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Abstract Let {X, Xk : k ≥ 1} be a sequence of independent and identically distributed
random variables with a common distribution F . In this paper, the authors establish some
results on the local precise large and moderate deviation probabilities for partial sums

Sn =
n∑

i=1

Xi in a unified form in which X may be a random variable of an arbitrary type,

which state that under some suitable conditions, for some constants T > 0, a and τ > 1
2

and for every fixed γ > 0, the relation

P (Sn − na ∈ (x, x + T ]) ∼ nF ((x + a, x + a + T ])

holds uniformly for all x ≥ γnτ as n → ∞, that is,

lim
n→+∞

sup
x≥γnτ

∣∣∣P (Sn − na ∈ (x, x + T ])

nF ((x + a, x + a + T ])
− 1

∣∣∣ = 0.

The authors also discuss the case where X has an infinite mean.

Keywords Local precise moderate deviation, Local precise large deviation, Inter-
mediate regularly varying function, O-regularly varying function
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1 Introduction

Throughout this paper, let {X, Xk : k ≥ 1} be a sequence of independent and identically
distributed (i.i.d) random variables (r.v.s) with a common distribution F . For some T ∈ (0,∞],
let Δ = Δ(T ) = (0, T ] if T < ∞ and Δ = Δ(T ) = (0,∞) if T = ∞. In addition, for any real x,
we write x + Δ = (x, x + T ] if T < ∞ and x + Δ = (x,∞) if T = ∞.

In this paper, we establish some results of the local precise moderate and large deviation

probabilities for partial sums Sn =
n∑

i=1

Xi, which state that under some suitable conditions, for

some constants T > 0, a and τ > 1
2 and for every fixed γ > 0, the relation

P (Sn − na ∈ x + Δ) ∼ nF (x + a + Δ)

holds uniformly for all x ≥ γnτ as n → ∞, that is,

lim
n→∞ sup

x≥γnτ

∣∣∣P (Sn − na ∈ x + Δ)
nF (x + a + Δ)

− 1
∣∣∣ = 0.
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In the case τ = 1, Doney [6], Baltrūnas [2] and Lin [8] established results of local large deviation
probabilities for partial sums, in which X was assumed to be an integer-valued r.v. with a finite
mean. Yang et al. [10] gave a result in which X was assumed to be an absolutely continuous r.v.
with a finite mean. The results of local large deviation probabilities for which X was assumed
to be an integer-valued r.v. with an infinite mean were established by Doney [7]. Motivated by
the above-mentioned literatures, we establish some results of local precise moderate and large
deviation probabilities for partial sums in a unified form in which X may be a type r.v. of an
arbitrary. We also discuss the case where X has an infinite mean.

This paper is organized as follows. Section 2 presents notations and definitions of some func-
tion classes. Main results are formulated in Section 3. In Section 4, we give some propositions
as preparation. The proofs of the main results are presented in Section 5.

2 Definitions and Preliminaries

Throughout this section, f will denote a nonnegative measurable function defined on [0,∞)
or (−∞,∞).

First, we introduce some classes of functions.

Definition 2.1 A function f is said to be O-regularly varying (belonging to the class OR)
if f is eventually positive (i.e., f(x) > 0 for sufficiently large x) and

0 < lim inf
x→∞

f(xy)
f(x)

≤ lim sup
x→∞

f(xy)
f(x)

< ∞

for every fixed y ≥ 1.

If f is an eventually positive function, then its upper and lower Matuszewska’s indices are
defined by

α(f) = lim
y→∞

log
(

lim sup
x→∞

f(xy)
f(x)

)
log y

, β(f) = lim
y→∞

log
(

lim inf
x→∞

f(xy)
f(x)

)
log y

,

respectively. According to Theorem 2.1.7 in [4], if f is an eventually positive function, then
f ∈ OR if and only if its upper and lower Matuszewska’s indices α(f) and β(f) are both finite.

Definition 2.2 A function f is said to be extended regularly varying (belonging to the class
ER) if f is eventually positive and

yd ≤ lim inf
x→∞

f(xy)
f(x)

≤ lim sup
x→∞

f(xy)
f(x)

≤ yc (2.1)

for all y ≥ 1 and some constants c and d, where cd ≥ 0. In particular, if c = d = α in (2.1),
then f is said to be regularly varying (belonging to the class R), and it is also said to be regularly
varying with index α (belonging to the class Rα). If f belongs to the class R0, then it is said
to be slowly varying.

