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Abstract

The notion of a fuzzy retract was introduced by Rodabaugh (1981). The notion of
a fuzzy pairwise retract was introduced in 2001. Some weak forms and some strong
forms of α-continuous mappings were introduced in 1988 and 1997. The authors extend
some of these forms to the L-fuzzy bitopological setting and construct various α-fuzzy
pairwise retracts. The concept of weakly induced spaces in the case L = [0, 1] was
introduced by Martin (1980). Liu and Luo (1987) generalized this notion to the case
that L is an arbitrary F -lattice and introduced the notion of induced L-fts. Several
results are obtained, especially, for L-valued pairwise stratification spaces.
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§ 1 . Introduction

Throughout this paper, (L,≤, ′) (for short L) is a fuzzy lattice, i.e., a completely
distributive complete lattice with an order-reversing involution ′ on it, and with a smallest
element 0 and a largest element 1 (0 6= 1). An element a of L is called a prime element iff
a 6= 1 and whenever b, c ∈ L with b∧ c 6 a then b 6 a or c 6 a, the set of all prime elements
of L will be denoted by pr(L). a ∈ L − {0} is said to be a molecule (see [15]) iff a ≤ b ∨ c
implies a ≤ b or a ≤ c. The set of all molecules of L is denoted by M(L).

Let X be a non-empty set. LX denotes the collection of all mappings from X into
L. The elements of LX are called L-fuzzy sets on X. LX can be made into a fuzzy lattice
by inducing the order and involution from (L,≤, ′). For A ∈ LX and a ∈ L, we use the
notation A(a) = {x ∈ X | A(x) 
 a} and suppA = {x ∈ X | A(x) > 0}. suppA is called the
support of A. When suppA is a singleton, A is called an L-fuzzy point on X and denoted
by xa where x = suppA and a = A(x). We define M(LX) = {xa | x ∈ X, a ∈ M(L)}. It is
easy to check that M(LX) is just a set of all molecules of LX . We denote by aX (for short
a) an L-fuzzy set which takes the constant value a ∈ L on X.

An L-fuzzy topology on X is a subfamily δ of LX which contains 0 and 1 and is closed
under arbitrary suprema and finite infima (see [6]). The pair (LX , δ) is called an L-fuzzy
topological space (or L-fts, for short). The members of δ are called L-fuzzy open sets and
the members of δ′ are called L-fuzzy closed sets where δ′ = {A′ | A ∈ δ}.
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Obviously, in the case L = [0, 1], L-fuzzy topological space ([0, 1]X , δ) is just the fuzzy
topological space in the sense of Chang and is denoted by (X, δ) (see [2]).

A ∈ LX is called a crisp subset on X, if there exists an ordinary subset U ⊂ X such
that A = 1U : X → {0, 1} ⊂ L, i.e. if A is a characteristic function of some ordinary
subset of X. For a family A ⊂ LX of L-fuzzy sets, denote the family of all the crisp subsets
contained in A by crs(A), and denote [A] = {A ⊂ X : 1A ∈ crs(A)}. It is clear that for every
L-fts (LX , δ), (X, [δ]) is a topological space and is called the background space of (LX , δ)
(see [9]).

We say that the fuzzy point xa belongs to a fuzzy set U , i.e., xa ∈ U iff a 6 U(x),
and the set of all fuzzy points in LX is denoted by Pt(LX). A fuzzy point xa is said to be
quasi-coincident with a fuzzy set U ∈ LX denoted by xaq̂U, if a � U ′(x). For U, V ∈ LX , U
is quasi-coincident with V, denoted by U q̂V, if there exists x ∈ X such that U(x) 
 V ′(x).
If U is not quasi-coincident with V, we denote U¬q̂V (see [9]).

Let (LX , δ) be an L-fts, A ∈ LX , xλ ∈ M(LX). xλ is called an adherent point of A, if
for every U ∈ Q (xλ), U quasi-coincides with A, i.e., U q̂A (see [9]).

Let (LX , δ) be an L-fts, A ⊂ X, α ∈ pr(L). Then A is called α-closed, iff for each
x ∈ X −A, there exists U ∈ δ such that U(x) � α and U ∧ 1A = 0 (see [5]).

An L-fuzzy mapping f→ : (LX , δ) → (LY , σ), α ∈ pr(L) is called α-continuous, (α-c
for short), if for each x ∈ X and each open set V of LY with V (f(x)) 
 α, there exists an
open set U of LX with U(x) 
 α such that f→(U) 6 V (see [5]).

Let (LX , δ), (LY , σ) be L-fts’s, f→ : (LX , δ) → (LY , σ) an L-fuzzy mapping, α ∈
pr(L), f→ is called ∆-continuous, (∆-c for short), if its L-fuzzy reverse mapping fL99 :
(LY , σ) → (LX , δ) maps every α-closed (resp. α-open) in (LY , σ) as an α-closed (resp.
α-open) one in (LX , δ) (see [5]).

Let L be a complete lattice. The co-topology on L generated by the subbase {↓ a :
a ∈ L} is called the lower co-topology of L and we denote it by Ω∗(L). The correspondent
topology of Ω∗(L) is called the lower topology of L and we denote it by Ω∗(L) (Ω∗ for short)
(see [9]).

Let (X, τ) be an ordinary topological space, L a complete lattice. A mapping f :
X → L is called lower semicontinuous, if f is continuous for the topology Ω∗.

Let (LX , δ) be an L-fts. δ is called stratified, if for every a ∈ L, a ∈ δ. (LX , δ) is called
stratified, if δ is stratified.

