ1 and Σ2 be two canonical genus-zero Riemann surfaces with two punctures and local

coordinates as above. Then Σ1 and Σ2 are given by the analytic functions

f
(1)
0 (w) = exp

( ∑

j∈Z+

A
(0)
j wj+1 d

dw

)
a
w d

dw
0 w,

f (1)
∞ = exp

( ∑

j∈Z+

A
(∞)
j

( 1

w

)j+1 d

d
(
1
w

)
) 1

w

and

f
(2)
0 (w) = exp

( ∑

j∈Z+

B
(0)
j wj+1 d

dw

)
b
w d

dw
0 w,
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f (2)
∞ = exp

( ∑

j∈Z+

B
(∞)
j

( 1

w

)j+1 d

d
(
1
w

)
) 1

w
,

respectively. Then we have ν[Σ1], ν[Σ2] : V → V . We define a series ν[Σ1] ◦ ν[Σ2] of linear maps

from V to V by

(ν[Σ1] ◦ ν[Σ2])(v) =
∑

n∈Z

ν[Σ1](πnν[Σ2](v)),

where πn for n ∈ Z is the projection from V to V(n).

On the other hand, if there exists r ∈ R+ such that we can cut disks of radius r from Σ1

and Σ2 using the local coordinates vanishing at 0 on Σ1 and at ∞ on Σ2, respectively, with

the remaining parts of the surfaces still containing the other punctures, we say that Σ1 can

be sewn with Σ2. In this case, we identify the boundary of the remaining part of Σ1 with the

boundary of the remaining part of Σ2 using the composition of the local coordinate map near

0 in Σ1, the map w 7→ 1
w

and the inverse of the local coordinate map near ∞ in Σ2 to obtain a

new genus-zero Riemann surfaces with two punctures and local coordinates. We denote it by

Σ1 1∞0 Σ2. The sewing axiom in the geometric definition of vertex operator algebra states that

ν[Σ1] ◦ ν[Σ2] is absolutely convergent when Σ1 can be sewn with Σ2 and its sum is proportional

to ν[Σ1 1∞0 Σ2].

To prove the sewing axiom in this case, one first has to prove the convergence of ν[Σ1] ◦ ν[Σ2]

when Σ1 and Σ2 can be sewn together. The following result is a special case of a more general

result proved in [15].

Theorem 5.1 (see [15]) Assume that Σ1 can be sewn with Σ2. Then ν[Σ1]◦ν[Σ2] is absolutely

convergent in the sense that for v ∈ V and v′ ∈ V ′,

〈v′, (ν[Σ1] ◦ ν[Σ2])(v)〉 =
∑

n∈Z

〈v′, ν[Σ1](πnν[Σ2](v))〉

is absolutely convergent.

We briefly explain the idea of the proof of this result. In fact,

∑

n∈Z

〈v′, ν[Σ1](πnν[Σ2](v))〉

=
〈
v′, exp

(
−

∑

j∈Z+

A
(∞)
j LV (−j)

)
exp

(
−

∑

j∈Z+

A
(0)
j LV (j)

)
a
−LV (0)
0

· exp
(
−

∑

j∈Z+

B
(∞)
j LV (−j)

)
exp

(
−

∑

j∈Z+

B
(0)
j LV (j)

)
b
−LV (0)
0 v

〉
, (5.1)

where the right-hand side should be viewed as a Laurent series in a0. It is proved in [15] by

using formal calculus and properties of the Virasoro operators on V that the right-hand side of

(5.1) is equal to

∑

n∈Z

〈
v′, exp

(
−

∑

j∈Z+

A
(∞)
j LV (−j)

)
exp

( ∑

j∈Z+

Ψ−jLV (−j)
)
exp

( ∑

j∈Z+

ΨjLV (j)
)

· a
−LV (0)
0 eΨ0LV (0)eΓc exp

(
−

∑

j∈Z+

B
(0)
j LV (j)

)
b
−LV (0)
0 v)

〉
, (5.2)
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where Ψj for j ∈ Z and Γ are Laurent series in a
(1)
0 with polynomials in A

(0)
j and B

(∞)
j for

j ∈ Z+ as coefficients. It is proved in [15] by using the uniformization theorem and an old

result of Grauert that the Laurent series Ψj for j ∈ Z are expansions of analytic functions and

therefore are absolutely convergent. It is also proved in [15] by using the analyticity of the

canonical isomorphisms between the tensor product of the determinant lines of Σ1 and Σ2 and

the determinant line of Σ1 1∞0 Σ2, that the Laurent series Γ is the expansion of an analytic

function and therefore is also absolutely convergent. Then (5.2) and thus the left-hand side of

(5.1) is absolutely convergent.