Note that f belongs to the class Rα if and only if f(x) = xαl(x), where l(x) is a slowly
varying function.
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Definition 2.3 A function f is said to be intermediate regularly varying (belonging to the
class IR) if f is eventually positive and

lim
y↓1

lim inf
x→∞

f(xy)
f(x)

= lim
y↓1

lim sup
x→∞

f(xy)
f(x)

= 1. (2.2)

Remark 2.1 By Corollary 2.2 I in [5], if f is eventually positive, then the following are
equivalent:

(i) f ∈ IR;

(ii) lim
y→1
x→∞

f(xy)
f(x)

= 1; (2.3)

(iii) L−
f = L+

f = 1,

where

L−
f = lim

ε↓0
lim inf
x→∞

inf
(1−ε)x≤z≤(1+ε)x

f(z)

f(x)
, L+

f = lim
ε↓0

lim sup
x→∞

sup
(1−ε)x≤z≤(1+ε)x

f(z)

f(x)
. (2.4)

If an eventually positive function f satisfies (2.3), then it is also called regularly oscillating,
which was introduced by [3].

By Corollary 1.2 in [5], it follows that

R ⊂ ER ⊂ IR ⊂ OR,

and the inclusions are proper.

Definition 2.4 A function f is said to be long tailed (belonging to the class L) if f is
eventually positive and lim

x→∞
f(x+y)

f(x) = 1 for every fixed y ∈ (−∞,∞).

Definition 2.5 A sequence of nonnegative numbers {pn : n = 0,±1,±2, · · · } is said to
belong to the class R (or IR,L, ER,OR) if p(x) belongs to the class R (or IR,L, ER,OR),
where p(x) is defined by

p(x) = pn, n ≤ x < n + 1, n = 0,±1,±2, · · · .

In the following, we give the definition of almost decreasing, which was introduced by Al-
jančić and Arandelović [1].

Definition 2.6 A function f is said to be almost decreasing if

lim sup
x→∞

sup
u≥x

f(u)

f(x)
< ∞. (2.5)

Finally, we introduce some notations which will be used in the following sections. Let a(n, x)
and b(n, x) be two positive functions (n = 1, 2, · · · , x ∈ (−∞,∞)). We denote a(n, x) � b(n, x)
(or b(n, x) � a(n, x)) which holds uniformly for all x ∈ Λ as n → ∞ if lim

n→∞ sup
x∈Λ

a(n,x)
b(n,x) ≤ 1, and



756 F. Y. Cheng and M. H. Li

we write a(n, x) ∼ b(n, x) which holds uniformly for all x ∈ Λ as n → ∞ if lim
n→∞ sup

x∈Λ
|a(n,x)
b(n,x) −1| =

0.

Obviously, a(n, x) ∼ b(n, x) holds uniformly for all x ∈ Λ as n → ∞ if and only if both
a(n, x) � b(n, x) and b(n, x) � a(n, x) hold uniformly for all x ∈ Λ as n → ∞.

3 Main Results

In this section, we will present the main results of this paper and give some corollaries. The
proofs of the theorem and corollaries are arranged in Section 5.

Theorem 3.1 Let {X, Xk : k ≥ 1} be a sequence of i. i. d. r. v. s. with a common distribution
F , and let τ > 1

2 be a constant. Suppose that FΔ(x) = F (x + Δ) is almost decreasing, and one
of the following conditions holds:

(i) τ ≥ 1, E|X | 1
τ < ∞ and E(X+)p < ∞ for some p > 1

τ , where X+ = max(X, 0);
or

(ii) τ < 1, and E|X |p < ∞ for some p > 1
τ .

If F (x + Δ) ∈ OR, then for every fixed γ > 0, the relation

nL−
FΔ

F (x + a + Δ) � P (Sn − na ∈ x + Δ) � nL+
FΔ

F (x + a + Δ) (3.1)

holds uniformly for all x ≥ γnτ as n → ∞, where a = EX if τ ≤ 1 and a is any fixed constant
if τ > 1. Especially, if F (x + Δ) ∈ IR, then for every fixed γ > 0, the relation

P (Sn − na ∈ x + Δ) ∼ nF (x + a + Δ) (3.2)

holds uniformly for all x ≥ γnτ as n → ∞, where a is defined as above.

