α -FUZZY PAIRWISE RETRACT OF *L*-VALUED PAIRWISE STRATIFICATION SPACES

M. H. GHANIM^{*} F. S. MAHMOUD^{**} M. A. FATH ALLA^{***} M. A. HEBESHI^{***}

Abstract

The notion of a fuzzy retract was introduced by Rodabaugh (1981). The notion of a fuzzy pairwise retract was introduced in 2001. Some weak forms and some strong forms of α -continuous mappings were introduced in 1988 and 1997. The authors extend some of these forms to the *L*-fuzzy bitopological setting and construct various α -fuzzy pairwise retracts. The concept of weakly induced spaces in the case L = [0, 1] was introduced by Martin (1980). Liu and Luo (1987) generalized this notion to the case that *L* is an arbitrary *F*-lattice and introduced the notion of induced *L*-fts. Several results are obtained, especially, for *L*-valued pairwise stratification spaces.

Keywords L-fuzzy pairwise continuous mappings, α-Pairwise continuous mappings, α-Fuzzy pairwise retracts, L-valued pairwise stratification spaces
 2000 MR Subject Classification 54A40, 54C08, 54C15, 54C20, 54E55

§1. Introduction

Throughout this paper, $(L, \leq, ')$ (for short L) is a fuzzy lattice, i.e., a completely distributive complete lattice with an order-reversing involution ' on it, and with a smallest element 0 and a largest element 1 ($0 \neq 1$). An element a of L is called a prime element iff $a \neq 1$ and whenever $b, c \in L$ with $b \wedge c \leq a$ then $b \leq a$ or $c \leq a$, the set of all prime elements of L will be denoted by pr(L). $a \in L - \{0\}$ is said to be a molecule (see [15]) iff $a \leq b \lor c$ implies $a \leq b$ or $a \leq c$. The set of all molecules of L is denoted by M(L).

Let X be a non-empty set. L^X denotes the collection of all mappings from X into L. The elements of L^X are called L-fuzzy sets on X. L^X can be made into a fuzzy lattice by inducing the order and involution from $(L, \leq, ')$. For $A \in L^X$ and $a \in L$, we use the notation $A_{(a)} = \{x \in X \mid A(x) \notin a\}$ and $\operatorname{supp} A = \{x \in X \mid A(x) > 0\}$. $\operatorname{supp} A$ is called the support of A. When $\operatorname{supp} A$ is a singleton, A is called an L-fuzzy point on X and denoted by x_a where $x = \operatorname{supp} A$ and a = A(x). We define $M(L^X) = \{x_a \mid x \in X, a \in M(L)\}$. It is easy to check that $M(L^X)$ is just a set of all molecules of L^X . We denote by \underline{a}_X (for short a) an L-fuzzy set which takes the constant value $a \in L$ on X.

An L-fuzzy topology on X is a subfamily δ of L^X which contains $\underline{0}$ and $\underline{1}$ and is closed under arbitrary suprema and finite infima (see [6]). The pair (L^X, δ) is called an L-fuzzy topological space (or L-fts, for short). The members of δ are called L-fuzzy open sets and the members of δ' are called L-fuzzy closed sets where $\delta' = \{A' \mid A \in \delta\}$.

Manuscript received August 25, 2003.

^{*}Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt.

^{**}Department of Mathematics, Faculty of Science, Sohag, Egypt. E-mail: fsmmel_2000@yahoo.com

^{***}Department of Mathematics, Faculty of Science, Sohag, Egypt.

Obviously, in the case L = [0, 1], L-fuzzy topological space $([0, 1]^X, \delta)$ is just the fuzzy topological space in the sense of Chang and is denoted by (X, δ) (see [2]).

 $A \in L^X$ is called a crisp subset on X, if there exists an ordinary subset $U \subset X$ such that $A = 1_U : X \to \{0,1\} \subset L$, i.e. if A is a characteristic function of some ordinary subset of X. For a family $\mathcal{A} \subset L^X$ of L-fuzzy sets, denote the family of all the crisp subsets contained in \mathcal{A} by crs(\mathcal{A}), and denote $[\mathcal{A}] = \{\mathcal{A} \subset X : 1_{\mathcal{A}} \in \operatorname{crs}(\mathcal{A})\}$. It is clear that for every L-fts (L^X, δ) , $(X, [\delta])$ is a topological space and is called the background space of (L^X, δ) (see [9]).

We say that the fuzzy point x_a belongs to a fuzzy set U, i.e., $x_a \in U$ iff $a \leq U(x)$, and the set of all fuzzy points in L^X is denoted by $Pt(L^X)$. A fuzzy point x_a is said to be quasi-coincident with a fuzzy set $U \in L^X$ denoted by $x_a \hat{q} U$, if $a \nleq U'(x)$. For $U, V \in L^X, U$ is quasi-coincident with V, denoted by U $\hat{q}V$, if there exists $x \in X$ such that $U(x) \notin V'(x)$. If U is not quasi-coincident with V, we denote $U\neg \hat{q}V$ (see [9]).

Let (L^X, δ) be an L-fts, $A \in L^X$, $x_\lambda \in M(L^X)$. x_λ is called an adherent point of A, if for every $U \in Q(x_{\lambda})$, U quasi-coincides with A, i.e., $U\hat{q}A$ (see [9]).

Let (L^X, δ) be an L-fts, $A \subset X, \alpha \in pr(L)$. Then A is called α -closed, iff for each

 $x \in X - A$, there exists $U \in \delta$ such that $U(x) \nleq \alpha$ and $U \wedge 1_A = \underline{0}$ (see [5]). An *L*-fuzzy mapping $f^{\rightarrow} : (L^X, \delta) \to (L^Y, \sigma), \ \alpha \in \operatorname{pr}(L)$ is called α -continuous, (α -c for short), if for each $x \in X$ and each open set V of L^Y with $V(f(x)) \nleq \alpha$, there exists an

open set U of L^X with $U(x) \not\leq \alpha$ such that $f^{\rightarrow}(U) \leq V$ (see [5]). Let $(L^X, \delta), (L^Y, \sigma)$ be L-fts's, $f^{\rightarrow} : (L^X, \delta) \rightarrow (L^Y, \sigma)$ an L-fuzzy mapping, $\alpha \in pr(L), f^{\rightarrow}$ is called Δ -continuous, (Δ -c for short), if its L-fuzzy reverse mapping $f^{\ast --}$: $(L^Y, \sigma) \to (L^X, \delta)$ maps every α -closed (resp. α -open) in (L^Y, σ) as an α -closed (resp. α -open) one in (L^X, δ) (see [5]).

Let L be a complete lattice. The co-topology on L generated by the subbase $\{\downarrow a :$ $a \in L$ is called the lower co-topology of L and we denote it by $\Omega_*(L)$. The correspondent topology of $\Omega_*(L)$ is called the lower topology of L and we denote it by $\Omega_*(L)$ (Ω_* for short) (see [9]).

Let (X, τ) be an ordinary topological space, L a complete lattice. A mapping f: $X \to L$ is called lower semicontinuous, if f is continuous for the topology Ω_* .

Let (L^X, δ) be an L-fts. δ is called stratified, if for every $a \in L$, $\underline{a} \in \delta$. (L^X, δ) is called stratified, if δ is stratified.

 δ is called weakly induced, if every $U \in \delta$ is a lower semicontinuous mapping from the background space $(X, [\delta])$ to L, (L^X, δ) is called weakly induced, if δ is weakly induced.

 δ is called induced, if δ is exactly the family of all the lower semicontinuous mappings from the background space $(X, [\delta])$ to L. (L^X, δ) is called induced, if δ is induced (see [10]).

