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1 Introduction and Preliminaries

Auslander-Reiten theory plays a fundamental role in the modern representation theory of

Artin algebras (see [1]). It mainly consists of Auslander-Reiten sequences and Auslander-Reiten

quivers, which deeply explore the essential relation among indecomposable modules. Hence, we

can grasp thoroughly the properties of modules categories of Artin algebras.

As a key ingredient in this theory, the transpose plays a central role. The classical Auslander-

Reiten transpose is constructed via projective modules. For modules category of a Cohen-

Macaulay finite Artin algebra (i.e., there are only finitely many isomorphism classes of finitely

generated indecomposable Gorenstein projective modules), we introduce the relative transpose

via Gorenstein projective modules, and generalize some corresponding results on the Auslander-

Reiten sequences and the Auslander-Reiten formula to this relative version. Note that there

are only finitely many isomorphism classes of indecomposable projective modules for an Artin

algebra. Hence, as a generalization, it is natural to consider Cohen-Macaulay finite Artin

algebra.

In this section, we will fix the notation and recall some definitions used in this paper.

For details, we refer to [2]. Let R be an associative ring. Denote by R-Mod the category of

R-modules and by R-mod the full subcategory of all finitely generated R-modules.

A complete projective resolution (see [3]) is an exact sequence of projective modules, P• =

· · · → P−1 → P 0 → P 1 → P 2 → · · · , such that Hom•(P•, Q) is exact for every projective

R-module Q; and an R-module M is called Gorenstein projective if there is a complete pro-

jective resolution P• such that M ∼= Im(P−1 → P 0). It is clear that a projective R-module is
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Gorenstein projective and that in a complete projective resolution, all the images and hence all

the kernels and cokernels are Gorenstein projective. Denote by R-GProj the full subcategory

of Gorenstein projective R-modules and by R-Gproj the full subcategory of finitely generated

Gorenstein projective R-modules. Note that R-GProj is closed under extensions, the kernel of

an epimorphism, arbitrary coproducts and direct summands. For more facts, we refer to [2, 4].

For example, if R is a self-injective ring, we can easily see that R-GProj= R-Mod.

A Gorenstein projective resolution (R-GProj-resolution for short) of R-module M is a com-

plex · · · → G−1 → G0 → 0, where each G−n is Gorenstein projective, together with a morphism

G0 → M , such that the complex G• = · · · → G−1 → G0 → M → 0 is exact. The resolution is

called proper if Hom•(E,G•) is exact for all Gorenstein projective R-modules E. The resolution

is said to be of length n if G−n 6= 0 and Gi = 0 for all i < −n. Recall that the Gorenstein pro-

jective dimension, GpdRM , of R-module M is defined as follows: if M = 0, set GpdRM = −∞;

if M 6= 0 and M has no R-GProj-resolution of finite length, set GpdRM = ∞; if M 6= 0 and M

has an R-GProj-resolution of finite length, set GpdRM to be the smallest integer n ≥ 0 such

that M has an R-GProj-resolution of length n. Denote by fGR-Mod the full subcategory of

R-modules with finite Gorenstein projective dimensions.

Let X be a class of R-modules. Recall from [5, 6] that a right X -approximation of R-module

M is a morphism f : X → M with X ∈ X such that the induced sequence HomR(X ′, X) →

HomR(X ′,M) → 0 is exact for all X ′ ∈ X . Similarly, a left X -approximation of R-module

M is a morphism f : M → X with X ∈ X such that the induced sequence HomR(X,X ′) →

HomR(M,X ′) → 0 is exact for all X ′ ∈ X . It is well-known that if M is a finitely gener-

ated R-module with finite Gorenstein projective dimension, then M admits a right R-Gproj-

approximation (see [4, Theorem 2.10]).

Recall from [7, 8] that a ring R is called Cohen-Macaulay finite if there are only finitely many

isomorphism classes of finitely generated indecomposable Gorenstein projective R-modules.

Throughout this paper, A is a Cohen-Macaulay finite Artin k-algebra over a commutative Artin

ring k and all A-modules are finitely generated. Denote by A-mod and A-Gproj the category of

finitely generated left A-modules and the full subcategory of finitely generated Gorenstein pro-

jective A-modules, respectively. Let {Gi}
n
i=1 be all nonisomorphic finitely generated Gorenstein

projective A-modules and G =
n⊕

i=1

Gi. It is clear that A-Gproj=addG. Let B = EndA(G)op.

