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Abstract

This paper deals with the spectral approximation of an incompressible viscous/inviscid cou-
pled model. An efficient Uzawa algorithm based on a new variational formulation is proposed.
The generalization to the coupling between the Navier-Stokes equations and the Euler equations

is discussed.
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§1. Introduction

The strategy of coupling different mathematical models, as a particular implementation of

domain decomposition ideas, allows faster solution of partial differential equations in many

cases.

Indeed, in the simulation of the fluid flow past an obstacle for instance, often a complex

and expensive model is only needed in a small fraction of domain, outside this region, one

can use a simpler and cheaper model where the diffusion effects are negligible. Three major

points in the coupled models consist in:

(i) finding correct conditions on the interfaces separating the viscous and inviscid subdo-

mains;

(ii) proposing an efficient numerical discretization;

(iii) choosing an appropriate numerical algorithm.

The first point is essential. The correct interface conditions could guarantee the well-

posedness of the coupled problem. We use an artificial regularization technique to find the

interface conditions. A spectral method is proposed to approximate the coupled problem

based on a global variational formulation. In the existing literature, the numerical algorithm

to solve the resultant discrete equations was iteration-by-subdomain resolution (known as the

Schwarz alternating algorithm). An effective iterative procedure requires exact convergence

analysis and certain numbers of repeat resolutions to reach the convergence, which is often

theoretically non trivial and numerically costly. Instead, the coupled technique introduced
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here allows us to solve globally the coupled problem. This global resolution method does

not require the convergence analysis of the interface iterative procedure and, on the other

hand, avoids repeat computations. It offers potential advantages in regard to the overall

computational cost in many cases.

§2. Viscous/Inviscid Coupled Model

We assume that Ω is a bounded, connected, open subset of R2, with a Lipschitz boundary

∂Ω; Ω− and Ω+ are two open subsets of Ω, with Ω− ∩ Ω+ = ∅, Ω̄− ∪ Ω̄+ = Ω̄. Let

Γk=∂Ω ∩ ∂Ωk, k = −,+;Γ = ∂Ω− ∩ ∂Ω+. n⃗ is the normal on ∂Ω to Ω, and n⃗−, n⃗+ the

normals on Γ to Ω−,Ω+ respectively. For any real number s, we consider the classical

Hilbert Sobolev space Hs(Ω), provided with the usual norm ∥ · ∥s,Ω, and also, when s is an

integer, with the semi-norm | · |s,Ω. When s is an integer, we denote by Hs− 1
2 (∂Ω) the trace

space of Hs(Ω). The dual space of H
1
2 (∂Ω) is denoted by H

1
2 (∂Ω)′. For any integer s ≥ 1,

Hs
0(Ω) stands for the closure in H

s(Ω) of the space of infinitely differentiable functions with

compact support in Ω. L2
0(Ω) = {v; v ∈ L2(Ω),

∫
Ω
vdx = 0}.

Throughout this paper, with any function φ defined in Ω, we identify by φk the restriction

in Ωk of φ, k = −,+. Reciprocally, for the functions φk defined in Ωk, we denote by φ the

pair (φ−, φ+). In all that follows, C,C1, C2, · · · are generic positive constants independent

of the discretization parameters.

Consider first the viscous/inviscid coupled problem: for f⃗ given in L2(Ω)2 and α a positive

constant, find two function pairs (u⃗−, p−), (u⃗+, p+) defined in Ω− and Ω+ respectively, such

that {
αu⃗− − ν△u⃗− +∇p− = f⃗−, ∇ · u⃗− = 0 in Ω−,

αu⃗+ +∇p+ = f⃗+, ∇ · u⃗+ = 0 in Ω+,
(2.1)

with the boundary conditions u⃗−|Γ− = 0, u⃗+ · n⃗|Γ+ = 0. Obviously, appropriate conditions

on the interface Γ are required. In order to find them, we introduce the space

W = {v⃗; v⃗ ∈ H1(Ω)2,∇ · v⃗ = 0, v⃗|Γ−∪Γ+ = 0}

and define

µε(x) =

{
ν if x ∈ Ω−,
ε if x ∈ Ω+,

where ε > 0 tending to zero.