If X is an integer-valued r.v., by taking T = 1, we have the following conclusion.

Corollary 3.1 Let {X, Xk : k ≥ 1} be a sequence of i. i. d. integer-valued r. v. s. with the
mass pk = P (X = k), k = 0,±1,±2, · · · and let τ > 1

2 . Suppose that {pn : n ≥ 1} is almost
decreasing and belongs to the class IR. Moreover, Assume that one of the following conditions
holds:

(i) τ ≥ 1, E|X | 1
τ < ∞ and E(X+)p < ∞ for some p > 1

τ ;
or

(ii) τ < 1 and E|X |p < ∞ for some p > 1
τ .

Then, for every γ > 0, the relation

P (m − 1 < Sn − na ≤ m) ∼ npm (3.3)

holds uniformly for all m ≥ γnτ as n → ∞, where a = EX if τ ≤ 1 and a is any fixed constant
if τ > 1. Especially, if a = 0, then for every γ > 0, the relation

P (Sn = m) ∼ npm

holds uniformly for all m ≥ γnτ as n → ∞.
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Remark 3.1 Note that lim inf
n→∞

(− log Rn

log n

)
> 1, where Rn =

∑
k>n

pk, n = 1, 2, · · · , implies

that E(X+)p < ∞ for some p > 1. Hence, Corollary 3.1 covers Theorem 3.1 in [8].

If X is an absolutely continuous r.v., then the following conclusion is immediately obtained.

Corollary 3.2 Let {X, Xk : k ≥ 1} be a sequence of i. i. d. r. v. s. with a common almost
decreasing density function f . Assume that μ = EX is finite and E(X+)r < ∞ for some r > 1.
Let γ and T be any fixed positive numbers. If f ∈ OR, then the relation

L−
FΔ

nF (x + μ + Δ) � P (Sn − nμ ∈ x + Δ) � L+
FΔ

nF (x + μ + Δ) (3.4)

holds uniformly for all x ≥ γn as n → ∞, where FΔ(x) =
∫ x+T

x
f(y)dy.

In what follows, we present an example to show that there is a distribution F with a density
f , such that F (x + Δ) ∈ OR for some T > 0 but f 	∈ OR.

Example 3.1 Let α > 0 and define

f(x) =
{

cαx−1−α, 2n − 1 ≤ x ≤ 2n,
0, otherwise, n = 1, 2, · · · ,

where c is a constant such that
∫ ∞
−∞ f(x)dx = 1. Then, it is clear that f 	∈ OR. Let T = 2,

and then simple calculations yield that

F (x + Δ) =
{

c(x−α − (x + 2)−α + (2n + 1)−α − (2n)−α), 2n − 1 ≤ x ≤ 2n,
c((2n + 1)−α − (2n + 2)−α), 2n < x < 2n + 1,

n = 1, 2, · · · . It follows that F (x+Δ) ∼ cαx−α−1 as x → ∞. Thus F (x+Δ) ∈ R ⊂ IR ⊂ OR.

Remark 3.2 Example 3.1 and Propositions 4.3–4.5 below show that Theorem 3.1 has a
wider range of applications than Theorem 3.1 in [10] even if X has a density function f .

Similarly, there is a lattice distribution F , which has the mass pn = F{n}, n = 1, 2, · · · ,
such that F (x + Δ) ∈ OR for some T > 0 but {pn, n = 1, 2, · · · } does not belong to OR.

Example 3.2 Let α > 0 and 0 < r < 1. Let F be a distribution with the mass pn, n =
1, 2, · · · , where pn is defined by

pn =
{

cαn−1−α, n = 2m,
crn, n = 2m − 1,

m = 1, 2, · · ·

for some constant c satisfying
∞∑

n=1
pn = 1. Then, it is clear that {pn, n = 1, 2, · · · } does not

belong to OR, and hence, it does not belong to R. Let T = 2, and then simple calculations
yield that

F (x + Δ) =
{

cr2n+1 + cα(2n)−1−α, 2n − 1 ≤ x < 2n,
cr2n+1 + cα(2n + 2)−1−α, 2n ≤ x < 2n + 1,

n = 1, 2, · · · .

It follows that F (x + Δ) ∼ cαx−α−1 as x → ∞, and hence, F (x + Δ) ∈ R ⊂ IR ⊂ OR.