Denote by mod-B the category of finitely generated right B-modules and mod-B the stable

category of mod-B modulo Proj-B. Then G is an A-B bimodule in a natural manner. We fix

such a triple (AA, GB, B).

It is clear that for any A-module M , there is a right A-Gproj-approximation and minimal

right A-Gproj-approximation. Hence M admits an A-Gproj-presentation; that is, there is an

exact sequence G1
f1

−→ G0
f0

−→ M → 0 such that G1 → Im f1 and G0 → M are right A-Gproj-

approximation.

2 The Relative Transpose

Now we shall introduce the relative G-transpose which is defined in a way similar to the one

defined by Xi Chang-Chang (see [9]).

Definition 2.1 Define the category Mor(A-Gproj) : an object is a morphism f : G1 → G0
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in A-Gproj such that G1 → Im f and G0 → Coker f are right A-Gproj-approximation, and a

morphism from f : G1 → G0 to f ′ : G′
1 → G′

0 is a pair (g1, g0) where gi : Gi → G′
i for i = 0, 1,

such that the diagram

G1
f

//

g1

��

G0

g0

��

G′
1

f ′

// G′
0

commutes. We call Mor(A-Gproj) the morphism category of A-Gproj.

Remark 2.1 Mor(A-Gproj) is an additive category.

Denote by A-Gproj(M,N) the subgroup of HomA(M,N) of A-maps from M to N which

factors through the finitely generated Gorenstein projective modules, and by A-mod/A-Gproj

the stable category of A-mod modulo A-Gproj, i.e., the objects of A-mod/A-Gproj are the same

as those of A-mod, and the morphism space from M to N of A-mod/A-Gproj is the quotient

group HomA(M,N)/A-Gproj(M,N). Simply denote the functor HomA( · , · ) by ( · , · ).

Definition 2.2 Define the functor F : Mor(A-Gproj) → A-mod/A-Gproj by F (f) =

Coker f for all f : G1 → G0 in Mor(A-Gproj), and F (g1, g0) = Coker(g1, g0), where

Coker(g1, g0) : Coker f → Coker f ′ is the unique morphism which makes the diagram

G1
f

//

g1

��

G0
π

//

g0

��

Coker f //

��

0

G′
1

f ′

// G′
0

π′

// Coker f ′ // 0

commutes.

Remark 2.2 It is not hard to check that Coker(g1, g0) is independent of the choice of the

pair (g1, g0) and that F is a dense and full functor.

Definition 2.3 Define P(f, f ′) as the class of the morphisms (g1, g0) with the property that

there is some h : G0 → G′
1 such that f ′hf = g0f .

Remark 2.3 It is clear that P is a relation on Mor(A-Gproj).

Lemma 2.1 Use the above notation. Then the functor F induces a functor

F̃ : Mor(A-Gproj)/P → A-mod/A-Gproj,

which is an equivalence of categories.

Proof We claim that F (g1, g0) = 0 if and only if (g1, g0) : f → f ′ is in P(f, f ′).

Let (g1, g0) : f → f ′ be in P(f, f ′). Then there is some h : G0 → G′
1 such that f ′hf = g0f .

So we have a morphism φ : Coker f → G′
0 such that φπ = g0 − f ′h. Hence Coker(g1, g0)π =

π′g0 = π′(g0 − f ′h) = π′φπ. Since π is an epimorphism, we get Coker(g1, g0) = π′φ. This

means F (g1, g0) = 0.

Let F (g1, g0) = 0. Then there is some ψ : Coker f → G′
0 such that π′ψ = Coker(g1, g0). So

π′(g0 − ψπ) = 0. Hence Im(g0 − ψπ) lies in Im f ′. Since f ′ : G′
1 → Im f ′ is a right A-Gproj-
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approximation, it follows that there is a morphism h′ : G0 → G′
1 such that g0 − ψπ = f ′h′. So

f ′h′f = g0f . This means that (g1, g0) : f → f ′ is in P(f, f ′).

By Remark 2.2, F̃ : Mor(A-Gproj)/P → A-mod/A-Gproj is an equivalence of categories.