The convergence result discussed above also applies to lower-bounded generalized V -modules

and even to any lower-bounded graded modules for the Virasoro algebra.

The convergence of Ψj for j ∈ Z above was generalized by Barron [1–2] to the case of N = 1

superconformal algebras.

6 A Higher-Genus Convergence Result of Gui

Conformal field theories have a geometric formulation given by Segal [37]. Segal in [37]

further gave a geometric formulation of chiral conformal field theories (called weakly conformal

field theories). One of the main goal of the mathematical study of conformal field theories

is to construct chiral and full conformal field theories satisfying Segal’s axioms. In particu-

lar, one needs to construct correlation functions associated to Riemann surfaces with ordered,

parametrized and labeled boundaries or, equivalently, Riemann surfaces with punctures and

local coordinates vanishing at punctures, from genus-zero Riemann surfaces with one, two or

three punctures and local coordinates. Correlation functions corresponding to the genus-zero

Riemann surface with one puncture and the standard local coordinate are determined by the

vacuum of the conformal field theory. Correlation functions corresponding to genus-zero Rie-

mann surfaces with two punctures and local coordinates have been discussed in the preceding

section and are given by the Virasoro operators on modules for a vertex operator algebra.

Correlation functions corresponding to genus-zero Riemann surfaces with three punctures and

standard local coordinates are given by intertwining operators. So to construct chiral confor-

mal field theories, one needs to construct correlation functions associated to arbitrary Riemann

surfaces with punctures and local coordinates from the vacuum, the Virasoro operators and

intertwining operators. The genus-zero correlation functions and genus-one correlation func-

tions were constructed in [17] and [18], respectively (see also Sections 3–4 for the convergence

problems associated to these constructions).

To construct higher-genus chiral correlation functions from genus-zero and genus-one chiral

correlation functions, we need to prove a higher-genus convergence. For rational conformal field

theories, this was in fact stated as a conjecture in [21, 40]. This conjecture was proved in 2020

by Gui [13].

We now describe this higher-genus convergence result. LetW1, · · · ,Wn be grading-restricted

generalized V -modules. For w1 ∈ W1, · · · , wn ∈ Wn, an n-point genus-g correlation function

associated to W1, · · · ,Wn is a linear map from W1 ⊗ · · · ⊗ Wn to the space of multivalued

analytic functions on the moduli space of genus-g Riemann surfaces with n punctures and local
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coordinates vanishing at the punctures satisfying suitable conditions. Here for simplicity we

omit the description of these conditions.

Let Σ1 be a genus-g1 Riemann surface with n1 punctures and local coordinates vanishing at

the punctures and Σ2 be a genus-g2 Riemann surface with n2 punctures and local coordinates

vanishing at the punctures. If there exists r ∈ R+ such that we can cut disks of radius r

from Σ1 and Σ2 using the local coordinates vanishing at the i-th puncture on Σ1 and at the

j-th puncture on Σ2, respectively, with the remaining parts of the surfaces still containing the

other punctures, we say that Σ1 can be sewn with Σ2 at the i-th puncture on Σ1 and the j-th

puncture on Σ2. In this case, we can identify the boundary of the remaining part of Σ1 with the

boundary of the remaining part of Σ2 using the composition of the local coordinate map near

the i-th puncture on Σ1, the map w 7→ 1
w

and the inverse of the local coordinate map near the

j-th puncture on Σ2 to obatin a new Riemann surfaces with punctures and local coordinates.

Let ψ1 be an n1-point genus-g1 correlation function associated to W1, · · · ,Wn1 and ψ2 be

an n2-point genus-g2-correlation function associated to W̃1, · · · , W̃n2 . Assume that W̃j = W ′
i .