δ is called weakly induced, if every U ∈ δ is a lower semicontinuous mapping from the
background space (X, [δ]) to L, (LX , δ) is called weakly induced, if δ is weakly induced.

δ is called induced, if δ is exactly the family of all the lower semicontinuous mappings
from the background space (X, [δ]) to L. (LX , δ) is called induced, if δ is induced (see [10]).

An L-fts (LX , µ) is called the stratification of (LX , δ) if µ is generated by δ∪{a : a ∈ L}.
By an L-valued stratification space, we mean a stratified space or a weakly induced

space or an induced space.
The following results and definitions are fundamental for the next sections.

Lemma 1.1. (cf. [5]) If α ∈ pr(L) and U = ∨
j∈J

Uj , U(x) � α, then ∃ j◦ ∈ J such

that Uj◦(x) � α.

Lemma 1.2. (cf. [5]) If α ∈ pr(L) and U ∈ LX , V ∈ LY such that (U×V )(x, y) � α,
then U(x) � α and V (y) � α.

Lemma 1.3. (cf. [5]) Let W be fuzzy open of L-fuzzy product space (LX×Y , δ × γ)
such that W (x, y) � α. Then there exist U ∈ δ, V ∈ γ such that U(x) � α and V (y) � α
where α ∈ pr(L).

Proof. By Lemmas 1.1 and 1.2.
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Proposition 1.1. (cf. [9]) Let (LX , δ), (LY , µ) be L-fts’s, f→ : (LX , δ) → (LY , µ)
an L-fuzzy continuous mapping. Then f : (X, [δ]) → (Y, [µ]) is continuous.

Lemma 1.4. (cf. [9]) Let (LX , δ), (LY , γ) be L-fts’s, f : (X, [δ]) → (Y, [µ]) be
continuous. If (LX , δ) is stratified, (LY , γ) is weakly induced, then f→ : (LX , δ) → (LY , µ)
is an L-fuzzy continuous mapping.

Theorem 1.1. (cf. [9]) Stratified, weakly induced and induced properties are hereditary
and weakly induced property is strongly multiplicative.

Theorem 1.2. (cf. [9]) Let (LX , δ), (LY , µ) be L-fts’s, f→ : (LX , δ) → (LY , µ) an
L-fuzzy continuous mapping, δ◦ and µ◦ be the stratifications of δ and µ respectively. Then
f→ : (LX , δ◦) → (LY , µ◦) is continuous.

Theorem 1.3. (cf. [9]) Let (LX , δ) be an L-fts, Y ⊂ X, δ◦ the stratification of δ.
Then δ◦ |Y is just the stratification of δ |Y .

Theorem 1.4. (cf. [9]) Let (LX , δ) be an L-fts. Then (LX , δ) is induced if and only
if (LX , δ) is both stratified and weakly induced.

Theorem 1.5. (cf. [9]) Let (LX , δ) be an L-fts. Then the following are equivalent:
( i ) (LX , δ) is weakly induced;
(ii) For every U ∈ δ and every a ∈ L, U(a) ∈ [δ];
(iii) For every V ∈ δ′ and every a ∈ L, V[a] ∈ [δ′].

Theorem 1.6. (cf. [9]) Let (LX , δ) be a weakly induced L-fts, A ⊂ X. Then for the
interior A◦ and the closure A− of A in (X, [δ]), we have

( i ) (1A)◦ = 1A◦ , (ii) (1A)− = 1A− .

Lemma 1.5. Let (LX , δ) be an L-fts, A ⊂ X. If A ∈ [δ], then A is α-open.

Proof. It is obvious.

Lemma 1.6. Let (LX , δ) be a weakly induced L-fts, A ⊂ X. Then A is α-open iff
A ∈ [δ].

Proof. ⇒. Let A ⊂ X be α-open. Then for each x ∈ A, there exists U ∈ δ with
U(x) � α and U ∧ 1X−A = 0 ⇒ U ≤ 1A. Since (LX , δ) is weakly induced, it follows that
for any b ∈ L, b ≤ α, x ∈ U(b) ∈ [δ] and x ∈ U(b) ⊂ A. So A ∈ [δ].

⇐. By Lemma 1.5.

Definition 1.1. A system (LX , δ1, δ2) consisting of a non-empty set X with two L-
fuzzy topologies δ1 and δ2 on LX is called an L-fuzzy bitopological space (briefly L-fbts).

Definition 1.2. Let (LX , δ, σ) be an L-fbts, α ∈ pr(L). (LX , δ, σ) is called α-PT2 if
∀x, y ∈ X, x 6= y, there exist U ∈ δ, V ∈ σ, such that U(x) � α, V (y) � α and U ∧ V = 0,
there exist U ′ ∈ σ, V ′ ∈ δ, such that U ′(x) � α, V ′(y) � α and U ′ ∧ V ′ = 0. In the case
L = I, see [8].

Definition 1.3. Let (LX , δ1, δ2) be an L-fbts, A ⊂ X, α ∈ pr(L). Then A is called
α-pairwise closed (α-P-closed for short) iff A is α-closed in both (LX , δ1) and (LX , δ2).

Definition 1.4. An L-fuzzy mapping f→ : (LX , δ1, δ2) → (LY , σ1, σ2) is called an L-
fuzzy pairwise continuous (resp. α-pairwise continuous) mapping; briefly FPc (resp. α-Pc),
if the induced mappings f→ : (LX , δk) → (LY , σk) (k = 1, 2) are L-fuzzy continuous (resp.
α-continuous). In the case L = I, FPc mappings refer to [14].
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Definition 1.5. An L-fbts (LX , δ1, δ2) is called pairwise stratified (resp. pairwise
weakly induced, pairwise induced) L-fbts iff both (LX , δ1) and (LX , δ2) are stratified (resp.
weakly induced, induced).