Its quasi-inverse functor is denoted by F̃−1.

Definition 2.4 Define the functor J : Mor(A-Gproj) → mod-B by J(f) = Coker(f,G) for

all f : G1 → G0 in Mor(A-Gproj), and J(g1, g0) = Coker((g0, G), (g1, G)), where Coker((g0, G),

(g1, G)) : Coker(f ′, G) → Coker(f,G) is the unique morphism which makes the diagram

(G′
0, G)

(f ′,G)
//

(g0,G)

��

(G′
1, G)

π′

//

(g1,G)

��

Coker(f ′, G) //

��

0

(G0, G)
(f,G)

// (G1, G)
π

// Coker(f,G) // 0

commutes.

Lemma 2.2 The functor J induces a faithful functor J̃ : Mor(A-Gproj)/P → mod-B.

Proof We claim that J(g1, g0) = 0 if and only if (g1, g0) : f → f ′ is in P(f, f ′).

Let (g1, g0) : f → f ′ be in P(f, f ′). Then there is some h : G0 → G′
1 such that f ′hf =

g0f . So (f,G)(g0, G) = (f,G)(h,G)(f ′, G). It follows that ((g1, G) − (f,G)(h,G))(f ′, G) = 0.

So we have a morphism φ : Coker(f ′, G) → (G1, G) such that φπ′ = (g1, G) − (f,G)(h,G).

Hence Coker((g0, G), (g1, G))π′ = π(g1, G) = π((g1, G) − (f,G)(h,G)) = πφπ′. By π′ is an

epimorphism, we get Coker((g0, G), (g1, G)) = πφ. Thus F (g1, g0) = 0.

Let F (g1, g0) = 0. Then there is some ψ : Coker(f ′, G) → (G1, G) such that πψ =

Coker((g0, G), (g1, G)). So π((g1, G) − ψπ′) = 0. Hence Im((g1, G) − ψπ′) lies in Im(f,G).

Since (G′
1, G) is projective, it follows that there is some (h′, G) : (G′

1, G) → (G0, G) such that

(g1, G) − ψπ′ = (f,G)(h′, G). So we have (f,G)(h′, G)(f ′, G) = (g1, G)(f ′, G) = (f,G)(g0, G).

Therefore f ′h′f = g0f . This means that (g1, g0) : f → f ′ is in P(f, f ′).

Therefore, J̃ : Mor(A-Gproj)/P → mod-B is a faithful functor.

Theorem 2.1 Let TrG = J ◦ F̃−1. Then the functor TrG : A-mod/A-Gproj → mod-B is a

faithful functor. We call TrG(M) the relative transpose (or G-transpose) of arbitrary A-module

M .

Proof We can easily see that TrG is a faithful functor by Lemmas 2.1 and 2.2.

Remark 2.4 Clearly, if G = A, then TrG(M) is the usual transpose of A-module M .

In fact, the functor TrG : A-mod/A-Gproj → mod-B is defined as follows: for any A-module

M , TrG(M) = Coker(f1, G), where G1
f1

−→ G0
f0

−→ M → 0 is a minimal A-Gproj-presentations

ofM . For A-moduleM andN , we take minimal A-Gproj-presentation ofM andN respectively.

Let h : M → N . Then there exists the following exact commutative diagram:

G1
f1

//

g1

��

G0
f0

//

g0

��

M //

h

��

0

G′
1

f ′

1
// G′

0

f ′

0
// N // 0

(2.1)
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and consequently TrG(h) becomes τ , where τ : TrG(M) → TrG(N) is the unique morphism

such that the diagram

(G′
0, G)

(f ′

1
,G)

//

(g0,G)

��

(G′
1, G) //

(g1,G)

��

TrG(M) //

τ

��

0

(G0, G)
(f1,G)

// (G1, G) // TrG(N) // 0

is commutative. Note that TrG(h) is independent of the choice of the pair (g1, g0).

Corollary 2.1 The following hold:

(1) TrGM = 0 if and only if M ∈ A-Gproj,

(2) TrG(M ⊕N) = TrG(M) ⊕ TrG(N),

(3) If M1 and M2 are indecomposable such that Mi 6∈ A-Gproj for i = 1, 2, then M1
∼= M2

if and only if TrG(M1) ∼= TrG(M2).