One axiom for chiral conformal field theories requires that the series
∑

k∈Z+

(ψ1(w1 ⊗ · · · ⊗ wi−1 ⊗ w
(k)
i ⊗ wi+1 ⊗ · · · ⊗ wn1))([Σ1])

· (ψ2(w̃1 ⊗ · · · ⊗ w̃j−1 ⊗ (w
(k)
i )′ ⊗ w̃j+1 ⊗ · · · ⊗ w̃n2))([Σ2]) (6.1)

is absolutely convergent when Σ1 can be sewn with Σ2 at the i-th puncture on Σ1 and the

j-th puncture on Σ2, where {w
(k)
i }k∈Z+ and {(w

(k)
i )′}k∈Z+ are dual homogeneous basis of Wi

and W ′
i = W̃j . This is the higher-genus convergence problem for the sewing of two Riemann

surfaces. The convergence of products of intertwining operators discussed in Section 3 is the

special case of this convergence.

There is also another convergence problem for the self sewing of one Riemann surface. Let

Σ be a genus-g Riemann surface with n punctures and local coordinates vanishing at punctures.

If there exists r ∈ R+ such that we can cut disks of radius r from Σ using the local coordinates

vanishing at the i-th and the j-th punctures on Σ with the remaining parts of the surfaces still

containing the other punctures, we say that Σ can be sewn at the i-th and j-th punctures. In

this case, we can also obtain a new genus-g+1 Riemann surface with n− 2 punctures and local

coordinates vanishing at the punctures by sewing Σ at the i-th and j-th punctures using the

same procedure as in the case of two surfaces above.

Let ψ be an n-point genus-g correlation function associated to W1, · · · ,Wn. Assume that

Wj =W ′
i . Assume that i < j. Then one axiom for chiral conformal field theories requires that

the series
∑

k∈Z+

(ψ(w1 ⊗ · · · ⊗ wi−1 ⊗ w
(k)
i ⊗ wi+1 ⊗ · · · ⊗ wj−1 ⊗ (w

(k)
i )′ ⊗ wj+1 ⊗ · · · ⊗ wn))([Σ]) (6.2)

is absolutely convergent when Σ can be sewn at the i-th and j-th punctures. This is the

convergence problem for the self sewing of one Riemann surface. The convergence of the q-

traces of products of geometrically-modified intertwining operators discussed in Section 4 is the

special case of this convergence.

The following theorem is proved by Gui in [13].
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Theorem 6.1 (see [13]) Let V be a C2-cofinite vertex operator algebra containing no

nonzero elements of negative weights. If the grading-restricted generalized V -modules involved

are finitely generated, then (6.1)–(6.2) are absolutely convergent when Σ1 can be sewn with Σ2

at the i-th puncture on Σ1 and the j-th puncture on Σ2 and when Σ can be sewn at the i-th and

j-th punctures, respectively.

As in the proof of the convergence of products of intertwining operators and the proof of the

convergence of q-traces and pseudo-q-traces of products of geometrically-modified intertwining

operators discussed Sections 3 and 4, respectively, this theorem is proved in [13] by deriving

differential equations. But in this case the derivation of the differential equations involving

analytic functions on the moduli space of higher-genus Riemann surfaces. These analytic func-

tions are much more difficult to study than those on the moduli spaces of genus-zero and

genus-one Riemann surfaces. For example, the differential equations satisfied by q-traces and

pseudo-q-traces of products of intertwining operators were derived using the q-expansions of

the derivatives of the Weierstrass function (see [18]). We need similar results for functions on

the moduli space of higher-genus surfaces. This difficult in the higher-genus case was overcame

in [13] by using a theorem of Grauert in complex analysis.

7 Convergence Conjectures and Problems in Orbifold Conformal Field

Theory

Orbifold conformal field theories are conformal field theories constructed from known con-

formal field theories and their automorphisms. In the framework of the representation theory

of vertex operator algebras, orbifold conformal field theory is the study of twisted intertwining

operators among (generalized) twisted modules. In this section, we discuss the convergence

conjectures and problems for orbifold conformal field theories.