An L-fts (L^X, μ) is called the stratification of (L^X, δ) if μ is generated by $\delta \cup \{a : a \in L\}$. By an L-valued stratification space, we mean a stratified space or a weakly induced space or an induced space.

The following results and definitions are fundamental for the next sections.

Lemma 1.1. (cf. [5]) If $\alpha \in \operatorname{pr}(L)$ and $U = \bigvee_{j \in J} U_j$, $U(x) \nleq \alpha$, then $\exists j_0 \in J$ such that $U_{j_{\circ}}(x) \nleq \alpha$.

Lemma 1.2. (cf. [5]) If $\alpha \in \operatorname{pr}(L)$ and $U \in L^X$, $V \in L^Y$ such that $(U \times V)(x, y) \nleq \alpha$, then $U(x) \nleq \alpha$ and $V(y) \nleq \alpha$.

Lemma 1.3. (cf. [5]) Let W be fuzzy open of L-fuzzy product space $(L^{X \times Y}, \delta \times \gamma)$ such that $W(x,y) \nleq \alpha$. Then there exist $U \in \delta, V \in \gamma$ such that $U(x) \nleq \alpha$ and $V(y) \nleq \alpha$ where $\alpha \in \operatorname{pr}(L)$.

Proof. By Lemmas 1.1 and 1.2.

Proposition 1.1. (cf. [9]) Let (L^X, δ) , (L^Y, μ) be L-fts's, $f^{\rightarrow} : (L^X, \delta) \rightarrow (L^Y, \mu)$ an L-fuzzy continuous mapping. Then $f : (X, [\delta]) \rightarrow (Y, [\mu])$ is continuous.

Lemma 1.4. (cf. [9]) Let (L^X, δ) , (L^Y, γ) be L-fts's, $f : (X, [\delta]) \to (Y, [\mu])$ be continuous. If (L^X, δ) is stratified, (L^Y, γ) is weakly induced, then $f^{\to} : (L^X, \delta) \to (L^Y, \mu)$ is an L-fuzzy continuous mapping.

Theorem 1.1. (cf. [9]) Stratified, weakly induced and induced properties are hereditary and weakly induced property is strongly multiplicative.

Theorem 1.2. (cf. [9]) Let (L^X, δ) , (L^Y, μ) be L-fts's, $f^{\rightarrow} : (L^X, \delta) \rightarrow (L^Y, \mu)$ an L-fuzzy continuous mapping, δ_{\circ} and μ_{\circ} be the stratifications of δ and μ respectively. Then $f^{\rightarrow} : (L^X, \delta_{\circ}) \rightarrow (L^Y, \mu_{\circ})$ is continuous.

Theorem 1.3. (cf. [9]) Let (L^X, δ) be an L-fts, $Y \subset X$, δ_{\circ} the stratification of δ . Then $\delta_{\circ}|_Y$ is just the stratification of $\delta|_Y$.

Theorem 1.4. (cf. [9]) Let (L^X, δ) be an L-fts. Then (L^X, δ) is induced if and only if (L^X, δ) is both stratified and weakly induced.

Theorem 1.5. (cf. [9]) Let (L^X, δ) be an L-fts. Then the following are equivalent:

(i) (L^X, δ) is weakly induced;

(ii) For every $U \in \delta$ and every $a \in L$, $U_{(a)} \in [\delta]$;

(iii) For every $V \in \delta'$ and every $a \in L$, $V_{[a]} \in [\delta']$.

Theorem 1.6. (cf. [9]) Let (L^X, δ) be a weakly induced L-fts, $A \subset X$. Then for the interior A° and the closure A^- of A in $(X, [\delta])$, we have (i) $(1_A)^\circ = 1_{A^\circ}$, (ii) $(1_A)^- = 1_{A^-}$.

Lemma 1.5. Let (L^X, δ) be an L-fts, $A \subset X$. If $A \in [\delta]$, then A is α -open.

Proof. It is obvious.

Lemma 1.6. Let (L^X, δ) be a weakly induced L-fts, $A \subset X$. Then A is α -open iff $A \in [\delta]$.

Proof. \Rightarrow . Let $A \subset X$ be α -open. Then for each $x \in A$, there exists $U \in \delta$ with $U(x) \nleq \alpha$ and $U \land 1_{X-A} = \underline{0} \Rightarrow U \leq 1_A$. Since (L^X, δ) is weakly induced, it follows that for any $b \in L$, $b \leq \alpha$, $x \in U_{(b)} \in [\delta]$ and $x \in U_{(b)} \subset A$. So $A \in [\delta]$. \Leftarrow . By Lemma 1.5.

Definition 1.1. A system $(L^X, \delta_1, \delta_2)$ consisting of a non-empty set X with two Lfuzzy topologies δ_1 and δ_2 on L^X is called an L-fuzzy bitopological space (briefly L-fbts).

Definition 1.2. Let (L^X, δ, σ) be an L-fbts, $\alpha \in \operatorname{pr}(L)$. (L^X, δ, σ) is called α -PT₂ if $\forall x, y \in X, x \neq y$, there exist $U \in \delta$, $V \in \sigma$, such that $U(x) \nleq \alpha$, $V(y) \nleq \alpha$ and $U \wedge V = \underline{0}$, there exist $U' \in \sigma, V' \in \delta$, such that $U'(x) \nleq \alpha, V'(y) \nleq \alpha$ and $U' \wedge V' = \underline{0}$. In the case L = I, see [8].

Definition 1.3. Let $(L^X, \delta_1, \delta_2)$ be an L-fbts, $A \subset X$, $\alpha \in pr(L)$. Then A is called α -pairwise closed (α -P-closed for short) iff A is α -closed in both (L^X, δ_1) and (L^X, δ_2) .

Definition 1.4. An L-fuzzy mapping $f^{\rightarrow} : (L^X, \delta_1, \delta_2) \rightarrow (L^Y, \sigma_1, \sigma_2)$ is called an L-fuzzy pairwise continuous (resp. α -pairwise continuous) mapping; briefly FPc (resp. α -Pc), if the induced mappings $f^{\rightarrow} : (L^X, \delta_k) \rightarrow (L^Y, \sigma_k)$ (k = 1, 2) are L-fuzzy continuous (resp. α -continuous). In the case L = I, FPc mappings refer to [14].

Definition 1.5. An L-fbts $(L^X, \delta_1, \delta_2)$ is called pairwise stratified (resp. pairwise weakly induced, pairwise induced) L-fbts iff both (L^X, δ_1) and (L^X, δ_2) are stratified (resp. weakly induced, induced).

For other definitions and results not explained in this paper, the reader may refer to [1, 2, 6, 7, 9].

§2. α -Fuzzy Pairwise Retracts

Definition 2.1. Let $(L^X, \delta_1, \delta_2)$ be an L-fbts, $Y \subset X$. Then $(L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ is called an α -fuzzy pairwise retract (α -FPR for short) of $(L^X, \delta_1, \delta_2)$ if there exists an α -fuzzy pairwise continuous mapping $r^{\rightarrow} : (L^X, \delta_1, \delta_2) \rightarrow (L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ with the identity mapping $r \mid_Y = id_Y$.