For other definitions and results not explained in this paper, the reader may refer to
[1, 2, 6, 7, 9].

§ 2 . α-Fuzzy Pairwise Retracts

Definition 2.1. Let (LX , δ1, δ2) be an L-fbts, Y ⊂ X. Then (LY , δ1 |Y , δ2 |Y ) is
called an α-fuzzy pairwise retract (α-FPR for short) of (LX , δ1, δ2) if there exists an α-fuzzy
pairwise continuous mapping r→ : (LX , δ1, δ2) → (LY , δ1 |Y , δ2 |Y ) with the identity mapping
r |Y = idY .

Definition 2.2. Let (LX , δ1, δ2), (LY , µ1, µ2) be L-fbts’s, f→ : LX → LY an L-fuzzy
mapping, α ∈ pr(L). If for each x ∈ X and V ∈ µi with V (f(x)) � α, there exists U ∈ δi

with U(x) � α, i, j ∈ {1, 2}, i 6= j, such that
( i ) f→(U) ≤ V, U ∈ δ′j ;
(ii) f→(δi-int (δj-cl (U)) ≤ V ;
(iii) f→((δj-cl (U)) ≤ V ;
(iv) f→(δi-int(δj-cl (U)) ≤ µi-int (µj-cl (V ));
( v ) f→(U) ≤ µi-int (µj-cl (V )),

then f→ is called
( i ) α-fuzzy pairwise clopen continuous (α-FPcoc, for short);
(ii) α-fuzzy pairwise super continuous (α-FPsc, for short);
(iii) strongly α-fuzzy pairwise continuous (sα-FPc, for short);
(iv) α-fuzzy pairwise δ-continuous (α-FPδ-c, for short);
( v ) α-fuzzy pairwise almost continuous (α-FPac, for short).

Definition 2.3. Let (LX , δ1, δ2) be an L-fbts, Y ⊂ X. Then (LY , δ1 |Y , δ2 |Y ) is called
an α-fuzzy pairwise clopen retract (resp. an α-fuzzy pairwise super retract, strongly α-fuzzy
pairwise retract, an α-fuzzy pairwise δ-retract and an α-fuzzy pairwise almost retract); α-
FPCOR (resp. α-FPSR, Sα-FPR, α-FPδ-R and α-FPAR) for brevity; iff there exists an α-
FPcoc (resp. α-FPsc, sα-FPc, α-FPδ-c and α-FPac) r→ : (LX , δ1, δ2) → (LY , δ1 |Y , δ2 |Y )
such that r |Y = idY .

Remark 2.1. Every L-fuzzy pairwise retract (L-FPR) is α-FPR.

The implications between these different notions of α-fuzzy pairwise retracts are given
by the following diagram

Sα-FPR L-FPR
⇓ ⇓

α-FPCOR =⇒ α-FPSR =⇒ α-FPR
⇓ ⇓

α-FPδ-R =⇒ α-FPAR

Example 2.1. Let X = [0, 1], Y = {0, 1}, L be the lattice given by the following
diagram. We define r : X → Y by

r(x) =

{
0, if x ∈ [0, 0.5],

1, if x ∈ (0.5, 1],
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and let δ1 = {0, U, V, 1}, δ2 = {0,W, 1}, where

U(x) =

{
c′, if x ∈ Y,

d, if x ∈ X − Y ;

V (x) =

{
d, if x ∈ X − {0.5},
a, if x = 0.5;

W (x) =

{
a′, if x ∈ Y,

d, otherwise.

↑1
↗↖c′

b′ ↖↗a′

↗↖d=d′

a ↖↗b

↑c
0

One can easily show that r→ is α-FPc at α = b and hence (LY , δ1 |Y , δ2 |Y ) is an
α-FPR of (LX , δ1, δ2) but neither α-FPSR nor L-FPR.

And let δ1 = {0,W, 1}, δ2 = {0, V ∗, d, 1}, where

V ∗(x) =

{
c, if x ∈ Y,

c′, if x ∈ X − Y.

One can easily show that at α = b, (LY , δ1 |Y , δ2 |Y ) is an α-FPAR of (LX , δ1, δ2) but
not α-FPδ-R.

Also, let δ1 = {0,W, 1} and δ2 = {0, d, c, 1}. One can easily show that at α = b,
(LY , δ1 |Y , δ2 |Y ) is an α-FPSR of (LX , δ1, δ2) but neither an α-FPCOR nor an Sα-FPR.

Example 2.2. Let X = N = {1, 2, 3, · · · } and Y = {5, 10}, L be the same lattice
given in Example 2.1. We define r : X → Y as follows:

r(x) =

{
5, if x is odd,

10, if x is even,

and let δ1 = {0, U, 1}, δ2 = {0,W, 1}, where U, W ∈ LX defined as follows:

U(x) =

{
d, 1 ≤ x < 5,

1, x ≥ 5,

W (x) =

{
c′, (1 ≤ x < 5) ∪ (x > 10),

d, 5 ≤ x ≤ 10.

One can easily show that r→ is an α-FPac and hence (LY , δ1 |Y , δ2 |Y ) is an α-FPAR
of (LX , δ1, δ2) but not an α-FPR, at α = a.

Also, let δ1 = {0, a′, 1} and δ2 = {0,W, 1}. One can easily show that at α = a,
(LY , δ1 |Y , δ2 |Y ) is an α-FPδ-R of (LX , δ1, δ2) but not an α-FPSR.