Now consider global viscous variational problem: Find u⃗ε ∈ W such that

α(u⃗ε, v⃗) + (µε∇u⃗ε,∇v⃗) = (f⃗ , v⃗), ∀v⃗ ∈ W, (2.2)

where (·, ·) is the scalar product of L2(Ω)2. The following theorem is well known[6]:

Theorem 2.1. For all ε > 0, problem (2.2) admits one unique solution.

It is noted that all solutions of (2.2) satisfy the relationships on the interface Γ:{
ν
∂u⃗−ε
∂n⃗−

− p−ε · n⃗− = −ε∂u⃗
+
ε

∂n⃗+
+ p+ε · n⃗+ in the sense of H

1
2 (Γ)

′
,

u⃗−ε = u⃗+ε on Γ.
(2.3)

In order to pass to limit in (2.3), we need the following standard estimates.

Lemma 2.1. There exists a constant C > 0 such that, for all ε > 0,

∥u⃗ε∥20,Ω ≤ C, ν∥u⃗−ε ∥21,Ω− ≤ C, ε∥u⃗+ε ∥21,Ω+ ≤ C.
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Using weak convergence theory and noting that p+ ∈ H1(Ω+), we see that Lemma 2.1

gives the following interfaces conditions:{
ν ∂u⃗−

∂n⃗− − p− · n⃗− = p+ · n⃗+ on Γ,
u⃗− · n⃗− = −u⃗+ · n⃗+ on Γ.

(2.4)

Consider now the equations (2.1) and (2.4). We use variational method to prove its well-

posedness. Define two real Hilbert spaces:

X = {v⃗; v⃗|Ω− ∈ H1(Ω−)2, v⃗|Ω+ ∈ L2(Ω+)2, v⃗|Γ− = 0},
M = {q; q|Ω− ∈ L2(Ω−), q|Ω+ ∈ H1(Ω+)} ∩ L2

0(Ω)

with respectively the norms

∥v⃗∥X = ∥v⃗−∥1,Ω− + ∥v⃗+∥0,Ω+ , and ∥q∥M = ∥q−∥0,Ω− + |q+|1,Ω+ .

We write (2.1) and (2.4) under the variational formulation: Find u⃗× p ∈ X ×M , such that

α(u⃗, v⃗) + ν(∇u⃗−,∇v⃗−)− − (p−,∇ · v⃗−)− + (∇p+, v⃗+)+ − (p+ · n⃗+, v⃗−)Γ = (f⃗ , v⃗), ∀v⃗ ∈ X,

(∇ · u⃗−, q−)− − (u⃗+,∇q+)+ − (u⃗− · n⃗−, q+)Γ = 0, ∀q ∈M, (2.5)

where (·, ·)k, (·, ·)Γ are defined by

(φ,ψ)k =

∫
Ωk

φψ , (φ,ψ)Γ =

∫
Γ

φψ , k = −,+ .

Theorem 2.2. For all α and ν positive, problem (2.5) has one unique solution in X×M .

Proof. Define two bilinear forms a and b as follow:

a(u⃗, v⃗) = α(u⃗, v⃗) + ν(∇u⃗−,∇v⃗−)− ∀u⃗, v⃗ ∈ X,

b(v⃗, q) = −(q−,∇ · v⃗−)− + (∇q+, v⃗+)+ + (q+, v⃗− · n⃗−)Γ, ∀v⃗ ∈ X, q ∈M.

Problem (2.5) can be rewritten in the saddle-point form: Find u⃗× p ∈ X ×M , such that{
a(u⃗, v⃗) + b(v⃗, p) = (f⃗ , v⃗), ∀v⃗ ∈ X,
b(u⃗, q) = 0, ∀q ∈M.

(2.6)

Applying the saddle-point theory[6], we prove the theorem by checking the following prop-

erties:

(i) First, the continuity and coercivity of the mapping (u⃗, v⃗) 7→ a(u⃗, v⃗) in X × X are

trivial.