Definition 2.2. Let $(L^X, \delta_1, \delta_2)$, (L^Y, μ_1, μ_2) be L-fbts's, $f^{\rightarrow} : L^X \rightarrow L^Y$ an L-fuzzy mapping, $\alpha \in \operatorname{pr}(L)$. If for each $x \in X$ and $V \in \mu_i$ with $V(f(x)) \nleq \alpha$, there exists $U \in \delta_i$ with $U(x) \nleq \alpha$, $i, j \in \{1, 2\}, i \neq j$, such that

- (i) $f^{\rightarrow}(U) \leq V, \ U \in \delta'_i;$
- (ii) $f^{\rightarrow}(\delta_i \operatorname{-int}(\delta_j \operatorname{-cl}(U))) \leq V;$
- (iii) $f^{\rightarrow}((\delta_j \operatorname{-cl}(U)) \leq V;$
- (iv) $f^{\rightarrow}(\delta_i \operatorname{-int}(\delta_j \operatorname{-cl}(U)) \leq \mu_i \operatorname{-int}(\mu_j \operatorname{-cl}(V));$
- (v) $f^{\rightarrow}(U) \leq \mu_i \operatorname{-int}(\mu_j \operatorname{-cl}(V)),$

then f^{\rightarrow} is called

536

- (i) α -fuzzy pairwise clopen continuous (α -FPcoc, for short);
- (ii) α -fuzzy pairwise super continuous (α -FPsc, for short);
- (iii) strongly α -fuzzy pairwise continuous (s α -FPc, for short);
- (iv) α -fuzzy pairwise δ -continuous (α -FP δ -c, for short);
- (v) α -fuzzy pairwise almost continuous (α -FPac, for short).

Definition 2.3. Let $(L^X, \delta_1, \delta_2)$ be an L-fbts, $Y \subset X$. Then $(L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ is called an α -fuzzy pairwise clopen retract (resp. an α -fuzzy pairwise super retract, strongly α -fuzzy pairwise retract, an α -fuzzy pairwise δ -retract and an α -fuzzy pairwise almost retract); α -FPCOR (resp. α -FPSR, S α -FPR, α -FP δ -R and α -FPAR) for brevity; iff there exists an α -FPcoc (resp. α -FPsc, s α -FPc, α -FP δ -c and α -FPac) r^{\rightarrow} : $(L^X, \delta_1, \delta_2) \rightarrow (L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ such that $r \mid_Y = id_Y$.

Remark 2.1. Every *L*-fuzzy pairwise retract (*L*-FPR) is α -FPR.

The implications between these different notions of α -fuzzy pairwise retracts are given by the following diagram

$$\begin{array}{cccc} & & & S\alpha\text{-FPR} & & L\text{-FPR} \\ & & & \downarrow & & \downarrow \\ \alpha\text{-FPCOR} \implies & \alpha\text{-FPSR} \implies & \alpha\text{-FPR} \\ & & & \downarrow & & \downarrow \\ & & & \alpha\text{-FP}\delta\text{-R} \implies & \alpha\text{-FPAR} \end{array}$$

Example 2.1. Let X = [0,1], $Y = \{0,1\}$, L be the lattice given by the following diagram. We define $r: X \to Y$ by

$$r(x) = \begin{cases} 0, & \text{if } x \in [0, 0.5], \\ 1, & \text{if } x \in (0.5, 1], \end{cases}$$

and let $\delta_1 = \{\underline{0}, U, V, \underline{1}\}, \ \delta_2 = \{\underline{0}, W, \underline{1}\},$ where

$$U(x) = \begin{cases} c', & \text{if } x \in Y, \\ d, & \text{if } x \in X - Y; \\ 0, & \text{if } x \in X - \{0.5\}, \\ a, & \text{if } x = 0.5; \\ w(x) = \begin{cases} a', & \text{if } x \in Y, \\ d, & \text{otherwise.} \end{cases}$$

One can easily show that r^{\rightarrow} is α -FPc at $\alpha = b$ and hence $(L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ is an α -FPR of $(L^X, \delta_1, \delta_2)$ but neither α -FPSR nor *L*-FPR. And let $\delta_1 = \{\underline{0}, W, \underline{1}\}, \ \delta_2 = \{\underline{0}, V^*, \underline{d}, \underline{1}\}$, where

$$V^*(x) = \begin{cases} c, & \text{if } x \in Y, \\ c', & \text{if } x \in X - Y. \end{cases}$$

One can easily show that at $\alpha = b$, $(L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ is an α -FPAR of $(L^X, \delta_1, \delta_2)$ but not α -FP δ -R.

Also, let $\delta_1 = \{\underline{0}, W, \underline{1}\}$ and $\delta_2 = \{\underline{0}, \underline{d}, \underline{c}, \underline{1}\}$. One can easily show that at $\alpha = b$, $(L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ is an α -FPSR of $(L^X, \delta_1, \delta_2)$ but neither an α -FPCOR nor an S α -FPR.

Example 2.2. Let $X = N = \{1, 2, 3, \dots\}$ and $Y = \{5, 10\}$, L be the same lattice given in Example 2.1. We define $r: X \to Y$ as follows:

$$r(x) = \begin{cases} 5, & \text{if } x \text{ is odd,} \\ 10, & \text{if } x \text{ is even,} \end{cases}$$

and let $\delta_1 = \{\underline{0}, U, \underline{1}\}, \ \delta_2 = \{\underline{0}, W, \underline{1}\}, \text{ where } U, \ W \in L^X \text{ defined as follows:}$

$$U(x) = \begin{cases} d, & 1 \le x < 5, \\ 1, & x \ge 5, \end{cases}$$
$$W(x) = \begin{cases} c', & (1 \le x < 5) \cup (x > 10), \\ d, & 5 \le x \le 10. \end{cases}$$

One can easily show that r^{\rightarrow} is an α -FPac and hence $(L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ is an α -FPAR of $(L^X, \delta_1, \delta_2)$ but not an α -FPR, at $\alpha = a$.

Also, let $\delta_1 = \{\underline{0}, \underline{a}', \underline{1}\}$ and $\delta_2 = \{\underline{0}, W, \underline{1}\}$. One can easily show that at $\alpha = a$, $(L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ is an α -FP δ -R of $(L^X, \delta_1, \delta_2)$ but not an α -FPSR.

Definition 2.4. Let $(L^X, \delta_1, \delta_2)$ be an L-fbts. Then $(L^X, \delta_1, \delta_2)$ is called

(i) α -pairwise regular space if for each $x \in X$ and each $U \in \delta_i$ with $U(x) \nleq \alpha$, there exists $V \in \delta_i$ with $V(x) \not\leq \alpha$ such that $\delta_i \operatorname{-cl}(V) \leq U$.

(ii) α -pairwise semiregular space if for each $x \in X$ and each $U \in \delta_i$ with $U(x) \nleq \alpha$, there exists $V \in \delta_i$ with $V(x) \not\leq \alpha$ such that δ_i -int $(\delta_i$ -cl $(V)) \leq U$.

(iii) α -pairwise almost regular space if for each $x \in X$ and each $U \in \delta_i$ with $U(x) \nleq \alpha$, there exists $V \in \delta_i$ with $V(x) \leq \alpha$ such that $\delta_j \operatorname{-cl}(V) \leq \delta_i \operatorname{-int}(\delta_j \operatorname{-cl}(U))$.

Remark 2.2. From the preceding definition it is clear that every α -pairwise regular space is an α -pairwise semiregular space and also an α -pairwise almost regular space. Also an α -pairwise semiregular space and an α -pairwise almost regular space are independent notions.

Example 2.3. Let $X = \{x^1, x^2\}$, L be the same lattice given in Example 2.1.

Let $\delta_1 = \{\underline{0}, \underline{d}, \underline{1}\}$ and $\delta_2 = \{\underline{0}, \underline{a}, \underline{1}\}$. Then $(L^X, \delta_1, \delta_2)$ is α -pairwise semiregular but not α -pairwise almost regular at $\alpha = b$.