758 F. Y. Cheng and M. H. Li

4 Some Propositions

In this section, we give some propositions to investigate the relationships between f ∈ OR
and F (x + Δ) ∈ OR and the relationships among L−

f , L−
FΔ

, L+
f , L+

FΔ
if a distribution F has a

density function f .
First we present some properties of the class OR, which play important roles in the following

discussions and can be found in [4].

Proposition 4.1 Assume that a function f ∈ OR. Then, for every α > α(f), there exist
positive constants Cα and xα, such that

f(y)
f(x)

≤ Cα

(y

x

)α

, y ≥ x ≥ xα. (4.1)

Similarly, for every β < β(f), there exist positive constants Cβ and xβ, such that

f(y)
f(x)

≥ Cβ

( y

x

)β

, y ≥ x ≥ xβ . (4.2)

The following proposition was established by Aljančić and Arandelović [1].

Proposition 4.2 Assume that a function f ∈ OR. Then, for any fixed 0 < a < b < ∞,

0 < lim inf
x→∞ inf

a≤y≤b

f(xy)
f(x)

≤ lim sup
x→∞

sup
a≤y≤b

f(xy)
f(x)

< ∞. (4.3)

Remark 4.1 It is obvious that (4.3) is equivalent to

0 < lim inf
x→∞

inf
ax≤z≤bx

f(z)

f(x)
≤ lim sup

x→∞

sup
ax≤z≤bx

f(z)

f(x)
< ∞.

The next proposition shows that condition f ∈ OR is stronger than condition F (x + Δ) ∈
OR.

Proposition 4.3 Assume that a distribution F has a density function f and f ∈ OR.
Then, for every fixed T > 0, F (x + Δ) ∈ OR.

Proof If T = ∞, then F (x) = F (x,∞) ∈ OR follows from Lemma 4.3 of Yang et al. [10].
Hence, we only need to discuss the case T < ∞. For any fixed y > 1, by f ∈ OR, combining
with Proposition 4.1, simple calculations yield that

lim sup
x→∞

F (xy + Δ)
F (x + Δ)

< ∞. (4.4)

Hence, we only need to estimate the lower bound: Suppose that n − 1 < y ≤ n holds for some
integer n > 1. By f ∈ OR and Proposition 4.2, there exist constants C3 and x1 > T , such that∫ x+T

x

f(u)du ≤
n∑

k=1

∫ x+k T
y

x+(k−1) T
y

f(u)du =
n∑

k=1

∫ x+ T
y

x

f
(
u +

(k − 1)T
y

)
du

≤
n∑

k=1

∫ x+ T
y

x

sup
u≤t≤2u

f(t)du ≤ nC3

∫ x+T
y

x

f(u)du
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holds for any x > x1, where the last but one step is obtained by u ≤ u + (k−1)T
y ≤ 2u for all

u ≥ x ≥ T and 1 ≤ k ≤ n. Hence, we have that

F (xy + Δ) =
∫ xy+T

xy

f(u)du = y

∫ x+T
y

x

f(uy)du

≥ C1y

∫ x+T
y

x

f(u)du ≥ C1y

nC3

∫ x+T

x

f(u)du =
C1y

nC3
F (x + Δ)

holds for all x > x1, which yields that

lim inf
x→∞

F (xy + Δ)
F (x + Δ)

> 0. (4.5)

It is obvious that F (x + Δ) ∈ OR follows from (4.4)–(4.5).

Proposition 4.4 Assume that a distribution F has a density function f . If f ∈ OR, then,
for every fixed T > 0,

0 < L−
f ≤ L−

FΔ
≤ L+

FΔ
≤ L+

f < ∞. (4.6)

Moreover, if f ∈ IR, then F (x + Δ) ∈ IR for every fixed T > 0.

Proof By Proposition 4.2, it follows immediately that L−
f > 0 and L+

f < ∞. In what
follows, we prove that L−

f ≤ L−
FΔ

: By the definition of L−
f , for every fixed δ > 0, there exist

constants ε0 > 0 and x0 > 0 such that

inf
(1−ε)x≤z≤(1+ε)x

f(z) > (L−
f − δ)f(x)

holds for any ε < ε0 and x > x0. Hence, for any x > x0, ε < ε and (1 − ε)x ≤ z ≤ (1 + ε)x, we
have

F (z + Δ) =
∫ z+T

z

f(u)du =
∫ x+T

x

f(t + z − x)dt

≥
∫ x+T

x

inf
(1−ε)t≤u≤(1+ε)t

f(u)dt ≥ (L−
f − δ)

∫ x+T

x

f(t)dt

= (L−
f − δ)F (x + Δ).