(ii) The form b is continuous. In fact

b(v⃗, q) ≤ ∥q−∥0,Ω− |v⃗−|1,Ω− + |q+|1,Ω+∥v⃗+∥0,Ω+ + ∥q+∥0,Γ∥v⃗− · n⃗−∥0,Γ
≤γ∥q∥M∥v⃗∥X ,

where γ is a positive constant depending on the continuous trace mapping constant from

H1(Ω−) or H1(Ω+) to H1/2(Γ).

(iii) The “inf-sup” condition of b in X ×M . The “inf-sup” condition of the form

b−(v⃗
−, q−)

def.
= (q−,∇ · v⃗−)−

in the space pair H1(Ω−)2 × L2(Ω−) is given in [2], the one of the form

b+(v⃗
+, q+)

def.
= (∇q+, v⃗+)+ in L2(Ω+)2 ×H1(Ω+)

is given in [2]. But for the form b, due to the presence of the interface term (q+, v⃗− · n⃗−)Γ, its
proof of compatibility condition in X ×M requires much techniques, which is given below:
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Let q ∈M , decompose q− by

q− = q−0 + q̃− (2.7)

such that q−0 ∈ L2
0(Ω

−), and q̃− is constant in Ω−. It is known that for q−0 ∈ L2
0(Ω

−), there

exists a v⃗−0 ∈ H1
0 (Ω

−)2 such that

∇ · v⃗−0 = −q−0 and ∥v⃗−0 ∥1,Ω− ≤ 1

β− ∥q−0 ∥0,Ω− , (2.8)

where β− is a positive constant. Now we fix a function v⃗′ ∈ X which satisfies

∫
Γ

v⃗′ · n⃗− = 1,

and let w⃗0 be the solution of the following problem∫
Ω−

(∇ · w⃗)q =
∫
Ω−

(∇ · v⃗′)q ∀q ∈ L2
0(Ω

−). (2.9)

If define ˜⃗v
−
= v⃗′ − w⃗0, then the function ˜⃗v

−
satisfies∫

Ω−
(∇ · ˜⃗v

−
)q = 0, ∀q ∈ L2

0(Ω
−) and

∫
Γ

˜⃗v
−
· n⃗− = 1. (2.10)

Let v⃗− = v⃗−0 − q̃−˜⃗v
−
. We obtain by using (2.7), (2.8) and (2.10),

−
∫
Ω−

q−∇ · v⃗− = −
∫
Ω−

(q−0 + q̃−)∇ · (v⃗−0 −q̃−˜⃗v
−
) = ∥q−0 ∥20,Ω− + q̃−

2

. (2.11)

In the subdomain Ω+, the same decomposition as (2.7) gives

q+ = q+0 + q̃+ (2.12)

with q+0 ∈ H1(Ω+) ∩ L2
0(Ω

+), and q̃+ is constant in Ω+. Let v⃗+0 = ∇q+0 . Then∫
Ω+

(∇q+0 ) · v⃗
+
0

∥v⃗+0 ∥0,Ω+

= ∥∇q+0 ∥0,Ω+ = |q+0 |1,Ω+ = |q+|1,Ω+ . (2.13)

Let z⃗ ∈ L2
0(Ω

+)2 such that∫
Ω+

z⃗∇q =
∫
Γ

q (˜⃗v
−
· n⃗−), ∀q ∈ H1(Ω+) ∩ L2

0(Ω
+). (2.14)

Taking v⃗+ = v⃗+0 + q̃−z⃗ and noting that q̃−|Ω−|+ q̃+|Ω+| = 0, we have∫
Ω+

(∇q+)v⃗+ +

∫
Γ

q+(v⃗− · n⃗−) = |q+|21,Ω+ +
|Ω+|
|Ω−|

q̃+
2

, (2.15)

where |Ωk| is the measure of Ωk. To estimate v⃗− and v⃗+, we use (2.8) and obtain

∥v⃗−∥1,Ω− = ∥v⃗−0 − q̃−˜⃗v
−
∥1,Ω−

≤ 1

β− ∥q−0 ∥0,Ω− + Cq̃−∥v⃗′∥1,Ω− (by (2.9) and the definition of ˜⃗v
−
)