Definition 2.4. Let (LX , δ1, δ2) be an L-fbts. Then (LX , δ1, δ2) is called
( i ) α-pairwise regular space if for each x ∈ X and each U ∈ δi with U(x) � α, there

exists V ∈ δi with V (x) � α such that δj-cl (V ) ≤ U.
(ii) α-pairwise semiregular space if for each x ∈ X and each U ∈ δi with U(x) � α,

there exists V ∈ δi with V (x) � α such that δi-int (δj-cl (V )) ≤ U.
(iii) α-pairwise almost regular space if for each x ∈ X and each U ∈ δi with U(x) � α,

there exists V ∈ δi with V (x) � α such that δj-cl (V ) ≤ δi-int(δj-cl (U)).
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Remark 2.2. From the preceding definition it is clear that every α-pairwise regular
space is an α-pairwise semiregular space and also an α-pairwise almost regular space. Also
an α-pairwise semiregular space and an α-pairwise almost regular space are independent
notions.

Example 2.3. Let X = {x1, x2}, L be the same lattice given in Example 2.1.
Let δ1 = {0, d, 1} and δ2 = {0, a, 1}. Then (LX , δ1, δ2) is α-pairwise semiregular but

not α-pairwise almost regular at α = b.
And let δ1 = {0, x1

a∨x2
a′ , x1

a′∨x2
c′ , 1} and δ2 = {0, d, 1}. Then (LX , δ1, δ2) is α-pairwise

almost regular but not α-pairwise semiregular at α = b.

Theorem 2.1. Let (LX , δ1, δ2) be an α-pairwise semiregular L-fbts, Y ⊂ X. Then the
following are equivalent:

( i ) LY is an α-FPR of LX ;
(ii) LY is an α-FPSR of LX .

Proof. (ii)⇒(i). It follows from the definitions.
(i)⇒(ii). Let LY be an α-FPR of LX . Then there exists an α-FPc r→ : (LX , δ1, δ2) →

(LY , δ1 |Y , δ2 |Y ) with r |Y = idY , so r→ : (LX , δ1) → (LY , δ1 |Y ), r→ : (LX , δ2) →
(LY , δ2 |Y ) are α-Fc mappings. Then ∀ x ∈ X, V ∈ δi |Y with V (r(x)) � α ⇒ ∃ U ∈ δi

with U(x) � α such that r→(U) ≤ V. Since LX is α-pairwise semiregular, ∃ W ∈ δi with
W (x) � α such that δi-int (δj-cl (W )) ≤ U ⇒ r→(δi-int (δj-cl(W ))) ≤ r→(U) ≤ V, i 6= j.
Then r→ is α-FPsc and hence LY is an α-FPSR of LX .

Theorem 2.2. Let (LX , δ1, δ2) be an L-fbts, Y ⊂ X and (LY , δ1 |Y , δ2 |Y ) be α-
pairwise semiregular. Consider the following properties

( i ) LY is an α-FPR of LX ,
(ii) LY is an α-FPAR of LX ,
(iii) LY is an α-FPδ-R of LX ,
(iv) LY is an α-FPSR of LX .
Then, (iv)⇐⇒(iii)=⇒(i)⇐⇒(ii).

Proof. Clearly (iv)⇒(iii)⇒(ii), (iv)⇒(i)⇒(ii).
It suffices to show that (iii)⇒(iv) and (ii)⇒(i).
(iii)⇒(iv). Since LY is an α-FPδ-R of LX , there exists an α-FPδ-c mapping r→ :

(LX , δ1, δ2) → (LY , δ1 |Y , δ2 |Y ) such that r |Y = idY .
Now we are going to prove that r→ is α-FPsc. Let x ∈ X, W ∈ δi |Y with W (r(x)) � α,

where LY is α-pairwise semiregular ⇒ ∃ V ∈ δi |Y with V (r(x)) � α such that δi |Y -
int (δj |Y -cl (V )) ≤ W. Since LY is an α-FPδ-R of LX ⇒ ∃ U ∈ δi with U(x) � α and
r→(δi-int(δj-cl (U))) ≤ δi |Y -int(δj |Y -cl (V )) ≤ W, i.e., r→ is α-FPsc and hence LY is an
α-FPSR of LX .

(ii)⇒(i). Since LY is an α-FPAR of LX , there exists an α-FPac mapping r→ :
(LX , δ1, δ2) → (LY , δ1 |Y , δ2 |Y ) such that r |Y = idY .

Now we are going to prove that r→ is α-FPc. Let x ∈ X, W ∈ δi |Y with W (r(x)) � α
where LY is α-pairwise semiregular ⇒ ∃ V ∈ δi |Y with V (r(x)) � α such that δi |Y -
int (δj |Y -cl (V )) ≤ W. Since LY is an α-FPAR of LX ⇒ ∃ U ∈ δi with U(x) � α and
r→(U) ≤ δi |Y -int (δj |Y -cl (V )) ≤ W, i.e., r→ is α-FPc and hence LY is an α-FPR of LX .

Theorem 2.3. Let Y ⊂ X, and (LX , δ1, δ2), (LY , δ1 |Y , δ2 |Y ) are α-pairwise semireg-
ular L-fbts’s. Then the following are equivalent:

( i ) LY is an α-FPR of LX ;
(ii) LY is an α-FPAR of LX ;
(iii) LY is an α-FPδ-R of LX ;
(iv) LY is an α-FPSR of LX .
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Proof. It follows from Theorem 2.1 and Theorem 2.2.