And let $\delta_1 = \{\underline{0}, x_a^1 \lor x_{a'}^2, x_{a'}^1 \lor x_{c'}^2, \underline{1}\}$ and $\delta_2 = \{\underline{0}, \underline{d}, \underline{1}\}$. Then $(L^X, \delta_1, \delta_2)$ is α -pairwise almost regular but not α -pairwise semiregular at $\alpha = b$.

Theorem 2.1. Let $(L^X, \delta_1, \delta_2)$ be an α -pairwise semiregular L-fbts, $Y \subset X$. Then the following are equivalent:

(i) L^Y is an α -FPR of L^X :

(ii) L^Y is an α -FPSR of L^X .

Proof. (ii) \Rightarrow (i). It follows from the definitions.

(i) \Rightarrow (ii). Let L^Y be an α -FPR of L^X . Then there exists an α -FPc $r^{\rightarrow} : (L^X, \delta_1, \delta_2) \rightarrow$ $(L^{Y}, \delta_{1} | _{Y}, \delta_{2} | _{Y})$ with $r | _{Y} = id_{Y}$, so $r^{\rightarrow} : (L^{X}, \delta_{1}) \rightarrow (L^{Y}, \delta_{1} | _{Y}), r^{\rightarrow} : (L^{X}, \delta_{2}) \rightarrow (L^{Y}, \delta_{2} | _{Y})$ are α -Fc mappings. Then $\forall x \in X, V \in \delta_{i} | _{Y}$ with $V(r(x)) \nleq \alpha \Rightarrow \exists U \in \delta_{i}$ with $U(x) \nleq \alpha$ such that $r^{\rightarrow}(U) \le V$. Since L^{X} is α -pairwise semiregular, $\exists W \in \delta_{i}$ with $W(x) \leq \alpha$ such that δ_i -int $(\delta_i$ -cl $(W)) \leq U \Rightarrow r^{\rightarrow}(\delta_i$ -int $(\delta_i$ -cl $(W))) \leq r^{\rightarrow}(U) \leq V, i \neq j$. Then r^{\rightarrow} is α -FPsc and hence L^Y is an α -FPSR of L^X .

Theorem 2.2. Let $(L^X, \delta_1, \delta_2)$ be an L-fbts, $Y \subset X$ and $(L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ be α pairwise semiregular. Consider the following properties

- (i) L^Y is an α -FPR of L^X , (ii) L^Y is an α -FPAR of L^X

(iii) L^Y is an α -FP δ -R of L^X , (iv) L^Y is an α -FPSR of L^X .

Then, $(iv) \iff (iii) \implies (i) \iff (ii)$.

Proof. Clearly $(iv) \Rightarrow (iii) \Rightarrow (ii), (iv) \Rightarrow (i) \Rightarrow (ii).$ It suffices to show that $(iii) \Rightarrow (iv)$ and $(ii) \Rightarrow (i)$.

(iii) \Rightarrow (iv). Since L^Y is an α -FP δ -R of L^X , there exists an α -FP δ -c mapping r^{\rightarrow} : $(L^X, \delta_1, \delta_2) \to (L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ such that $r \mid_Y = id_Y$.

Now we are going to prove that r^{\rightarrow} is α -FPsc. Let $x \in X$, $W \in \delta_i \mid_Y$ with $W(r(x)) \nleq \alpha$, where L^Y is α -pairwise semiregular $\Rightarrow \exists V \in \delta_i \mid_Y$ with $V(r(x)) \nleq \alpha$ such that $\delta_i \mid_Y$ -int $(\delta_j \mid_Y - \operatorname{cl}(V)) \le W$. Since L^Y is an α -FP δ -R of $L^X \Rightarrow \exists U \in \delta_i$ with $U(x) \nleq \alpha$ and $r^{\rightarrow}(\delta_i - \operatorname{int}(\delta_j - \operatorname{cl}(U))) \le \delta_i \mid_Y - \operatorname{int}(\delta_j \mid_Y - \operatorname{cl}(V)) \le W$, i.e., r^{\rightarrow} is α -FPsc and hence L^Y is an α -FPSR of L^X .

(ii) \Rightarrow (i). Since L^Y is an α -FPAR of L^X , there exists an α -FPac mapping r^{\rightarrow} : $(L^X, \delta_1, \delta_2) \to (L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ such that $r \mid_Y = id_Y$.

Now we are going to prove that r^{\rightarrow} is α -FPc. Let $x \in X$, $W \in \delta_i \mid_Y$ with $W(r(x)) \nleq \alpha$ where L^Y is α -pairwise semiregular $\Rightarrow \exists V \in \delta_i \mid_Y$ with $V(r(x)) \nleq \alpha$ such that $\delta_i \mid_Y$ int $(\delta_j \mid_Y - \operatorname{cl}(V)) \leq W$. Since L^Y is an α -FPAR of $L^X \Rightarrow \exists U \in \delta_i$ with $U(x) \nleq \alpha$ and $r^{\rightarrow}(U) \leq \delta_i |_{Y}$ -int $(\delta_j |_{Y}$ -cl $(V)) \leq W$, i.e., r^{\rightarrow} is α -FPc and hence L^Y is an α -FPR of L^X .

Theorem 2.3. Let $Y \subset X$, and $(L^X, \delta_1, \delta_2), (L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ are α -pairwise semiregular L-fbts's. Then the following are equivalent:

- (i) L^Y is an α -FPR of L^X ;
- (ii) L^Y is an α -FPAR of L^X

(iii) L^Y is an α -FP δ -R of L^X ; (iv) L^Y is an α -FPSR of L^X .

Proof. It follows from Theorem 2.1 and Theorem 2.2.

Theorem 2.4. Let $(L^X, \delta_1, \delta_2)$ be an α -pairwise almost regular L-fbts, $Y \subset X$. Then the following are equivalent:

(i) L^Y is an $S\alpha$ -FPR of L^X ;

(ii) L^Y is an α -FPSR of L^X .

Proof. (i) \Rightarrow (ii). It is clear.

(ii) \Rightarrow (i). Since L^Y is an α -FPSR of L^X , there exists an α -FPsc mapping r^{\rightarrow} : $(L^X, \delta_1, \delta_2) \rightarrow (L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ such that $r \mid_Y = id_Y$.

Now we are going to prove that r^{\rightarrow} is s α -FPc. Let $x \in X$, $W \in \delta_i |_Y$ with $W(r(x)) \nleq \alpha$. Since L^Y is an α -FPSR of $L^X \Rightarrow \exists V \in \delta_i$ with $V(x) \nleq \alpha$ and $r^{\rightarrow}(\delta_i \operatorname{-int}(\delta_j \operatorname{-cl}(V))) \leq W$, but L^X is α -pairwise almost regular, $\exists U \in \delta_i$ with $U(x) \nleq \alpha$ and $\delta_j \operatorname{-cl}(U) \leq \delta_i \operatorname{-int}(\delta_j \operatorname{-cl}(V)) \Rightarrow r^{\rightarrow}(\delta_j \operatorname{-cl}(U)) \leq r^{\rightarrow}(\delta_i \operatorname{-int}(\delta_j \operatorname{-cl}(V))) \leq W$, i.e., r^{\rightarrow} is s α -FPc and hence L^Y is an S α -FPR of L^X .

Corollary 2.1. Let $Y \subset X$, and $(L^X, \delta_1, \delta_2), (L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ are α -pairwise regular L-fbts's. Then the properties, α -FPR, α -FPSR, S α -FPR, α -FP δ -R, α -FPAR are all equivalent.

Theorem 2.5. Let $f^{\rightarrow} : (L^X, \delta_1, \delta_2) \rightarrow (L^Y, \sigma_1, \sigma_2)$ be an L-fuzzy mapping and $g : X \rightarrow X \times Y$ its ordinary graph. Then g^{\rightarrow} is α -FPsc $\iff f^{\rightarrow}$ is α -FPsc and L^X is α -pairwise semiregular.