Let V be a vertex operator algebra and g be an automorphism of V . A lower-bounded

generalized g-twisted module is a C-graded vector space W =
∐
n∈C

W[n] such that W[n] = 0

when ℜ(n) is sufficiently negative, equipped with a twisted vertex operator map

Y g
W : V ⊗W →W{z}[log z]

v ⊗ w 7→ Y g
W (v, z)w

satisfying suitable axioms, including in particular an equivariance property and a duality prop-

erty which requires that products of twisted vertex operators are convergent in suitable regions

and the associativity and commutativity for twisted intertwining operators hold. To construct

lower-bounded generalized twisted modules, the convergence of products of twisted vertex oper-

ators can be proved using the method in Section 2 (see [22]). In [7], by using the method of Zhu

[41], Dong, Li and Mason generalized the convergence and analytic extension results of Zhu [41]

to the convergence and analytic extension of q-traces of twisted vertex operators on a g-twisted

module associated to a finite order automorphism g of a C2-cofinite vertex operator algebra V .

But orbifold conformal field theories are about twisted intertwining operators among twisted

modules. In general, the convergences of products and (pseudo-)q-traces of products of twisted

intertwining operators are still conjectures.
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Let W1, W2 and W3 be generalized g1-, g2- and g3-twisted V -modules, respectively. A

twisted intertwining operator Y of type
(

W3

W1W2

)
is a linear map

Y :W1 ⊗W2 →W3{z}[log z]

w1 ⊗ w2 7→ Y(w1, z)w2

satisfying a duality property and an L(−1)-derivative property. In particular, just as intertwin-

ing operators among (untwisted) generalized V -modules, for w1 ∈W1, we have

Y(w1, z) ∈ hom(W3,W2)[log z]{z}.

As in the case of intertwining operators among (untwisted) generalized V -modules, let W1,

W2, W3, W4 and W5 be generalized g1-, g2-, g3-, g3- and g5-twisted V -modules, respectively,

and Y1 and Y2 be twisted intertwining operators of types
(

W4

W1W5

)
and

(
W5

W2W3

)
, respectively.

Then for w1 ∈ W1 and w2 ∈ W2,

Y1(w1, z1)Y1(w2, z2) ∈ hom(W3,W4)[log z2, log z2]{z1, z2}.

We have a series in C,

〈w′
4,Y1(w1, z1)Y1(w2, z2)w3〉|log z1=lp(z1), log z2=lp(z2) (7.1)

for w1 ∈ W1 and w2 ∈ W2, w3 ∈W3 and w′
4 ∈W ′

4.

Note that W1, W2, W3, W4 and W5 are generalized V G-modules where G is the fixed

point subalgebra of V under the group G generated by g1, g2, g3, g4, g5. Also Y1 and Y2 are

intertwining operators of types
(

W4

W1W5

)
and

(
W5

W2W3

)
when W1, W2, W3, W4 and W5 are viewed

as generalized V G-modules. Thus if W1, W2, W3 and W ′
4 are quasi-finite-dimensional and C1-

cofinite as V G-modules, by Theorem 3.1, (7.1) is absolutely convergent in the region |z1| >

|z2| > 0 and can be analytic extended as in Theorem 3.1. This approach indeed works in the

case that V satisfies the three conditions in Theorem 6.1 and G is a finite solvable group because

Canahan and Miyamoto proved in [5] that in this case, V G also satisfies these three conditions

(see also [32] for a new proof of this result).

But for an infinite group or a finite nonsolvable group G, V G being C2-cofinite or even C1-

cofinite when V is C2-cofinite is still an open problem. Instead of trying to prove V G satisfies

the conditions needed, the author proposed in [21, 23] a program to study orbifold conformal

field theories by studying directly twisted intertwining operators among suitable generalized

twisted V -modules. In this program, we need to prove in particular that (7.1) is absolutely

convergent in the region |z1| > |z2| > 0 and the sum can be analytic extended as in Theorem

3.1. As in the case of intertwining operators among (untwisted) generalized V -modules, we

expect that (7.1) is absolutely convergent only when W1, W2, W3, W4 and W5 as generalized

twisted V -modules (not as generalized V G-modules) satisfy certain conditions.