Theorem 2.4. Let (LX , δ1, δ2) be an α-pairwise almost regular L-fbts, Y ⊂ X. Then
the following are equivalent:

( i ) LY is an Sα-FPR of LX ;
(ii) LY is an α-FPSR of LX .

Proof. (i)⇒(ii). It is clear.
(ii)⇒(i). Since LY is an α-FPSR of LX , there exists an α-FPsc mapping r→ :

(LX , δ1, δ2) → (LY , δ1 |Y , δ2 |Y ) such that r |Y = idY .
Now we are going to prove that r→ is sα-FPc. Let x ∈ X, W ∈ δi |Y with W (r(x)) � α.

Since LY is an α-FPSR of LX ⇒ ∃ V ∈ δi with V (x) � α and r→(δi-int (δj-cl (V ))) ≤ W,
but LX is α-pairwise almost regular, ∃ U ∈ δi with U(x) � α and δj-cl (U) ≤ δi-int(δj-
cl (V )) ⇒ r→(δj-cl (U)) ≤ r→(δi-int (δj-cl (V )) ≤ W, i.e., r→ is sα-FPc and hence LY is an
Sα-FPR of LX .

Corollary 2.1. Let Y ⊂ X, and (LX , δ1, δ2), (LY , δ1 |Y , δ2 |Y ) are α-pairwise regu-
lar L-fbts’s. Then the properties, α-FPR, α-FPSR, Sα-FPR, α-FPδ-R, α-FPAR are all
equivalent.

Theorem 2.5. Let f→ : (LX , δ1, δ2) → (LY , σ1, σ2) be an L-fuzzy mapping and g :
X → X×Y its ordinary graph. Then g→ is α-FPsc ⇐⇒ f→ is α-FPsc and LX is α-pairwise
semiregular.

Proof. ⇒. Suppose g→ is α-FPsc. Let x ∈ X, W ∈ σi with W (f(x)) � α. Then
U = 1×W ∈ δi×σi such that U(g(x)) � α. Since g→ is α-FPsc ⇒ ∃ V ∈ δi with V (x) � α
such that g→(δi-int (δj-cl (V ))) ≤ U, and δi-int (δj-cl (V )) ≤ gL99(U) = 1 ∧ fL99(W ) =
fL99(W ) ⇒ f→(δi-int (δj-cl (V ))) ≤ f→fL99(W ) ≤ W ⇒ f→ is α-FPsc.

We show that LX is α-pairwise semiregular. Let x ∈ X, θ ∈ δi with θ(x) � α. Then
θ× 1 ∈ δi× σi such that (θ× 1)(g(x)) � α. Since g→ is α-FPsc ⇒ ∃ θ∗ ∈ δi with θ∗(x) � α
such that

g→(δi-int (δj-cl (θ∗))) ≤ θ × 1 ⇒ δi-int (δj-cl (θ∗)) ≤ gL99(θ × 1) = θ ∧ fL99(1) = θ.

Then LX is α-pairwise semiregular.
⇐ . Assume f→ is α-FPsc and LX is α-pairwise semiregular.
Let x ∈ X, W ∈ δi × σi with W (g(x)) � α, by Lemma 1.3 ⇒ ∃ W1 ∈ δi with

W1(x) � α, W2 ∈ σi with W2(f(x)) � α such that W1 × W2 ≤ W . Since f→ is α-FPsc
⇒ ∃ θ2 ∈ δi with θ2(x) � α such that

f→(δi-int (δj-cl (θ2))) ≤ W2 ⇒ δi-int (δj-cl (θ2)) ≤ fL99(W2),

and also LX is α-pairwise semiregular ⇒ ∃ θ1 ∈ δi with θ1(x) � α such that δi-int (δj-
cl (θ1)) ≤ W1. Clearly θ1 ∧ θ2 = θ ∈ δi and θ(x) � α,

δi-int (δj-cl (θ)) = δi-int (δj-cl (θ1 ∧ θ2))

≤ (δi-int (δj-cl (θ1))) ∧ (δi-int (δj-cl (θ2)))

≤ W1 ∧ fL99(W2) = gL99(W1 ×W2) ≤ gL99(W )

⇒ g→(δi-int (δj-cl (θ))) ≤ g→gL99(W ) ≤ W.

Thus g→ is α-FPsc.
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Corollary 2.2. Let (LX , δ1, δ2) be an L-fbts, Y ⊂ X and r→ : (LX , δ1, δ2) → (LY ,
δ1 |Y , δ2 |Y ) be an L-fuzzy mapping such that r |Y = idY , g : X → X×Y its ordinary graph.
Then g→ is α-FPsc ⇐⇒ LY is an α-FPSR of LX and LX is α-pairwise semiregular.

Theorem 2.6. Let f→ : (LX , δ1, δ2) → (LY , σ1, σ2) be an L-fuzzy mapping and g :
X → X × Y its ordinary graph. If g→ is sα-FPc, then f→ is sα-FPc and LX is α-pairwise
almost regular.

Proof. Suppose f→ is sα-FPc. Let x ∈ X, W ∈ σi with W (f(x)) � α. Then
U = 1×W ∈ δi×σi such that U(g(x)) � α. Since g→ is sα-FPc ⇒ ∃ V ∈ δi with V (x) � α
such that g→(δj-cl (V )) ≤ U, and

δj-cl (V ) ≤ gL99(U) = 1 ∧ fL99(W ) = fL99(W )

⇒ f→(δj-cl (V )) ≤ f→fL99(W ) ≤ W

⇒ f→ is sα-FPc.