Proof. \Rightarrow . Suppose g^{\rightarrow} is α -FPsc. Let $x \in X$, $W \in \sigma_i$ with $W(f(x)) \nleq \alpha$. Then $U = \underline{1} \times W \in \delta_i \times \sigma_i$ such that $U(g(x)) \nleq \alpha$. Since g^{\rightarrow} is α -FPsc $\Rightarrow \exists V \in \delta_i$ with $V(x) \nleq \alpha$ such that $g^{\rightarrow}(\delta_i\text{-int}(\delta_j\text{-cl}(V))) \leq U$, and $\delta_i\text{-int}(\delta_j\text{-cl}(V)) \leq g^{\bullet--}(U) = \underline{1} \wedge f^{\bullet--}(W) = f^{\bullet--}(W) \Rightarrow f^{\rightarrow}(\delta_i\text{-int}(\delta_j\text{-cl}(V))) \leq f^{\rightarrow}f^{\bullet--}(W) \leq W \Rightarrow f^{\rightarrow}$ is α -FPsc.

We show that L^{X} is α -pairwise semiregular. Let $x \in X$, $\theta \in \delta_i$ with $\theta(x) \nleq \alpha$. Then $\theta \times \underline{1} \in \delta_i \times \sigma_i$ such that $(\theta \times \underline{1})(g(x)) \nleq \alpha$. Since g^{\rightarrow} is α -FPsc $\Rightarrow \exists \theta^* \in \delta_i$ with $\theta^*(x) \nleq \alpha$ such that

$$g^{\rightarrow}(\delta_i \operatorname{-int}(\delta_j \operatorname{-cl}(\theta^*))) \leq \theta \times \underline{1} \Rightarrow \delta_i \operatorname{-int}(\delta_j \operatorname{-cl}(\theta^*)) \leq g^{\bullet}(\theta \times \underline{1}) = \theta \wedge f^{\bullet}(\underline{1}) = \theta.$$

Then L^X is α -pairwise semiregular.

 \Leftarrow . Assume f^{\rightarrow} is $\alpha\text{-FPsc}$ and L^X is $\alpha\text{-pairwise}$ semiregular.

Let $x \in X$, $W \in \delta_i \times \sigma_i$ with $W(g(x)) \nleq \alpha$, by Lemma 1.3 $\Rightarrow \exists W_1 \in \delta_i$ with $W_1(x) \nleq \alpha$, $W_2 \in \sigma_i$ with $W_2(f(x)) \nleq \alpha$ such that $W_1 \times W_2 \leq W$. Since f^{\rightarrow} is α -FPsc $\Rightarrow \exists \theta_2 \in \delta_i$ with $\theta_2(x) \nleq \alpha$ such that

$$f^{\rightarrow}(\delta_i \operatorname{-int}(\delta_j \operatorname{-cl}(\theta_2))) \le W_2 \Rightarrow \delta_i \operatorname{-int}(\delta_j \operatorname{-cl}(\theta_2)) \le f^{\leftarrow}(W_2),$$

and also L^X is α -pairwise semiregular $\Rightarrow \exists \theta_1 \in \delta_i$ with $\theta_1(x) \nleq \alpha$ such that δ_i -int $(\delta_j - \operatorname{cl}(\theta_1)) \le W_1$. Clearly $\theta_1 \land \theta_2 = \theta \in \delta_i$ and $\theta(x) \nleq \alpha$,

$$\delta_{i} \operatorname{-int} (\delta_{j} \operatorname{-cl} (\theta)) = \delta_{i} \operatorname{-int} (\delta_{j} \operatorname{-cl} (\theta_{1} \wedge \theta_{2}))$$

$$\leq (\delta_{i} \operatorname{-int} (\delta_{j} \operatorname{-cl} (\theta_{1}))) \wedge (\delta_{i} \operatorname{-int} (\delta_{j} \operatorname{-cl} (\theta_{2})))$$

$$\leq W_{1} \wedge f^{\operatorname{+--}}(W_{2}) = g^{\operatorname{+--}}(W_{1} \times W_{2}) \leq g^{\operatorname{+--}}(W)$$

$$\Rightarrow g^{\rightarrow} (\delta_{i} \operatorname{-int} (\delta_{j} \operatorname{-cl} (\theta))) \leq g^{\rightarrow} g^{\operatorname{+--}}(W) \leq W.$$

Thus g^{\rightarrow} is α -FPsc.

Corollary 2.2. Let $(L^X, \delta_1, \delta_2)$ be an L-fbts, $Y \subset X$ and $r^{\rightarrow} : (L^X, \delta_1, \delta_2) \rightarrow (L^Y, \delta_1 |_Y, \delta_2 |_Y)$ be an L-fuzzy mapping such that $r |_Y = id_Y, g : X \rightarrow X \times Y$ its ordinary graph. Then g^{\rightarrow} is α -FPsc $\iff L^Y$ is an α -FPSR of L^X and L^X is α -pairwise semiregular.

Theorem 2.6. Let $f^{\rightarrow} : (L^X, \delta_1, \delta_2) \rightarrow (L^Y, \sigma_1, \sigma_2)$ be an L-fuzzy mapping and $g : X \rightarrow X \times Y$ its ordinary graph. If g^{\rightarrow} is s α -FPc, then f^{\rightarrow} is s α -FPc and L^X is α -pairwise almost regular.

Proof. Suppose f^{\rightarrow} is s α -FPc. Let $x \in X$, $W \in \sigma_i$ with $W(f(x)) \nleq \alpha$. Then $U = \underline{1} \times W \in \delta_i \times \sigma_i$ such that $U(g(x)) \nleq \alpha$. Since g^{\rightarrow} is s α -FPc $\Rightarrow \exists V \in \delta_i$ with $V(x) \nleq \alpha$ such that $g^{\rightarrow}(\delta_i \operatorname{-cl}(V)) \leq U$, and

$$\delta_{j}\operatorname{-cl}(V) \leq g^{\bullet-}(U) = \underline{1} \wedge f^{\bullet-}(W) = f^{\bullet-}(W)$$

$$\Rightarrow f^{\rightarrow}(\delta_{j}\operatorname{-cl}(V)) \leq f^{\rightarrow}f^{\bullet-}(W) \leq W$$

$$\Rightarrow f^{\rightarrow} \quad \text{is s}\alpha\text{-FPc.}$$

We show that L^X is α -pairwise almost regular.

Let $x \in X$, $\theta \in \delta_i$ with $\theta(x) \nleq \alpha$. Then $\theta \times \underline{1} \in \delta_i \times \sigma_i$ such that $(\theta \times \underline{1})(g(x)) \nleq \alpha$. Since g^{\rightarrow} is s α -FPc $\Rightarrow \exists \theta^* \in \delta_i$ with $\theta^*(x) \nleq \alpha$ such that

$$g^{\rightarrow}(\delta_j \operatorname{-cl}(\theta^*)) \leq \theta \times \underline{1}$$

$$\Rightarrow \delta_j \operatorname{-cl}(\theta^*) \leq g^{\operatorname{\epsilon--}}(\theta \times \underline{1}) = \theta \wedge f^{\operatorname{\epsilon--}}(\underline{1}) = \theta \leq \delta_i \operatorname{-int}(\delta_j \operatorname{-cl}(\theta)).$$

Then L^X is α -pairwise almost regular.