Though (7.1) looks completely the same as (3.1), it is much more difficult to study since

the twisted vertex operators for generalized twisted modules in general involve nonintegral

powers and logarithms of the variables. It is especially difficult to study in the case that

the automorphisms g1, g2, g3, g4, g5 do not commute with each other. There is still no general

convergence result yet. But we have the following conjecture formulated in [21, 23].
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Conjecture 7.1 Let V be a vertex operator algebra satisfying the following conditions: (i)

V is of positive energy, that is, V(n) = 0 for n < 0 and V(0) = C1, and V is equivalent to

V ′ as a V -module. (ii) V is C2-cofinite. (iii) Every grading-restricted generalized V -module is

completely reducible. Let G be a finite group of automorphisms of V . Let g1, g2, g3, g4, g5 ∈ G,

W1, W2, W3, W4 and W5 be grading-restricted generalized g1-, g2-, g3-, g4- and g5-twisted

V -modules, respectively, and Y1 and Y2 be twisted intertwining operators of types
(

W4

W1W5

)
and(

W5

W2W3

)
, respectively. Then for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′

4 ∈ W ′
4, the series (7.1) is

absolutely convergent in the region |z1| > |z2| > 0 and its sum can be analytically continued to

a multivalued analytic function on M2.

The general form of this convergence conjecture is for the product of more than two inter-

twining operators. See [23] for details.

For orbifold conformal field theories, we also need to study q-traces or pseudo-q-traces of

products of intertwining operators. Let g1, g2, g3, g4 be automorphism of V , W1, W2, W3 and

W4 be grading-restricted generalized g1-, g2-, g3- and g4-twisted V -modules, respectively, and

Y1 and Y2 be twisted intertwining operators of types
(

W3

W1W4

)
and

(
W4

W2W3

)
, respectively. Let P

be a finite-dimensional associative algebra and φ be a symmetric linear function on P . Assume

that W3 is a projective right P -module such that its twisted vertex operators and

Y1(UW1(qz1)w1, qz1)Y2(UW2(qz2)w2, qz2)

commute with the action of P on W3. Then we have the pseudo-q-trace

TrφW3
Y1(UW1 (qz1)w1, qz1)Y2(UW2 (qz2)w2, qz2)q

L(0)− c
24

=
∑

n∈C

(Trφ(W3)[n]
πnY1(UW1(qz1)w1, qz1)Y2(UW2(qz2)w2, qz2)q

LW3 (0)−
c
24 |(W3)[n]

)

=
∑

n∈C

(Trφ(W3)[n]
πnY1(UW1(qz1)w1, qz1)Y2(UW2(qz2)w2, qz2)q

n− c
24 e(log q)LW (0)N |(W3)[n]

). (7.2)

We have the following convergence conjecture on pseudo-q-traces of products of intertwining

operators given in [21, 23].

Conjecture 7.2 Let V be a vertex operator algebra satisfying the conditions in Conjecture

7.1 and G be a finite group of automorphisms of V . Then for g1, g2, g3, g4 ∈ G, the series (7.2)

with q = qτ = e2πiτ is absolutely convergent in the region 1 > |qz1 | > |qz2 | > |qτ | > 0 and can be

analytically extended to a multivalued analytic function in the region given by ℑ(τ) > 0 (here

ℑ(τ) is the imaginary part of τ), z1 6= z2 + kτ + l for k, l ∈ Z. Moreover, the singular point

z1 = z2 + kτ + l for each k, l ∈ Z is regular, that is, any branch of the multivalued analytic

function can be expanded in a neighborhood of the singular point z1 = z2 + kτ + l as a series of

the form

K∑

p=0

M∑

j=1

(z1 − z2 + kτ + l)rj (log(z1 − z2 + kτ + l))pfj,p(z1 − z2 + kτ + l),

where rj ∈ R for j = 1, · · · ,M and fj,p(z) for j = 1, · · · ,M , p = 0, · · · ,K are analytic

functions on a disk containing 0.
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The general form of this convergence conjecture is for pseudo-q-traces of products of more

than two intertwining operators. See [23] for details.

In the general case, we have the following problem.

Problem 7.1 Let V be a vertex operator algebra and let G be a group of automorphisms of

V . Under what conditions do products and pseudo-q-traces of products of twisted intertwining

operators among the grading-restricted generalized g-twisted V -modules for g ∈ G converge

and have analytic extensions as in the conjectures above?