Proof By the definition of TrG, we can easily deduce that the corollary holds.

Theorem 2.2 Let M be an indecomposable A-module such that M 6∈ A-Gproj. Then

TrG(M) is indecomposable and End(AM)/A-Gproj ∼= End(TrG(M)B).

Proof Since TrG is a faithful functor by Theorem 2.1, it follows that the morphism

End(AM)/A-Gproj → End(TrG(M)B) is injective. Let G1 → G0 → M → 0 be a minimal

A-Gproj-presentation of M . Since M is an indecomposable A-module such that M 6∈ A-Gproj,

it follows that HomA(G0, G) → HomA(G1, G) → TrG(M) → 0 is a minimal projective pre-

sentation of the right B-module TrG(M). Therefore, by (2.1), we can get that the morphism

End(AM)/A-Gproj → End(TrG(M)B) is surjective. So End(AM)/A-Gproj ∼= End(TrG(M)B).

Now we show that TrG(M) is indecomposable. In order to show this, we show that a

morphism h ∈ End(AM) is an isomorphism if and only if so is τ . If h is an isomorphism, then

g1 and g0 are automorphisms by the definition of minimal A-Gproj-presentation. Thus τ is

an isomorphism. Conversely, if τ is an isomorphism, since the sequence (G0, G) → (G1, G) →

TrGM → 0 is a minimal B-projective presentation of TrGM , it follows that (g1, G) and (g0, G)

are automorphisms. So g1 and g0 are also automorphisms. This completes the proof.

Recall that an A-module M is called torsion if HomA(M,A) = 0. Let J be the full sub-

category of finitely generated torsion right B-modules and A-Gproj≤1 the full subcategory of

finitely generated A-modules M with Gorenstein projective dimensions at most 1. Then we

have

Theorem 2.3 The functor TrG induces T̃rG : A-Gproj≤1/A-Gproj → J , which is a faithful

functor.

Proof Since GpdAM ≤ 1, it follows that M has a minimal A-Gproj-presentation 0 →

G1 → G0 → M → 0. Then HomA(G0, G) → HomA(G1, G) → TrGM → 0 is exact. Simply

denote the functor HomB( · , · ) by B( · , · ), we get an exact sequence

0 →B (TrGM,B) →B (HomA(G1, G), B) →B (HomA(G0, G), B).
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Since HomB(HomA(Gi, G), B) ∼= HomA(G,Gi) for i = 0, 1, it follows that

0 → HomB(TrGM,B) → HomA(G,G1) → HomA(G,G0)

is exact. So HomB(TrGM,B) = 0. This completes the proof.

3 Relative Auslander-Reiten Sequences and

Auslander-Reiten Formula

Now we generalize Auslander-Reiten sequences to this relative version.

Theorem 3.1 Let M be an indecomposable A-module such that M 6∈ A-Gproj. Then there

is an Auslander-Reiten sequence in B-mod of the form

0 → DTrG(M) → X → HomA(G,M) → 0.

Proof Let G1 → G0 → M → 0 be a minimal A-Gproj-presentation of M . This induces

the following three exact sequences:

(G,G1) → (G,G0) → (G,M) → 0,

0 → DTrGM → D(G1, G)
g
−→ D(G0, G), (3.1)

D((G,G1), · ) → D((G,G0), · ) → D((G,M), · ) → 0. (3.2)

Since we have the following series of isomorphisms

D((G,Gi), · ) ∼= D(((Gi, G), (G,G)), · )

∼= D(((Gi, G), B), · )

∼= D((Gi, G) ⊗B (B, · ))

∼= D((Gi, G) ⊗B · )

∼= ( · ,D(Gi, G)),

by (3.2), we get an exact sequence

( · ,D(G1, G)) → ( · ,D(G0, G)) → D((G,M), · ) → 0.

By (3.1), we get an exact sequence of functors

0 → ( · ,DTrGM) → ( · , D(G1, G)) → ( · , D(G0, G)).

Hence we can obtain the following exact sequence of functors

0 → ( · ,DTrGM) → ( · , D(G1, G)) → ( · , D(G0, G)) → D((G,M), · ) → 0.