Corollary 2.3. Let $(L^X, \delta_1, \delta_2)$ be an L-fbts, $Y \subset X$ and $r^{\rightarrow} : (L^X, \delta_1, \delta_2) \rightarrow (L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ be an L-fuzzy mapping such that $r \mid_Y = id_Y, g : X \rightarrow X \times Y$ its ordinary graph. If g^{\rightarrow} is sa-FPc, then L^Y is an Sa-FPR of L^X and L^X is a-pairwise almost regular.

Theorem 2.7. Let $f^{\rightarrow} : (L^X, \delta_1, \delta_2) \rightarrow (L^Y, \sigma_1, \sigma_2)$ be an L-fuzzy mapping and $g : X \rightarrow X \times Y$ its ordinary graph. Then

 g^{\rightarrow} is s α -FPc $\iff f^{\rightarrow}$ is s α -FPc and L^X is α -pairwise regular.

Proof. \Rightarrow . Assume f^{\rightarrow} is s α -FPc. Let $x \in X$, $W \in \sigma_i$ with $W(f(x)) \nleq \alpha$. Then $U = \underline{1} \times W \in \delta_i \times \sigma_i$ such that $U(g(x)) \nleq \alpha$. Since g^{\rightarrow} is s α -FPc $\Rightarrow \exists V \in \delta_i$ with $V(x) \nleq \alpha$ such that $g^{\rightarrow}(\delta_i \operatorname{-cl}(V)) \leq U$, and

$$\delta_j \operatorname{-cl} (V) \le g^{\operatorname{\epsilon-r}}(U) = \underline{1} \wedge f^{\operatorname{\epsilon-r}}(W) = f^{\operatorname{\epsilon-r}}(W)$$

$$\Rightarrow f^{\rightarrow}(\delta_j \operatorname{-cl}(V)) \le f^{\rightarrow} f^{\operatorname{\epsilon-r}}(W) \le W$$

$$\Rightarrow f^{\rightarrow} \text{ is s} \alpha \operatorname{-FPc.}$$

We show that L^X is α -pairwise regular. Let $x \in X$, $\theta \in \delta_i$ with $\theta(x) \nleq \alpha$. Then $\theta \times \underline{1} \in \delta_i \times \sigma_i$ such that $(\theta \times \underline{1})(g(x)) \nleq \alpha$. Since g^{\rightarrow} is s α -FPc $\Rightarrow \exists \theta^* \in \delta_i$ with $\theta^*(x) \nleq \alpha$ such that

$$g^{\rightarrow}(\delta_j\operatorname{-cl}(\theta^*)) \leq \theta \times \underline{1} \ \Rightarrow \delta_j\operatorname{-cl}(\theta^*) \leq g^{\bullet-}(\theta \times \underline{1}) = \ \theta \wedge f^{\bullet-}(\underline{1}) = \theta.$$

Then L^X is α -pairwise regular.

 \Leftarrow . Assume f^{\rightarrow} is s α -FPc of L^X and L^X is α -pairwise semiregular.

Let $x \in X$, $W \in \delta_i \times \sigma_i$ with $W(g(x)) \nleq \alpha$. By Lemma 1.3 $\Rightarrow \exists W_1 \in \delta_i$ with $W_1(x) \nleq \alpha$, $W_2 \in \sigma_i$ with $W_2(f(x)) \nleq \alpha$ such that $W_1 \times W_2 \le W$, where f^{\rightarrow} is s α -FPc. $\Rightarrow \exists \theta_2 \in \delta_i$ with $\theta_2(x) \nleq \alpha$ such that $f^{\rightarrow}(\delta_j \operatorname{-cl}(\theta_2)) \le W_2 \Rightarrow \delta_j \operatorname{-cl}(\theta_2) \le f^{*--}(W_2)$, and also L^X is α -pairwise regular $\Rightarrow \exists \theta_1 \in \delta_i$ with $\theta_1(x) \nleq \alpha$ such that $\delta_j \operatorname{-cl}(\theta_1) \le W_1$.

Clearly $\theta_1 \wedge \theta_2 = \theta \in \delta_i$ such that $\theta(x) \nleq \alpha$,

$$\delta_{j}\text{-}\mathrm{cl}(\theta) = \delta_{j}\text{-}\mathrm{cl}(\theta_{1} \wedge \theta_{2}) \leq (\delta_{j}\text{-}\mathrm{cl}(\theta_{1})) \wedge (\delta_{j}\text{-}\mathrm{cl}(\theta_{2}))$$
$$\leq W_{1} \wedge f^{\boldsymbol{\epsilon}}(W_{2}) = g^{\boldsymbol{\epsilon}}(W_{1} \times W_{2}) \leq g^{\boldsymbol{\epsilon}}(W)$$
$$\Rightarrow g^{\rightarrow}(\delta_{j}\text{-}\mathrm{cl}(\theta)) \leq g^{\rightarrow}g^{\boldsymbol{\epsilon}}(W) \leq W.$$

Thus g^{\rightarrow} is s α -FPc.

Corollary 2.4. Let $(L^X, \delta_1, \delta_2)$ be L-fbts, $Y \subset X$ and $r^{\rightarrow} : (L^X, \delta_1, \delta_2) \rightarrow (L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ be an L-fuzzy mapping such that $r \mid_Y = id_Y, g : X \rightarrow X \times Y$ its ordinary graph. Then g^{\rightarrow} is sa-FPc $\iff L^Y$ is an Sa-FPR of L^X and L^X is a-pairwise regular.

Proposition 2.1. The composition of α -FPc (resp. α -FPcoc, α -FPsc, $s\alpha$ -FPc, α -FP δ -c) mappings is an α -FPc (resp. α -FPcoc, α -FPsc, $s\alpha$ -FPc, α -FP δ -c) mapping.

Proof. It is obvious.

Theorem 2.8. Let $(L^X, \delta_1, \delta_2)$ be an L-fbts, $Y \subset X$. Then L^Y is an α -FPR (resp. α -FPCOR, α -FPSR, S α -FPR, α -FP δ -R) of L^X iff, for any $(L^Z, \gamma_1, \gamma_2)$ L-fbts, every α -FPc (resp. α -FPcoc, α -FPsc, s α -FPc, α -FP δ -c) mapping $g^{\rightarrow} : L^Y \to L^Z$, g^{\rightarrow} has an extension over X.

Proof. By Proposition 2.1.

Theorem 2.9. Let $(L^X, \delta_1, \delta_2)$ be an L-fbts, $Z \subset Y \subset X$. If L^Z is an α -FPCR (resp. α -FPCOR, α -FPR, α -FPAR, α -FPAR, S α -FPR, S α -FPR) of L^Y , and L^Y is an α -FPSR (resp. α -FP δ -R, S α -FPR, α -FPAR, S α -FPR, α -FPCR, α -FP δ -R, α -FPR) of L^X , then L^Z is an α -FPSR (resp. α -FPSR, S α -FPR, α -FPR, α -FPR, α -FPAR, α -FPAR, α -FPSR, α -FPAR, α

Proof. It is obvious.

Definition 2.5. Let $(L^X, \delta_1, \delta_2)$, $(L^Y, \gamma_1, \gamma_2)$ be L-fbts's. Then the L-fuzzy pairwise mapping $f^{\rightarrow} : (L^X, \delta_1, \delta_2) \rightarrow (L^Y, \gamma_1, \gamma_2)$ is called \triangle -pairwise continuous $(\triangle$ -Pc for short) mapping if both $f^{\rightarrow} : (L^X, \delta_1) \rightarrow (L^Y, \gamma_1)$ and $f^{\rightarrow} : (L^X, \delta_2) \rightarrow (L^Y, \gamma_2)$ are \triangle -continuous mappings.