8 Convergence Problems in the Cohomology Theory of Vertex Alge-

bras

In [19–20], the author introduced a cohomology theory for grading-restricted vertex algebras

and showed that the cohomology for a grading-restricted vertex algebra has the properties that

a conhomology theory must have. Let V be a grading-restricted vertex algebra and W be a

grading-restricted generalized V -module. Let W =
∏
n∈C

W[n] be the algebraic completion of

W . A W -valued rational function in z1, · · · , zn is a W -valued function f(z1, · · · , zn) such that

〈w′, f(z1, · · · , zn)〉 is a rational function in z1, · · · , zn for w′ ∈ W ′. In this cohomology theory,

n-cochains with coefficients in W are maps from the n-th tensor power of V to the space of

W -valued rational functions in variables z1, · · · , zn with the only possible poles zi − zj = 0 for

i 6= j, satisfying several conditions, including in particular a condition that the series obtained

by composing these maps with vertex operator maps for V and for W involving additional m

variables zn+1, · · · , zm+n are absolutely convergent in suitable regions and can be analytically

extended to rational functions in z1, · · · , zm+n with the only possible poles at zi = zj for i 6= j,

i, j = 1, · · · ,m + n. This convergence is important since the coboundary operator is defined

using the rational functions obtained from these convergent series.

Since cochains in this cohomology theory by definition must satisfy such a convergence

condition, results and explicit calculations in this cohomology theory are always based on some

basic convergence results or assumptions. Though the series involved should be convergent to

rational functions, the method in Section 2 cannot be applied because cochains does not satisfy

properties such as weak commutativity or weak associativity. To understand this cohomology

theory and apply it to solve mathematical problems, we need to find algebraic conditions on the

vertex algebra and modules and to develop new techniques to prove this type of convergence

under these algebraic conditions.

It is proved in [19] that 1-cochains always satisfy the convergence condition. So here we use

2-cochain to discuss the convergence condition. Given a grading-restricted vertex algebra V

and a grading-restricted (or lower-bounded) generalized V -module W , a 2-cochain composable

with m vertex operators is equivalent to a linear map

Ψ : V ⊗ V →W ((x))

v1 ⊗ v2 7→ Ψ(v1, x)v2 (8.1)

satisfying certain conditions, including in particular, the condition that the series obtained from

the compositions of Ψ with m vertex operators are absolutely convergent in suitable regions.
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For example, for w′ ∈W ′, v, v1, · · · , vk+l+1 ∈ V ,

〈w′, YW (v1, z1) · · ·YW (vk, zk)Ψ(v, z)YV (vk+1, zk+1) · · ·YV (vk+l, zk+l)vk+l+1〉

should be absolutely convergent in the region |z1| > · · · |zk| > |z| > |zk+1| > · · · > |zk+l| > 0

to a rational function in z1, · · · , zk+l, z with the only possible poles zi = 0 for i = 1, · · · , k + l,

z = 0, zi = zj for 1 ≤ i < j ≤ k+ l and zi = z for i = 1, · · · , k+ l. Another type of compositions

is given by iterates, for example,

〈w′,Ψ(YV (v1, z1 − zm+1) · · ·YV (vm, zm − zm+1)vm+1, zm+1)vm+2〉.

This series is required to be absolutely convergent in the region |zm+1| > |z1 − zm+1| > · · · >

|zm − zm+1| > 0 to a rational function in z1, · · · , zm+1 of the form above. There are certainly

many different ways to compose Ψ with m vertex operators. They are all required to be

absolutely convergent in suitable regions to rational functions in z1, · · · , zm+1 of the form above.