≤ C1

β− ∥q−∥0,Ω− ,

where C,C1 depend on w⃗0 and v⃗′. Using (2.14) we have

∥v⃗+∥0,Ω+ ≤ |q+0 |1,Ω+ + q̃−∥˜⃗v
−
∥1,Ω− ≤ C2∥q∥M .
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Taking v⃗ = (v⃗−, v⃗+), we have then v⃗ ∈ X; furthermore using (2.11) and (2.15), we get

b(v⃗, q)

∥v⃗∥X
=

−
∫

Ω−
q−(∇ · v⃗−) +

∫
Ω+

(∇q+) · v⃗+ + (q+, v⃗− · n⃗−)Γ

∥v⃗−∥1,Ω− + ∥v⃗+∥0,Ω+

≥
∥q−0 ∥20,Ω− + q̃−

2

+
|Ω+|
|Ω−|

q̃+
2

+ |q+|21,Ω+

(C1/β
−)∥q−∥0,Ω− + C2∥q∥M

≥ β∥q∥M

with β =
Cβ−

1 + β− .

§3. Spectral Discretizations and Error Estimations

We approximate the coupled variational problem (2.5) by a spectral method. For the

sake of simplicify, consider the domain Ω = (−2, 2)× (−1, 1), which is partitioned by Ω− =

(−2, 0)× (−1, 1) and Ω+ = (0, 2)× (−1, 1). We notice IPN , the space of all polynomials of

degree ≤ N , (ξ1i,k, ξ
2
j,k) and w

k
ij (i, j = 0, · · · , N) denote respectively Gauss-Lobatto points

and weights of degree N corresponding to the subdomain Ωk(k = −,+). We introduce the

discrete bilinear form

(u⃗, v⃗)k,N =
N∑

i,j=0

(u⃗ · v⃗)(ξ1i,k, ξ2j,k)wk
ij , k = −,+,

(u⃗, v⃗)N =
∑

k=−,+

(u⃗, v⃗)k,N .

Let Ξk = {(ξ1i,k, ξ2j,k); i, j = 0, · · · , N}, k = −,+. The following well-known identity and

inequality[2] will be used:

N∑
i,j=0

φ(ξ1i,k, ξ
2
j,k)w

k
ij =

∫
Ωk

φdx, ∀φ ∈ IP2N−1(Ω
k) , k = −,+, (3.1)

∫
Ωk

φ2dx ≤ (φ,φ)k,N ≤ 9

∫
Ωk

φ2dx, ∀φ ∈ IPN (Ωk) , k = −,+. (3.2)

We state the following result which can be found in [2].

Lemma 3.1. There exist projection operators Πk
N from L2(Ωk) in IPN (Ωk), k = −,+,

Π−,1
N from {v⃗; v⃗ ∈ H1(Ω−), v⃗|Γ = 0} in {v⃗N ; v⃗N ∈ IPN (Ω−), v⃗N |Γ = 0}, Π+,1

N from H1(Ω+)

in IPN (Ω+) such that

∥φ−Πk
Nφ∥0,Ωk ≤ CN−m∥φ∥m,Ωk , ∀φ ∈ Hm(Ωk) k = −,+, m ≥ 0,

∥φ−Π−,1
N φ∥1,Ω− ≤ CN1−m∥φ∥m,Ω− , ∀φ ∈ Hm(Ω−) m ≥ 1,

|φ−Π+,1
N φ|1,Ω+ ≤ CN1−m∥φ∥m,Ω+ , ∀φ ∈ Hm(Ω+) m ≥ 1.

A classical method of solving coupled problem consists of exhibiting its solution as a limit

of solutions of two subproblems within Ω− and Ω+. The effectiveness of this strategy, on

one hand, depends on the convergence result of the iterative procedure; on the other hand,

requires a certain number of repeat resolution to reach the convergence. But here, we choose
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the strategy called “global Uzawa resolution”. We are going to see that this method is very

effective to the type of the coupled problem considered here.