And if $Y \subset X$, then $(L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ is called a Δ -pairwise retract (Δ -PR for short) of $(L^X, \delta_1, \delta_2)$ if there exists a Δ - pairwise continuous mapping $r^{\rightarrow} : (L^X, \delta_1, \delta_2) \rightarrow (L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ such that $r \mid_Y = id_Y$.

Clearly every α -PR is a \triangle -PR but the converse is not true in general.

Example 2.4. Let $X = \{x^1, x^2, x^3\}$, $Y = \{x^1\}$, and L the same lattice given in Example 2.1. Consider δ_1 , δ_2 on L^X defined by

 $\delta_1 = \{\underline{0}, x_d^1 \lor x_{c'}^2 \lor x_b^3, \underline{1}\}, \qquad \delta_2 = \{\underline{0}, x_d^1 \lor x_{a'}^2 \lor x_{b'}^3, \underline{1}\}.$

Clearly L^Y is a \triangle -PR of L^X but not an α -PR of L^X at $\alpha = a$.

Theorem 2.10. Let (L^X, δ, σ) be an L-fbts and α -PT₂. Then every α -FPR of (L^X, δ, σ) is α -P-closed.

Proof. Let $(L^Y, \delta \mid_Y, \sigma \mid_Y)$ be an α -FPR of (L^X, δ, σ) , where (L^X, δ, σ) is α -PT₂. Then there exists an α -fuzzy continuous mapping $r^{\rightarrow} : L^X \to L^Y$ such that $r(y) = y, \forall y \in Y$. Let $x \in X - Y \Rightarrow x \neq r(x), r(x) \in Y$. But (L^X, δ, σ) is α -PT₂, then there exist $U \in \delta$, $V \in \sigma$, such that $U(x) \nleq \alpha, V(r(x)) \nleq \alpha$ and $U \wedge V = \underline{0}$; there is $V' \in \delta, U' \in \sigma$, such that $V'(r(x)) \nleq \alpha, U'(x) \nleq \alpha$ and $U' \wedge V' = \underline{0}$.

Therefore $V \mid_Y \in \sigma \mid_Y$ and $V \mid_Y (r(x)) \nleq \alpha$. Since r^{\rightarrow} is α -pairwise continuous $\Rightarrow \exists W_1 \in \sigma$ such that $W_1(x) \nleq \alpha$ and $r^{\rightarrow}(W_1) \le V \mid_Y$. Put $W_1^* = W_1 \wedge U' \in \sigma$ such that $W_1^*(x) \nleq \alpha$ and $W_1^* \wedge 1_Y = \underline{0}$.

And also therefore $V' \mid_Y \in \delta \mid_Y$ and $V' \mid_Y (r(x)) \nleq \alpha$.

Since r^{\rightarrow} is α -pairwise continuous $\Rightarrow \exists W_2 \in \delta$ such that $W_2(x) \nleq \alpha$ and $r^{\rightarrow}(W_2) \le V' \mid_Y$. Put $W_2^* = W_2 \land U \in \delta$ such that $W_2^*(x) \nleq \alpha$ and $W_2^* \land 1_Y = \underline{0}$.

For, assume that $\exists z \in Y, a \in L$ -{0} such that $W_1^*(z) > 0, W_2^*(z) > a$, hence $W_1(z) \wedge U'(z) > 0$. But

$$W_1(z) \le r^{\bullet - -} r^{\to}(W_1)(z) \le r^{\bullet - -}(V|_Y)(z) = (V|_Y)(r(z)) = (V|_Y)(z) = V(z).$$

That is $W_1(z) \leq V(z)$, so, $V(z) \wedge U'(z) > 0$, and similarly $V'(z) \wedge U(z) > a \Rightarrow (V \wedge U \wedge V' \wedge U')(z) > 0$, a contradiction to $U \wedge V = \underline{0}$ and $U' \wedge V' = \underline{0}$. Hence $W_1^* \wedge 1_Y = \underline{0}$ and $W_2^* \wedge 1_Y = \underline{0}$, so Y is α -closed in both (L^X, δ) and (L^Y, σ) . Hence Y is α -P-closed.

§3. α -Fuzzy Pairwise Retract of *L*-Valued Pairwise Stratification Spaces

Proposition 3.1. Let $(L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ be an L-FPR of $(L^X, \delta_1, \delta_2)$. Then

 $(L^X, \delta_1, \delta_2)$ is pairwise stratified $\iff (L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ is pairwise stratified.

Theorem 3.1. Let (L^X, μ_1, μ_2) be the pairwise stratification of $(L^X, \delta_1, \delta_2)$, and $(L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ be an L-FPR of $(L^X, \delta_1, \delta_2)$. Then $(L^Y, \mu_1 \mid_Y, \mu_2 \mid_Y)$ is an L-FPR of (L^X, μ_1, μ_2) .

Proof. By Theorem 1.2 and Theorem 1.3.

Proposition 3.2. If $(L^Y, \delta_1 \mid_Y, \delta_2 \mid_Y)$ is an *L*-FPR of $(L^X, \delta_1, \delta_2)$. Then $(Y, [\delta_1 \mid_Y], [\delta_2 \mid_Y])$ is an ordinary pairwise retract of $(X, [\delta_1], [\delta_2])$.

Proof. By Proposition 1.1.

Theorem 3.2. Let $(L^X, \delta_1, \delta_2)$ be a pairwise induced L-fbts, $Y \subset X$.

$$(L^{Y}, \delta_{1} \mid_{Y}, \delta_{2} \mid_{Y})$$
 is an L-FPR of $(L^{X}, \delta_{1}, \delta_{2})$

 $\iff (Y, [\delta_1 \mid_Y], [\delta_2 \mid_Y])$ is an ordinary pairwise retract of $(X, [\delta_1], [\delta_2])$.

Proof. \Rightarrow . By Proposition 3.2.

 \Leftarrow . By Theorems 1.1, 1.4 and Lemma 1.4.

Proposition 3.3. Let $(L^X, \delta_1, \delta_2)$ be a weakly induced L-fts, $Y \subset X$. $(Y, [\delta_1 |_Y], [\delta_2 |_Y])$ is an ordinary pairwise retract of $(X, [\delta_1], [\delta_2])$, iff $(L^Y, \delta_1 |_Y, \delta_2 |_Y)$ is a Δ -FPR of $(L^X, \delta_1, \delta_2)$.

Proof. By Lemma 1.6.

Theorem 3.3. Let $(L^X, \delta_1, \delta_2), (L^Y, \gamma_1, \gamma_2)$ be pairwise weakly induced L-fbts's, $f^{\rightarrow} : L^X \to L^Y$ be an L-fuzzy mapping. Then the following hold:

(i) If f^{\rightarrow} is an α -FPc, then the ordinary mapping $f : (X, [\delta_1], [\delta_2]) \rightarrow (Y, [\gamma_1], [\gamma_2])$ is Pc;

(ii) If f^{\rightarrow} is an α -FPac, then the ordinary mapping $f : (X, [\delta_1], [\delta_2]) \rightarrow (Y, [\gamma_1], [\gamma_2])$ is Pac.

Proof. (i) Let $x \in X$, $f(x) \in A \in [\gamma_i]$, $\alpha \in \operatorname{pr}(L) \Rightarrow 1_A \in \gamma_i$ and $1_A(f(x)) \nleq \alpha$. But f^{\rightarrow} is an α -FPc $\Rightarrow \exists W \in \delta_i$ with $W(x) \nleq \alpha$ and $f^{\rightarrow}(W) \leq 1_A$. Let $a \in L$. Since L^X is pairwise weakly induced, we have $W_{(a)} \in [\delta_i]$, $(W)_{(a)} \leq f^{*-}f^{\rightarrow}(W)_{(a)} \leq f^{*-}(1_A)_{(a)} = f^{-1}(A) \Rightarrow f((W)_{(a)}) \leq A, i = 1, 2$. Then f is ordinary Pc.