Therefore,

lim
ε↓0

lim inf
x→∞

inf
(1−ε)x≤z≤(1+ε)x

F (z + Δ)

F (x + Δ)
≥ L−

f − δ.

By the arbitrariness of δ, we immediately obtain that L−
FΔ

≥ L−
f . The proof of L+

FΔ
≤ L+

f is
similar to that of L−

FΔ
≥ L−

f , so it is omitted.
Finally, if f ∈ IR, then F (x + Δ) ∈ IR follows immediately from (4.6) and Remark 2.1.

The following proposition shows, the fact that f is almost decreasing implies that F (x+Δ)
is almost decreasing.
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Proposition 4.5 Assume that a distribution F has a density function f , and f is almost
decreasing. Then for every fixed T > 0, F (x + Δ) is almost decreasing.

Proof Since f is almost decreasing, there exist constants C and x0, such that sup
z≥x

f(z) ≤
Cf(x) for all x > x0. We have that

sup
z≥x

F (z + Δ) = sup
z≥x

∫ z+T

z

f(u)du = sup
z≥x

∫ x+T

x

f(t + z − x)dt

≤
∫ x+T

x

sup
u≥t

f(u)dt ≤ C

∫ x+T

x

f(t)dt = CF (x + Δ)

holds for all x > x0. Hence, F (x + Δ) is almost decreasing.

5 Proofs of Main Results

In this section, we give the proofs of Theorem 3.1 and corollaries. First, we estimate the
lower bound of P (Sn − na ∈ x + Δ) under slightly weaker conditions than those in Theorem
3.1, which will be generalized as Lemma 5.1.

Lemma 5.1 Let {X, Xk : k ≥ 1} be a sequence of i. i. d. r. v. s. with a common distribution
F . Suppose that E|X | 1

τ < ∞ for some τ > 1
2 and FΔ(x) = F (x + Δ) ∈ OR. Then for

arbitrarily fixed γ > 0, the relation

P (Sn − na ∈ x + Δ) � nL−
FΔ

F (x + a + Δ) (5.1)

holds uniformly for all x ≥ γnτ as n → ∞, where a = EX if τ ≤ 1 and a is any fixed constant
if τ > 1.

Proof Without loss of generality, hereafter we assume that a = 0. Since X1, X2, · · · , Xn, · · ·
are i. i. d. r. v. s., for any fixed ε ∈ (0, 1

2 ), we have

P (Sn ∈ x + Δ) ≥ P
( n⋃

i=1

(Sn ∈ x + Δ, Xi > εx, Xj ≤ εx, j 	= i, j ≤ n)
)

= nP (Sn−1 + Xn ∈ x + Δ, Xn > εx, Mn−1 ≤ εx)

≥ n

∫ εx

−εx

P (Xn ∈ x − y + Δ)P (Sn−1 ∈ dy, Mn−1 ≤ εx)

≥ n inf
|y|≤εx

F (x − y + Δ)P (Mn−1 ≤ εx, |Sn−1| ≤ εx), (5.2)

where Mn = max{X1, X2, · · · , Xn} for all n ≥ 1. Since EX = 0 if τ ≤ 1, by the strong law
of large numbers for i. i. d. r. v. s., it follows from E|X | 1

τ < ∞ that Sn−1
nτ

a.s→ 0 and Mn−1
nτ

a.s→ 0
as n → ∞. Therefore, lim

n→∞ inf
x≥γnτ

P (|Sn−1| ≤ εx) = 1 and lim
n→∞ inf

x≥γnτ
P (|Mn−1| ≤ εx) = 1.

Combining with (5.2), it follows that

lim
n→∞ inf

x≥γnτ

P (Sn ∈ x + Δ)
nF (x + Δ)

≥ lim
n→∞ inf

x≥γnτ

inf
(1−ε)x≤z≤(1+ε)x

F (z + Δ)

F (x + Δ)
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≥ lim inf
x→∞

inf
(1−ε)x≤z≤(1+ε)x

F (z + Δ)

F (x + Δ)
.