We show that LX is α-pairwise almost regular.
Let x ∈ X, θ ∈ δi with θ(x) � α. Then θ × 1 ∈ δi × σi such that (θ × 1)(g(x)) � α.

Since g→ is sα-FPc ⇒ ∃ θ∗ ∈ δi with θ∗(x) � α such that

g→(δj-cl (θ∗)) ≤ θ × 1

⇒ δj-cl (θ∗) ≤ gL99(θ × 1) = θ ∧ fL99(1) = θ ≤ δi-int (δj-cl (θ)).

Then LX is α-pairwise almost regular.

Corollary 2.3. Let (LX , δ1, δ2) be an L-fbts, Y ⊂ X and r→ : (LX , δ1, δ2) →
(LY , δ1 |Y , δ2 |Y ) be an L-fuzzy mapping such that r |Y = idY , g : X → X × Y its or-
dinary graph. If g→ is sα-FPc, then LY is an Sα-FPR of LX and LX is α-pairwise almost
regular.

Theorem 2.7. Let f→ : (LX , δ1, δ2) → (LY , σ1, σ2) be an L-fuzzy mapping and g :
X → X × Y its ordinary graph. Then

g→ is sα-FPc ⇐⇒ f→ is sα-FPc and LX is α-pairwise regular.

Proof. ⇒ . Assume f→ is sα-FPc. Let x ∈ X, W ∈ σi with W (f(x)) � α. Then
U = 1×W ∈ δi×σi such that U(g(x)) � α. Since g→ is sα-FPc ⇒ ∃ V ∈ δi with V (x) � α
such that g→(δj-cl (V )) ≤ U, and

δj-cl (V ) ≤ gL99(U) = 1 ∧ fL99(W ) = fL99(W )

⇒ f→(δj-cl (V )) ≤ f→fL99(W ) ≤ W

⇒ f→ is sα-FPc.

We show that LX is α-pairwise regular. Let x ∈ X, θ ∈ δi with θ(x) � α. Then
θ× 1 ∈ δi× σi such that (θ× 1)(g(x)) � α. Since g→ is sα-FPc ⇒ ∃ θ∗ ∈ δi with θ∗(x) � α
such that

g→(δj-cl (θ∗)) ≤ θ × 1 ⇒ δj-cl (θ∗) ≤ gL99(θ × 1) = θ ∧ fL99(1) = θ.

Then LX is α-pairwise regular.
⇐ . Assume f→ is sα-FPc of LX and LX is α-pairwise semiregular.
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Let x ∈ X, W ∈ δi × σi with W (g(x)) � α. By Lemma 1.3 ⇒ ∃ W1 ∈ δi with
W1(x) � α, W2 ∈ σi with W2(f(x)) � α such that W1 × W2 ≤ W, where f→ is sα-FPc.
⇒ ∃ θ2 ∈ δi with θ2(x) � α such that f→(δj-cl (θ2)) ≤ W2 ⇒ δj-cl (θ2) ≤ fL99(W2), and
also LX is α-pairwise regular ⇒ ∃ θ1 ∈ δi with θ1(x) � α such that δj-cl (θ1) ≤ W1.

Clearly θ1 ∧ θ2 = θ ∈ δi such that θ(x) � α,

δj-cl (θ) = δj-cl (θ1 ∧ θ2) ≤ (δj-cl (θ1)) ∧ (δj-cl (θ2))

≤ W1 ∧ fL99(W2) = gL99(W1 ×W2) ≤ gL99(W )

⇒ g→(δj-cl (θ)) ≤ g→gL99(W ) ≤ W.

Thus g→ is sα-FPc.

Corollary 2.4. Let (LX , δ1, δ2) be L-fbts, Y ⊂ X and r→ : (LX , δ1, δ2) → (LY , δ1 |Y ,
δ2 |Y ) be an L-fuzzy mapping such that r |Y = idY , g : X → X×Y its ordinary graph. Then
g→ is sα-FPc ⇐⇒ LY is an Sα-FPR of LX and LX is α-pairwise regular.

Proposition 2.1. The composition of α-FPc (resp. α-FPcoc, α-FPsc, sα-FPc, α-
FPδ-c) mappings is an α-FPc (resp. α-FPcoc, α-FPsc, sα-FPc, α-FPδ-c) mapping.

Proof. It is obvious.

Theorem 2.8. Let (LX , δ1, δ2) be an L-fbts, Y ⊂ X. Then LY is an α-FPR (resp.
α-FPCOR, α-FPSR, Sα-FPR, α-FPδ-R) of LX iff, for any (LZ , γ1, γ2) L-fbts, every α-FPc
(resp. α-FPcoc, α-FPsc, sα-FPc, α-FPδ-c) mapping g→ : LY → LZ , g→ has an extension
over X.

Proof. By Proposition 2.1.

Theorem 2.9. Let (LX , δ1, δ2) be an L-fbts, Z ⊂ Y ⊂ X. If LZ is an α-FPCR (resp.
α-FPCOR, α-FPR, α-FPCOR, α-FPAR, α-FPAR, Sα-FPR, Sα-FPR) of LY , and LY is
an α-FPSR (resp. α-FPδ-R, Sα-FPR, α-FPAR, Sα-FPR, α-FPCR, α-FPδ-R, α-FPR) of
LX , then LZ is an α-FPSR (resp. α-FPSR, Sα-FPR, α-FPR, α-FPδ-R, α-FPAR, α-FPSR,
α-FPR) of LX .

Proof. It is obvious.