We introduce two discrete spaces

XN = X ∩ (IPN (Ω−)× IPN (Ω+)) , MN =M ∩ (IPN−2(Ω
−)× IPN (Ω+)) ,

and consider the coupled discrete problem: Find u⃗N × pN ∈ XN ×MN , such that{
aN (u⃗N , v⃗N ) + bN (v⃗N , pN ) = (f⃗ , v⃗N )N , ∀v⃗N ∈ XN ,
bN (u⃗N , qN ) = 0, ∀qN ∈MN ,

(3.2)

where aN , bN are two bilinear forms, defined by

aN (u⃗N , v⃗N ) = α(u⃗N , v⃗N )N + ν(∇u⃗−N ,∇v⃗
−
N )−,N , ∀u⃗N , v⃗N ∈ XN , (3.4)

bN (v⃗N , qN ) = −(q−N ,∇ · v⃗−N )−,N + (∇q+N , v⃗
+
N )+,N + (q+N , v⃗

−
N · n⃗−)Γ,N ,

∀v⃗N ∈ XN , qN ∈MN , (3.5)

where (φ,ψ)Γ,N =
N∑
j=0

(φψ)(ξ1N,−, ξ
2
j,−)w

−
Nj (or equivalently, =

N∑
j=0

(φψ)(ξ10,+, ξ
2
j,+)w

+
0j).

Theorem 3.1. The discrete problem (3.3) is well posed in the space XN ×MN .

Proof. The proof is done, as in Theorem 2.2, by verifying the four properties: continuity

and ellipticity of the form aN ; continuity and compatibility of the form bN . The three firsts

can be proven in a classical way, by using the identity and inequality (3.1) and (3.2). The

verification of the “inf-sup” condition of the form bN is given in Lemma 3.2 below.

Lemma 3.1. There exists a constant βN > 0, possibly depending on N , such that

inf
qN∈MN

sup
v⃗N∈XN

bN (v⃗N , qN )

∥v⃗N∥X∥qN∥M
≥ βN . (3.6)

Proof. The proof follows the same lines as in the proof of Theorem 2.2. We need only

replace the spaces X by XN , M by MN , · · · . We ignore the details of the proof, but give

the estimation of the “inf-sup” constant βN ,

βN ≥
Cβ−

N

1 + β−
N

, (3.7)

where β−
N is local “inf-sup” constant for the viscous part.

Remark 3.1. It has been theoretically proven that the local “ inf-sup” constant β−
N satis-

fies β−
N ≥ CN−1/2 and numerical evidences show[4] a comportment as O(N−1/4). Therefore

theoretically

βN ≃ CN−1/2. (3.8)

Define the space VN by

VN = {v⃗N ; v⃗N ∈ XN , bN (v⃗N , qN ) = 0, ∀qN ∈MN}. (3.9)

The error estimations are given in the following theorem.

Theorem 3.2. Assume that the solutions of the problem (2.5) satisfy u⃗ = (u⃗−, u⃗+) ∈
H l(Ω−)2 × Hm−1(Ω+)2, p = (p−, p+) ∈ H l−1(Ω−) × Hm(Ω+), where l and m are real

numbers, l ≥ 2, m ≥ 2; furthermore, assume f⃗ ∈ Hσ(Ω)2, where σ is a real number ≥ 2.
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Then the approximate solutions of (3.3) u⃗N = (u⃗−N , u⃗
+
N ), pN = (p−N , p

+
N ) verify

∥u⃗− u⃗N∥X + βN∥p− pN∥M

≤ C
[
N1−l

( 1

βN
∥u⃗−∥l,Ω− + ∥p−∥l−1,Ω−

)
+N1−m

( 1

βN
∥u⃗+∥m−1,Ω+ + ∥p+∥m,Ω+

)
+N−σ∥f⃗∥σ,Ω

]
. (3.10)

Proof. It is standard. We have first the following classical result[2]:

∥u⃗− u⃗N∥X + βN∥p− pN∥M

≤ C
[

inf
v⃗N∈VN

(
∥u⃗− v⃗N∥X + sup

w⃗N∈VN

(a− aN )(v⃗N , w⃗N )

∥w⃗N∥X

)
(3.11)

+ inf
qN∈MN

(
∥p− qN∥M + sup

w⃗N∈VN

(b− bN )(w⃗N , qN )

∥w⃗N∥X

)
+ sup

w⃗N∈VN

(f⃗ , w⃗N )− (f⃗ , w⃗N )N
∥w⃗N∥X

]
.