By the arbitrariness of ε, we immediately obtain that (5.1) holds uniformly for all x ≥ γnτ as
n → ∞.

Remark 5.1 The conditions in Lemma 5.1 are slightly weaker than those in Theorem 3.1.
In Lemma 5.1, we do not need the condition that F (x + Δ) is almost decreasing.

Now we stand in the position to prove Theorem 3.1.

Proof of Theorem 3.1 Without loss of generality, we assume that a = 0. By Lemma 5.1,
it suffices to prove that

lim
n→∞ sup

x≥γnτ

P (Sn ∈ x + Δ)
nF (x + Δ)

≤ L+
FΔ

. (5.3)

Let v = v(x) = − log F (x + Δ). It is obvious that v(x) is a slowly varying function since
F (x + Δ) ∈ OR and lim

x→∞ v(x) = ∞. In fact, for every fixed positive y,

v(xy)
v(x)

= 1 −
log

(F (xy + Δ)
F (x + Δ)

)
v(x)

→ 1, x → ∞.

Using the notations similar to Yang et al. [10], we denote

X̃ = XI
(
X ≤ x

v2

)
, X̃i = XiI

(
Xi ≤ x

v2

)
, i = 1, 2, · · · , S̃n =

n∑
i=1

X̃i, n = 1, 2, · · · ,

where I(A) is the indicator function of the set A, and let η = η(n, x) =
n∑

i=1

I
(
Xi > x

v2

)
, i.e., η is

the (random) number of summands Xi (1 ≤ i ≤ n) in the sum Sn =
n∑

i=1

Xi, such that Xi ≥ x
v2 .

Our starting point is the decomposition

P (Sn ∈ x + Δ) = J0 + J1 + J2, (5.4)

where

Ji = Ji(n, x) = P (Sn ∈ x + Δ, η = i), i = 0, 1

and

J2 = J2(n, x) = P (Sn ∈ x + Δ, η ≥ 2).

We will estimate (5.4) by three steps.
Step 1 Estimation of J0

We use an idea of Tang [9] to deal with J0. For a positive number h = h(x) which will be
specified later, by Chebyshev’s inequality, we have

J0 = P (S̃n ∈ x + Δ, η = 0)
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≤ P (S̃n > x) ≤ e−hxEehS̃n = e−hx(EehX̃)n. (5.5)

To estimate the upper bound of EehX̃ , we will discuss two cases according to τ > 1 and τ ≤ 1,
respectively. When τ > 1, let q = min{p, 1} > 1

τ . By virtue of the monotonicity in x ∈ (0,∞)
of ex−1

xq , we obtain that

EehX̃ ≤ F
( x

v2

)
+

∫ 0

−∞
F (du) +

∫ x
v2

0

ehuF (du)

= 1 +
∫ x

v2

0

(ehu − 1)F (du)

≤ 1 +
e

hx
v2 − 1( x

v2

)q

∫ x
v2

0

uqF (du)

≤ exp
{
Bq

e
hx
v2 − 1( x

v2

)q

}
,

where Bq =
∫ ∞
0

uqF (du) < ∞. Hence, we have

J0

F (x + Δ)
≤ exp

{
− hx + v +

Bqn(e
hx
v2 − 1)( x

v2

)q

}
.

Taking h = 2v
x in the above equation, it yields that

J0

F (x + Δ)
≤ exp

{
− v +

Bqn(e
2
v − 1)( x

v2

)q

}
.

Since v(x) is slowly varying and v(x) → ∞ as x → ∞, combining with qτ > 1, it follows that

lim
n→∞ sup

x≥γnτ

J0

F (x + Δ)
= 0. (5.6)

When τ ≤ 1, we split ehX̃ into the following several parts:

EehX̃ =
∫ 0

−∞
(ehu − hu − 1)F (du) +

∫ x
v2

0

(ehu − hu − 1)F (du) + h

∫ x
v2

−∞
uF (du) + 1

≤
∫ 0

−∞
(ehu − hu − 1)F (du) +

∫ x
v2

0

(ehu − hu − 1)F (du) + 1

=̃ I1 + I2 + 1, (5.7)

where the last step but one is obtained by EX = 0. Let

q =
{

1, if τ = 1,
min{p, 2}, if τ < 1.