Definition 2.5. Let (LX , δ1, δ2), (LY , γ1, γ2) be L-fbts’s. Then the L-fuzzy pairwise
mapping f→ : (LX , δ1, δ2) → (LY , γ1, γ2) is called 4-pairwise continuous (∆-Pc for short)
mapping if both f→ : (LX , δ1) → (LY , γ1) and f→ : (LX , δ2) → (LY , γ2) are 4-continuous
mappings.

And if Y ⊂ X, then (LY , δ1 |Y , δ2 |Y ) is called a ∆-pairwise retract (∆-PR for short) of
(LX , δ1, δ2) if there exists a ∆- pairwise continuous mapping r→ : (LX , δ1, δ2) → (LY , δ1 |Y ,
δ2 |Y ) such that r |Y = idY .

Clearly every α-PR is a 4-PR but the converse is not true in general.

Example 2.4. Let X = {x1, x2, x3}, Y = {x1}, and L the same lattice given in
Example 2.1. Consider δ1, δ2 on LX defined by

δ1 = {0, x1
d ∨ x2

c′ ∨ x3
b , 1}, δ2 = {0, x1

d ∨ x2
a′ ∨ x3

b′ , 1}.
Clearly LY is a 4-PR of LX but not an α-PR of LX at α = a.

Theorem 2.10. Let (LX , δ, σ) be an L-fbts and α-PT2. Then every α-FPR of (LX ,
δ, σ) is α-P-closed.
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Proof. Let (LY , δ |Y , σ |Y ) be an α-FPR of (LX , δ, σ), where (LX , δ, σ) is α-PT2. Then
there exists an α-fuzzy continuous mapping r→ : LX → LY such that r(y) = y, ∀ y ∈ Y .
Let x ∈ X − Y ⇒ x 6= r(x), r(x) ∈ Y. But (LX , δ, σ) is α-PT2, then there exist U ∈ δ,
V ∈ σ, such that U(x) � α, V (r(x)) � α and U ∧ V = 0; there is V ′ ∈ δ, U ′ ∈ σ, such that
V ′(r(x)) � α, U ′(x) � α and U ′ ∧ V ′ = 0.

Therefore V |Y ∈ σ |Y and V |Y (r(x)) � α. Since r→ is α-pairwise continuous ⇒
∃ W1 ∈ σ such that W1(x) � α and r→(W1) ≤ V |Y . Put W ∗

1 = W1 ∧ U ′ ∈ σ such that
W ∗

1 (x) � α and W ∗
1 ∧ 1Y = 0.

And also therefore V ′ |Y ∈ δ |Y and V ′ |Y (r(x)) � α.
Since r→ is α-pairwise continuous ⇒ ∃ W2 ∈ δ such that W2(x) � α and r→(W2) ≤

V ′ |Y . Put W ∗
2 = W2 ∧ U ∈ δ such that W ∗

2 (x) � α and W ∗
2 ∧ 1Y = 0.

For, assume that ∃ z ∈ Y, a ∈ L-{0} such that W ∗
1 (z) > 0, W ∗

2 (z) > a, hence
W1(z) ∧ U ′(z) > 0. But

W1(z) ≤ rL99r→(W1)(z) ≤ rL99(V |Y )(z) = (V |Y )(r(z)) = (V |Y )(z) = V (z).

That is W1(z) ≤ V (z), so, V (z) ∧ U ′(z) > 0, and similarly V ′(z) ∧ U(z) > a ⇒ (V ∧ U ∧
V ′ ∧ U ′)(z) > 0, a contradiction to U ∧ V = 0 and U ′ ∧ V ′ = 0. Hence W ∗

1 ∧ 1Y = 0 and
W ∗

2 ∧ 1Y = 0, so Y is α-closed in both (LX , δ) and (LY , σ). Hence Y is α-P-closed.

§ 3 . α-Fuzzy Pairwise Retract of L-Valued
Pairwise Stratification Spaces

Proposition 3.1. Let (LY , δ1 |Y , δ2 |Y ) be an L-FPR of (LX , δ1, δ2). Then

(LX , δ1, δ2) is pairwise stratified ⇐⇒ (LY , δ1 |Y , δ2 |Y ) is pairwise stratified.

Theorem 3.1. Let (LX , µ1, µ2) be the pairwise stratification of (LX , δ1, δ2), and
(LY , δ1 |Y , δ2 |Y ) be an L-FPR of (LX , δ1, δ2). Then (LY , µ1 |Y , µ2 |Y ) is an L-FPR of
(LX , µ1, µ2).

Proof. By Theorem 1.2 and Theorem 1.3.

Proposition 3.2. If (LY , δ1 |Y , δ2 |Y ) is an L-FPR of (LX , δ1, δ2). Then (Y, [δ1 |Y ],
[δ2 |Y ]) is an ordinary pairwise retract of (X, [δ1], [δ2]).

Proof. By Proposition 1.1.

Theorem 3.2. Let (LX , δ1, δ2) be a pairwise induced L-fbts, Y ⊂ X.

(LY , δ1 |Y , δ2 |Y ) is an L-FPR of (LX , δ1, δ2)

⇐⇒ (Y, [δ1 |Y ], [δ2 |Y ]) is an ordinary pairwise retract of (X, [δ1], [δ2]).

Proof. ⇒ . By Proposition 3.2.
⇐ . By Theorems 1.1, 1.4 and Lemma 1.4.

Proposition 3.3. Let (LX , δ1, δ2) be a weakly induced L-fts, Y ⊂ X. (Y, [δ1 |Y ],
[δ2 |Y ]) is an ordinary pairwise retract of (X, [δ1], [δ2]), iff (LY , δ1 |Y , δ2 |Y ) is a ∆-FPR
of (LX , δ1, δ2).