According to the definitions of a, b and aN , bN , and by using (3.1), it is easy to see that the

second and the fourth terms in the right-hand side of (3.11) vanish for all v⃗N ∈ XN−1, and

respectively, for all qN ∈MN−1. The last term is bounded[2],

sup
w⃗N∈VN

(f⃗ , w⃗N )− (f⃗ , w⃗N )N
∥w⃗N∥X

≤ CN−σ∥f⃗∥σ,Ω. (3.12)

Therefore, from (3.11), we get

∥u⃗− u⃗N∥X + βN∥p− pN∥M

≤ C
[

inf
v⃗N∈VN∩XN−1

∥u⃗− v⃗N∥X + inf
qN∈MN−1

∥p− qN∥M +N−σ∥f⃗∥σ,Ω
]
.

(3.13)

Noting that

inf
v⃗N∈VN

∥u⃗− v⃗N∥X ≤ C

βN
inf

w⃗N∈XN

(
∥u⃗− w⃗N∥X + sup

qN∈MN

(b− bN )(w⃗N , qN )

∥qN∥M

)
≤ C

βN
inf

w⃗N∈XN−1

∥u⃗− w⃗N∥X ( by (3.1) ), (3.14)

we obtain from (3.13)

∥u⃗− u⃗N∥X + βN∥p− pN∥M

≤ C
[ 1

βN
inf

v⃗N∈XN−1

∥u⃗− v⃗N∥X + inf
qN∈MN−1

∥p− qN∥M +N−σ∥f⃗∥σ,Ω
]

≤ C
[ 1

βN
∥u⃗− −Π−,1

N−1u⃗
−∥1,Ω− +

1

βN
∥u⃗+ −Π+

N−1u⃗
+∥0,Ω+

+ ∥p− −Π−
N−2p

−∥0,Ω− + |p+ −Π+,1
N−1p

+|1,Ω+ +N−σ∥f⃗∥σ,Ω
]
. (3.15)

Finally (3.10) follows by using Lemme 3.1.

§4. Description of the Algorithm

Rewriting the problem (3.3) by expressing u⃗N , v⃗N , pN and qN in Lagrangian interpolants,

and choosing each test function v⃗N , qN to be nonzero at only one global collocation point,
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we arrive at the following matrix statement:(
IL− 0
0 IL+

)(
U−

U+

)
+

(
−(D−)T 11Γ

0 D+

)(
P−

P+

)
=

(
B− F−

B+ F+

)
, (4.1)

(
−(D−)T 11Γ

0 D+

)T (
U−

U+

)
=

(
0
0

)
. (4.2)

In this system, the unknowns Uk, P k(k = −,+) are the values at the global collocation

points of the velocity and the pressure, D− and (D+)T are the discrete divergence operators

derived from (∇· u⃗−N , q
−
N )−,N and (u⃗+N ,∇q

+
N )+,N respectively, “T” denotes the transposition

of matrix, B− and B+ are the associated mass matrices, 11Γ denotes the identity operator

applied in the normal n⃗− on the interface Γ (under implication of multiplication by the

weights corresponding on Γ), ILk(k = −,+) is defined by ILk = αBk + ν (D−)2δ−k, where

δ−k =

{
1, k = −,
0, k = +.

It is assumed that the boundary conditions in the viscous part are already incorporated into

the matrix operators.

We use the global Uzawa procedure to solve discrete equations (4.1)-(4.2). Formally, the

system (4.1)-(4.2) can be equivalently replaced by the two separated systems:(
−(D−)T 11Γ

0 D+

)T (
IL− 0
0 IL+

)−1 (−(D−)T 11Γ
0 D+

)(
P−

P+

)
=

(
−(D−)T 11Γ

0 D+

)T (
IL− 0
0 IL+

)−1 (
B− F−

B+ F+

)
and (

IL− 0
0 IL+

)(
U−

U+

)
=

(
B− F−

B+ F+

)
−

(
−(D−)T 11Γ

0 D+

)(
P−

P+

)
.