To calculate explicitly the cohomology of a grading-restricted vertex algebra, we need to

find all the cochains first. Thus the first problem in such a calculation is to determine all the

maps from the n-th tensor power of V to the space of W -valued rational functions in variables

z1, · · · , zn satisfying the convergence condition. This is in general not an easy problem, even for

a relatively simple vertex algebra. For example, if we want to calculate the second cohomology

of a grading-restricted vertex algebra V , we need to determine all those maps of the form (8.1)

such that the convergence condition holds. For example, in the case m = 1 above, we need to

determine in particular whether

〈w′,Ψ(v1, z1)YV (v2, z2)v3〉,

〈w′, YW (v1, z1)Ψ(v2, z2)v3〉

are absolutely convergent in the region |z1| > |z2| > 0 to a rational function in z1 and z2 with

the only possible poles at z1 = 0, z2 = 0 and z1 − z2 = 0. Note that Ψ(v1, z1) and YV (v2, z2) or

YW (v1, z1) and Ψ(v2, z2) do not have to satisfy the weak commutativity, as we have discussed

in Section 2, the method in Section 2 cannot be used to determine such Ψ. So we have the

following problem.

Problem 8.1 Is there a general method that can be used to determine all the cochains? Are

there algebraic conditions on V and W such that we can determine all the cochains coposable

with m vertex operators using these algebraic conditions?

Another convergence problem related to the cohomology theory appeared in the work [29] of

Qi and the author. It has been proved in [19] that the first cohomology of a grading-restricted

vertex algebra V with coefficients in a grading-restricted generalized V -moduleW is isomorphic

to the space of derivations from V to W modulo the space of inner derivations. In [29], it is

proved that if every derivation from V to W is the sum of an inner derivation and a derivation

called zero-mode derivation for every Z-graded bimodules when V is viewed as a meromorphic

open-string vertex algebra, then every lower-bounded generalized V -module satisfying a com-

posability condition is completely reducible. In this result, the complete reducibility holds only
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for lower-bounded generalized V -module satisfying a composability condition. This compos-

ability condition is in fact a convergence condition.

We now describe this composability condition. Let W be a lower-bounded generalized

V -module and W2 be a V -submodule of W . We say that the pair (W,W2) satisfies the com-

posability condition if there exists a graded subspace W1 of W such that W = W1 ⊕W2 as a

graded vector space and

〈w′
2, YW2(v1, z1) · · ·YW2 (vk, zk)πW2YW (v, z)πW1YW1(vk+1, zk+1) · · ·YW1(vk+l, zk+l)w1〉 (8.2)

for v, v1, · · · , vk+l ∈ V , w′
2 ∈ W ′

2 and w1 ∈ W1 is absolutely convergent in the region |z1| >

· · · |zk| > |z| > |zk+1| > · · · > |zk+l| > 0 to a rational function in z1, · · · , zk+l, z with the only

possible poles zi = 0 for i = 1, · · · , k + l, z = 0, zi = zj for 1 ≤ i < j ≤ k + l and zi = z

for i = 1, · · · , k + l such that the orders of the poles satisfy some conditions which we omit

here. If for every proper nonzero left V -submodule W2 of W , the pair (W,W2) satisfies the

composability condition, we say that W satisfies the composability condition.

Assume that V contains a subalgebra V0 such that the following conditions for intertwining

operators among grading-restricted generalized V0-modules are satisfied:

(1) For any n ∈ Z+, products of n intertwining operators among grading-restricted gen-

eralized V0 modules evaluated at z1, · · · , zn are absolutely convergent in the region |z1| >

· · · > |zn| > 0 and can be analytically extended to (possibly multivalued) analytic functions in

z1, · · · , zn with the only possible singularities (branch points or poles) zi = 0 for i = 1, · · · , n

and zi = zj for i, j = 1, · · · , n, i 6= j.

(2) The associativity of intertwining operators among grading-restricted generalized V0-

modules holds.

Then it is proved in [29] that for a lower-bounded generalized V -moduleW , a lower-bounded

generalized V -submodule W2 of W and a lower-bounded generalized V0-submodule W1 of W

such that W =W1 ⊕W2, the pair (W,W2) satisfies the composability condition. In particular,

W satisfies the composability condition.

This result on the composability requires that there is a nice subalgebra V0 of V . This is in

general not true.

In [36], Qi studied the composability condition in the case that V is a Virasoro vertex oper-

ator algebra. For certain special V -modules and their submodules, he proved the composability

conditions.

We have the following main convergence problem related to this complete reducibility the-

orem in [29].

Problem 8.2 Are there algebraic conditions on V , W and W2 such that the pair (W,W2)

satisfies the composability condition if these algebraic conditions are satisfied?
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