Let S(G,M) = ( · , (G,M))/rad( · , (G,M)). Since ( · , (G,M)) is a projective functor, it fol-

lows that the morphism ( · , (G,M)) → S(G,M) → D((G,M), · ) factors through ( · , D(G0, G)).

Clearly, the morphism ( · , (G,M)) → ( · , D(G0, G)) is induced by a morphism g′ : (G,M) →

D(G0, G). Let X be a pullback of g and g′. Then the following sequence

0 → ( · ,DTrGM) → ( · , X) → ( · , (G,M)) → S(G,M) → 0 (3.3)
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is exact in the functor category. Since DTrGM is indecomposable by Theorem 2.2, it follows

that (3.3) is a minimal projective resolution of S(G,M) in the functor category. Thus we get

that the sequence

0 → DTrG(M) → X → HomA(G,M) → 0

is an Auslander-Reiten sequence in B-mod.

There is an exact sequence involving the G-transpose as the following shows.

Proposition 3.1 Let G1 → G0 → M → 0 be a minimal A-Gproj-presentation of M . For

any A-module Z, we have the following exact sequence:

0 → (M,Z) → (G0, Z) → (G1, Z) → TrG(M) ⊗B (G,Z) → 0.

Proof By the hypothesis, we have an exact sequence (G0, G) → (G1, G) → TrG(M) → 0

of right B-modules, which yields the following exact sequence:

(G0, G) ⊗B (G,Z) → (G1, G) ⊗B (G,Z) → TrG(M) ⊗B (G,Z) → 0.

Also, we have an exact sequence

0 → (M,Z) → (G0, Z) → (G1, Z).

Because (Gi, G) ⊗B (G,Z) ∼= (Gi, Z) for i = 0, 1, we deduce that the proposition holds.

Corollary 3.1 Let G1 → G0 → M → 0 be a minimal A-Gproj-presentation of M . Then

for any A-module Z, we have

lk(M,Z) − lk(HomB((G,Z),DTrG(M))) = lk(G0, Z) − lk(G1, Z),

where lk(X) stands for the length of k-module X.

Now we generalize some corresponding results on the Auslander-Reiten formula to this

relative version. Before we do this, we first prove a result which might be considered as an

analogue of the defect of exact sequences.

Definition 3.1 Let δ : 0 → X → Y → Z → 0 be an exact sequence in A-mod such that

0 → (G,X) → (G, Y ) → (G,Z) → 0 is exact for all G ∈ A-Gproj. For A-module M and

B-module N , define δ∗(M) and δG(N) as follows:

0 → (M,X) → (M,Y ) → (M,Z) → δ∗(M) → 0,

0 → ((G,Z), N) → ((G, Y ), N) → ((G,X), N) → δG(N) → 0.

Lemma 3.1 The k-lengths of δ∗(M) and δG(DTrG(M)) are equal for all M in A-mod.

Proof This theorem follows directly from Corollary 3.1.

Now we have the following generalization of Auslander-Reiten formula.

Theorem 3.2 For any A-module M and Z, we have

lk(Ext1B((G,Z),DTrG(M))) = lk((M,Z)/A-Gproj(M,Z)) = lk(TorB
1 (TrG(M), (G,Z))).



238 N. Gao

Proof Let δ : 0 → K → G0
f
−→ Z → 0 be an exact sequence such that f : G0 → Z

is a right A-Gproj-approximation of Z. Then δ induces another exact sequence δ′ : 0 →

(G,K) → (G,G0) → (G,Z) → 0. By Lemma 3.1, the k-lengths of δ∗(M) and δG(DTrG(M))

are equal. It is clear that the k-length of δ∗(M) is the same as that of (M,Z)/A-Gproj(M,Z).

On the other hand, by tensoring TrG(M) to the sequence δ′ and using the adjunction, we have

an exact sequence 0 → ((G,Z),DTrG(M)) → ((G,G0),DTrG(M)) → ((G,K),DTrG(M)) →

DTorB
1 (TrG(M), (G,Z)) → 0. This shows that the length of δG(DTrG(M)) is the same as that

of DTorB
1 (TrG(M), (G,Z)). But if we apply ( · ,DTrG(M)) to the sequence δ′, we get that this

number is also equal to the k-length of Ext1B((G,Z),DTrG(M)). Thus the theorem is proved.
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