The advantage of the Uzawa procedure is that the pressure and velocity are completely

decoupled in the resolution process. The apparent disadvantage is the equations in the

pressure, as the matrix S,

S =

(
−(D−)T 11Γ

0 D+

)T (
IL− 0
0 IL+

)−1 (−(D−)T 11Γ
0 D+

)
(4.3)

will have rank equal to the number of global pressure degrees-of-freedom, and will be full

due to the presence of IL−1, where

IL =

(
IL− 0
0 IL+

)
. (4.4)

Noting that S is a positive definite symmetric matrix, we can solve the pressure by an

inner/outer conjugate gradient iterative procedure. But an important point to note is that

the matrix IL in S is diagonal by bloc on the interface level, which means that the inner

procedure is only needed in the viscous part.

§5. Numerical Results

The numerical test is used to prove the effectiveness of the global iterative method. This

is done by considering an exact analytical solution: u1(x, y) = sinπy, u2(x, y) = cos
π

2
x,
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p(x, y) = x2 + 0.25y2. Fig.1 presents the velocity vectors computed. Fig.2 presents the

pressure contourlines. Although the interface conditions are imposed only in a weak form in

the variational problem (3.3), the continuity on the interface Γ of both velocity and pressure

functions is well shown in these two figures. Fig.3 shows the jumps of the velocity and

pressure solutions in two sides of the interface. Fig.4 gives the errors in the velocity and the

pressure as a function of polynomial degrees N , which shows that exponential convergence

is obtained.

Fig.1 Computational velocity vectors Fig.2 Computational pressure contourlines

Fig.3 A plot of the jumps Fig.4 A plot of the errors in L2(Ω)

at the Gauss-Lobatto points on Γ as a function of polynomial degree N

§6. Discussions

(1) Some comparisons of the computational cost between the viscous/inviscid coupled

resolution and the pure viscous (i.e. global Navier-Stokes equations) resolution have been

done. The partial results show that the viscous/inviscid coupled model is more economical.

We expect further investigation.
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(2) The simulation of complex flows will produce a large and full matrix S. The “simple”

nested conjugate gradient algorithm, in this case, would no longer be efficient. One way to

recover rapid convergence of the Uzawa algorithm is to precondition S.

(3) The coupled model could be extended to the study of coupled problem between the

full Navier-Stokes equations and the Euler equations:{
∂u⃗−

∂t + (u⃗− · ∇)u⃗− − ν△u⃗− +∇p− = f−, ∇ · u⃗− = 0 in Ω− × (0, T ),
∂u⃗+

∂t + (u⃗+ · ∇)u⃗+ +∇p+ = f+, ∇ · u⃗+ = 0 in Ω+ × (0, T ).
(6.1)

A difficult point is to treat the non-linear term (convection term) where we could utilize the

method of characteristics. Indeed (6.1) can also be rewritten as{
Du⃗−

Dt − ν△u⃗− +∇p− = f−, ∇ · u⃗− = 0 in Ω− × (0, T ),
Du⃗+

Dt +∇p+ = f+, ∇ · u⃗+ = 0 in Ω+ × (0, T ),
(6.2)

where D/Dt is the total derivative in the direction u⃗. We could discretize (6.2) in time by

an implicit scheme:{
αu⃗−

n+1 − ν△u⃗−n+1

+∇p−n+1

= f−
n+1

+ αu⃗−
n

(χn(·)) , ∇ · u⃗−n+1

= 0 in Ω−,

αu⃗+
n+1

+∇p+n+1

= f+
n+1

+ αu⃗+
n

(χn(·)) , ∇ · u⃗+n+1

= 0 in Ω+,
(6.3)

where α = 1/△t, and χn(x) = χ(x, (n+ 1)△t;n△t) is the solution of

dχ

dτ
= u⃗n(χ) , χ(x, t; t) = x. (6.4)

The time scheme is unconditionally stable, and each time iteration requires a viscous/inviscid

coupled resolution plus a transport of the previous solution on the characteristics.

Several space discretization techniques without dissipation for (6.4) can be found in [7]

or [8]. A rigorous error estimation is however not easy because ∇ · u⃗N is not exactly zero

and (6.4) can not be integrated exactly. We note however that, on the interface Γ, u⃗− · n⃗− =

u⃗+ · n⃗−. Thus (6.4) could be solved globally in all domain Ω without any additional interface

conditions on Γ.
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