(ii) Let $x \in X$, $f(x) \in A \in [\gamma_i]$, $\alpha \in \operatorname{pr}(L) \Rightarrow 1_A \in \gamma_i$ and $1_A(f(x)) \nleq \alpha$. But f^{\rightarrow} is α -FPac $\Rightarrow \exists W \in \delta_i$ with $W(x) \nleq \alpha$ by Theorem 1.6. $f^{\rightarrow}(W) \leq \gamma_i$ -int $(\gamma_j$ -cl $(1_A)) = \gamma_i$ -int $(1_{[\gamma_j]}$ -cl $(A)) = 1_{[\gamma_i]}$ -int $([\gamma_j]$ -cl (A)).

Let $a \in L \Rightarrow W_{(a)} \in [\delta_i], W_{(a)} \leq f^{*-}f^{\rightarrow}(W)_{(a)} \leq f^{*-}(1_{[\gamma_i]}\operatorname{-int}([\gamma_j]\operatorname{-cl}(A)))_{(a)} = f^{-1}([\gamma_i]\operatorname{-int}([\gamma_j]\operatorname{-cl}(A))) \Rightarrow f(W_{(a)}) \leq [\gamma_i]\operatorname{-int}([\gamma_j]\operatorname{-cl}(A)).$ Then f is ordinary Pac.

Example 3.1. Let X = R, Y = I, $L = \{0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 1\}$. Consider $f : X \to Y$ defined as

$$f(x) = \begin{cases} 0, & x \le 0, \\ 1 - x, & 0 < x < 1, \\ 1, & x \ge 1, \end{cases}$$

 $\delta_1, \ \delta_2 \ \text{on} \ L^X \ \text{defined as} \ \delta_1 = \{\underline{0}, U, \underline{1}\}, \ \delta_2 = \{\underline{0}, V, \underline{1}\}, \ \text{where}$

$$U(x) = \begin{cases} \frac{4}{5}, & \text{if } x \in (-\infty, -1), \\ \frac{3}{5}, & \text{if } x \in [-1, \infty), \end{cases}$$
$$V(x) = \begin{cases} 1, & \text{if } x \in (-\infty, -1), \\ \frac{2}{5}, & \text{if } x \in [-1, \infty). \end{cases}$$

Then $[\delta_1] = [\delta_2] = \{\emptyset, X\}$, clearly $f : (X, [\delta_1], [\delta_2]) \to (Y, [\delta_1 \mid_Y], [\delta_2 \mid_Y])$ is an ordinary pairwise continuous mapping (OPc) but f^{\to} is not α -FPc at $\alpha = \frac{1}{5}$. And also f is an ordinary Pac mapping but f^{\to} is not α -FPac.

Theorem 3.4. If $(L^X, \delta_1, \delta_2)$ is a pairwise induced L-fbts, $Y \subset X$, then the following are equivalent:

- (i) L^Y is an α -FPR of L^X ;
- (ii) Y is an ordinary α -PR of X;
- (iii) L^Y is an \triangle -FPR of L^X ;
- (iv) Y is an ordinary PR of X.

Proof. By Theorems 3.2, 3.3 and Proposition 3.3.

Remark 3.1. Let $(L^X, \delta_1, \delta_2)$ be a pairwise weakly induced *L*-fbts, $(X, [\delta_1], [\delta_2])$ be the pairwise background space of $(L^X, \delta_1, \delta_2)$ and $Y \subset X$. Then we have the following diagram

O=ordinary.

Theorem 3.5. Let $(L^X, \delta_1, \delta_2)$ be a pairwise weakly induced L-fbts. Then the following are equivalent:

- (i) $(L^X, \delta_1, \delta_2)$ is α -PT₂;
- (ii) The set $A = \{(x, y) : (x, y) \in X \times X, x = y\}$ is closed in $(X \times X, [\delta_1 \times \delta_2])$.

Proof. (i) \Rightarrow (ii). Let $(x, y) \in A' \Rightarrow x \neq y$, but L^X is α -PT₂ $\Rightarrow \exists U \in \delta_1$, $U(x) \nleq \alpha$, $V \in \delta_2, V(y) \nleq \alpha$ and $U \wedge V = \underline{0}$. Since L^X is pairwise weakly induced, we have $U_{(\alpha)} \in [\delta_1], V_{(\alpha)} \in [\delta_2]$ and $x \in U_{(\alpha)}, y \in V_{(\alpha)}$. But $U \wedge V = \underline{0} \Rightarrow U_{(\alpha)} \cap V_{(\alpha)} = \emptyset \Rightarrow \forall (x, y) \in U_{(\alpha)} \times V_{(\alpha)} \Rightarrow x \neq y$, $(x, y) \in U_{(\alpha)} \times V_{(\alpha)} \subset A'$, then A' is open and hence A is closed in $(X \times X, [\delta_1 \times \delta_2])$.

(ii) \Rightarrow (i). Let $x, y \in X, x \neq y \Rightarrow (x, y) \in A'$, but A' is open $\Rightarrow \exists G \in [\delta_1], H \in [\delta_2]$ and $G \times H \subset A', G \cap H = \emptyset \Rightarrow 1_G \in \delta_1, 1_H \in \delta_2$, for every $\alpha \in \operatorname{pr}(L) \Rightarrow 1_G(x) \nleq \alpha, 1_H(y) \nleq \alpha$ and $1_G \wedge 1_H = \underline{0}$.

References

- [1] Borsuk, K., Theory of Retracts, Warszawa, 1967.
- [2] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182–190.
- [3] Fath Alla, M. A., α-Continuous in fuzzy topological spaces, Bull. Cult. Math. Soc., 80(1988), 223–229.
- [4] Fath Alla, M. A., Strong forms of α-continuous in fuzzy topological spaces, Bull. Fac. Sci. Assiut Univ., 26:(1-c)(1997), 1–14.
- [5] Ghanim, M. H., Mahmoud, F. S., Fath Alla, M. A. & Hebeshi, M. A., L-fuzzy retract of L-valued stratification spaces, submitted.
- [6] Goguen, J. A., L-fuzzy sets, J. Math. Anal. Appl., 18(1967), 145–175.
- [7] Hu, S. T., Theory of Retracts, Wayne State Univ. Press, 1965.
- [8] Jeon, J., Some properties of fuzzy topological spaces, Bull. Korean Math. Soc., 19:1(1982), 10–25.
- [9] Liu, Y. M. & Luo, M. K., Fuzzy Topology, World Scientific, Singapore, 1997.
- [10] Liu, Y. M. & Luo, M. K., Induced spaces and fuzzy Stone-Cech compactification, Sientia Sinica, Ser. A, 30(1987), 1034–1044.
- [11] Mahmoud, F. S. & Abd Ellatif, A. A., Fuzzy pairwise retract and fuzzy pairwise strong retract, J. Fuzzy Math., 9:1(2001), 207–216.
- [12] Martin, H. W., Weakly induced fuzzy topological spaces, J. Math. Anal. Appl., 78(1980), 634-639.
- [13] Rodabaugh, S. E., Suitability in fuzzy topological spaces, J. Math. Anal. Appl., 79(1981), 273-285.
- [14] Sampath Kumar, S., Semi-open sets, semi-continuity and semi-open mappings in fuzzy bitoplogical spaces, *Fuzzy Sets and Systems*, 64(1994), 421–426.
- [15] Wang, G. J., Theory of topological molecular lattices, Fuzzy Sets and Systems, 47:3(1992), 351-376.

544