Proof. By Lemma 1.6.
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Theorem 3.3. Let (LX , δ1, δ2), (LY , γ1, γ2) be pairwise weakly induced L-fbts’s, f→ :
LX → LY be an L-fuzzy mapping. Then the following hold:

( i ) If f→ is an α-FPc, then the ordinary mapping f : (X, [δ1], [δ2]) → (Y, [γ1], [γ2]) is
Pc;

(ii) If f→ is an α-FPac, then the ordinary mapping f : (X, [δ1], [δ2]) → (Y, [γ1], [γ2])
is Pac.

Proof. (i) Let x ∈ X, f(x) ∈ A ∈ [γi], α ∈ pr(L) ⇒ 1A ∈ γi and 1A(f(x)) � α.
But f→ is an α-FPc ⇒ ∃ W ∈ δi with W (x) � α and f→(W ) ≤ 1A. Let a ∈ L. Since LX

is pairwise weakly induced, we have W(a) ∈ [δi], (W )(a) ≤ fL99f→(W )(a) ≤ fL99(1A)(a) =
f−1(A) ⇒ f((W )(a)) ≤ A, i = 1, 2. Then f is ordinary Pc.

(ii) Let x ∈ X, f(x) ∈ A ∈ [γi], α ∈ pr(L) ⇒ 1A ∈ γi and 1A(f(x)) � α. But f→

is α-FPac ⇒ ∃ W ∈ δi with W (x) � α by Theorem 1.6. f→(W ) ≤ γi-int (γj-cl (1A)) = γi-
int (1[γj ]-cl (A)) = 1[γi]-int ([γj ]-cl (A)).

Let a ∈ L ⇒ W(a) ∈ [δi], W(a) ≤ fL99f→(W )(a) ≤ fL99(1[γi]-int ([γj ]-cl (A)))(a) =
f−1([γi]-int ([γj ]-cl (A))) ⇒ f(W(a)) ≤ [γi]-int ([γj ]-cl (A)). Then f is ordinary Pac.

Example 3.1. Let X = R, Y = I, L =
{

0,
1
5
,
2
5
,
3
5
,
4
5
, 1

}
. Consider f : X → Y

defined as

f(x) =





0, x ≤ 0,

1− x, 0 < x < 1,

1, x ≥ 1,

δ1, δ2 on LX defined as δ1 = {0, U, 1}, δ2 = {0, V, 1}, where

U(x) =





4
5
, if x ∈ (−∞,−1),

3
5
, if x ∈ [−1,∞),

V (x) =





1, if x ∈ (−∞,−1),
2
5
, if x ∈ [−1,∞).

Then [δ1] = [δ2] = {∅, X}, clearly f : (X, [δ1], [δ2]) → (Y, [δ1 |Y ], [δ2 |Y ]) is an ordinary
pairwise continuous mapping (OPc) but f→ is not α-FPc at α = 1

5 . And also f is an
ordinary Pac mapping but f→ is not α-FPac.

Theorem 3.4. If (LX , δ1, δ2) is a pairwise induced L-fbts, Y ⊂ X, then the following
are equivalent:

( i ) LY is an α-FPR of LX ;
(ii) Y is an ordinary α-PR of X;
(iii) LY is an 4-FPR of LX ;
(iv) Y is an ordinary PR of X.

Proof. By Theorems 3.2, 3.3 and Proposition 3.3.

Remark 3.1. Let (LX , δ1, δ2) be a pairwise weakly induced L-fbts, (X, [δ1], [δ2]) be
the pairwise background space of (LX , δ1, δ2) and Y ⊂ X. Then we have the following
diagram
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Y is an OPR of X ⇐⇒ LY is an ∆-FPR of LX

⇑ ⇑
LY is an FPR of LX =⇒ LY is an α-FPR of LX

⇑
LY is an α-FPCR of LX =⇒ LY is an α-FPSR of LX

⇓ ⇓
LY is an α-FPAR of LX ⇐= LY is an α-Fδ-PR of LX

⇓
Y is an OPAR of X,

O=ordinary.

Theorem 3.5. Let (LX , δ1, δ2) be a pairwise weakly induced L-fbts. Then the following
are equivalent:

( i ) (LX , δ1, δ2) is α-PT2;
(ii) The set A = {(x, y) : (x, y) ∈ X ×X, x = y} is closed in (X ×X, [δ1 × δ2]).

Proof. (i)⇒(ii). Let (x, y) ∈ A′ ⇒ x 6= y, but LX is α-PT2 ⇒ ∃ U ∈ δ1, U(x) �
α, V ∈ δ2, V (y) � α and U ∧ V = 0. Since LX is pairwise weakly induced, we have
U(α) ∈ [δ1], V(α) ∈ [δ2] and x ∈ U(α), y ∈ V(α). But U ∧ V = 0 ⇒ U(α) ∩ V(α) = ∅ ⇒
∀ (x, y) ∈ U(α) × V(α) ⇒ x 6= y, (x, y) ∈ U(α) × V(α) ⊂ A′, then A′ is open and hence A is
closed in (X ×X, [δ1 × δ2]).

(ii)⇒(i). Let x, y ∈ X, x 6= y ⇒ (x, y) ∈ A′, but A′ is open ⇒ ∃ G ∈ [δ1], H ∈ [δ2] and
G×H ⊂ A′, G∩H = ∅ ⇒ 1G ∈ δ1, 1H ∈ δ2, for every α ∈ pr(L) ⇒ 1G(x) � α, 1H(y) � α
and 1G ∧ 1H = 0.
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