It is obvious that for 1 ≤ q ≤ 2, the inequality ex − x − 1 ≤ |x|q holds for all x < 0. Therefore,
by

∫ 0

−∞ |u|qF (du) < ∞ and the dominated convergence theorem, it follows that

I1 = o(hq) as h ↓ 0. (5.8)
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In what follows, we estimate I2. By virtue of the monotonicity in x ∈ (0,∞) of ex−x−1
xp , we

have

I2 ≤ e
hx
v2 − hx

v2 − 1( x

v2

)p

∫ x
v2

0

upF (du) ≤ e
hx
v2 − hx

v2 − 1( x

v2

)p Bp, (5.9)

where Bp = E(X+)p < ∞. Substituting (5.8) and (5.9) into (5.7), it follows that

EehX̃ ≤ 1 + o1(hq) +
e

hx
v2 − hx

v2 − 1( x

v2

)p Bp

≤ exp
{

Bp
e

hx
v2 − 1( x

v2

)p + o1(hq)
}
, (5.10)

where o1(h) is a real function of h > 0 satisfying o1(h)
h → 0 as h → 0+. Taking h = 2v

x , it
follows from (5.5) and (5.10) that

J0

F (x + Δ)
≤ exp

{
− hx + v + nBp

e
hx
v2 − 1( x

v2

)p + n · o1(hq)
}

≤ exp
{
− v +

Bpn(e
2
v − 1)( x

v2

)p + n · o1

((2v

x

)q)}
.

Hence, (5.6) follows since v(x) is slowly varying and v(x) → ∞.

Step 2 Estimation of J2

Since X1, X2, · · · , Xn, · · · are i. i. d. r. v. s., for n ≥ 2 and for sufficiently large x, we have
that

J2 ≤ 2
∑

1≤i<j≤n

P
(
Sn ∈ x + Δ, Xi >

x

v2
, Xj >

x

v2

)

= n(n − 1)P
(
Sn ∈ x + Δ, Xn−1 >

x

v2
, Xn >

x

v2

)
≤ n2P

(
Sn−2 + Xn−1 + Xn ∈ x + Δ, Xn−1 >

x

v2
, Xn >

x

v2

)
= n2

∫ ∞

−∞

∫ ∞

x
v2

P
(
Xn ∈ x − y − z + Δ, Xn >

x

v2

)
P (Sn−2 ∈ dy, Xn−1 ∈ dz)

≤ n2 sup
u> x

2v2

F (u + Δ)F
( x

v2

)
, (5.11)

where the last step is obtained by the fact that u + Δ ∩ [ x

v2
,∞)

= ∅ holds for all u ≤ x

2v2

and sufficiently large x if T < ∞, while the inequality is obvious if T = ∞. Since F (x + Δ) is
almost decreasing, there exist constants A > 0 and x1 > 0, for all x > x1 such that

sup
u> x

2v2

F (u + Δ) ≤ AF
( x

2v2
+ Δ

)
.
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According to Proposition 4.1, for some β < min{β(FΔ), β(F ), 0}, there exist constants Cβ and
xβ > 0, such that

F
( x

2v2
+ Δ

)
F (x + Δ)

≤ Cβv−2β

and

F ( x
v2 )

F (x)
≤ Cβv−2β

hold for all x satisfying x
v2 > 2xβ . Combining with (5.11), for sufficiently large x, we have

J2

nF (x + Δ)
≤ A(Cβ)2v−4βnF (x).

Note that E|X |p < ∞ implies that xpF (x) → 0, and that the function v is slowly varying and
τ > 1

p yield that x
1
τ −pv−4β → 0 as x → ∞. Hence, it follows that

lim
n→∞ sup

x≥γnτ

J2

nF (x + Δ)
= 0, (5.12)

since nv−4βF (x) ≤ γ− 1
τ x

1
τ F (x)v−4β = γ− 1

τ xpF (x)(x
1
τ −pv−4β) holds for x ≥ γnτ .

Step 3 Estimation of J1

For every fixed ε ∈ (0, 1), we split J1 into three parts as

J1 =
n∑

i=1

P
(
Sn ∈ x + Δ, Xi >

x

v2
, Xj ≤ x

v2
, j 	= i, j ≤ n

)

= nP
(
Sn−1 + Xn ∈ x + Δ, Xn >

x

v2
, Mn−1 ≤ x

v2

)
=

(∫ −εx

−∞
+

∫ εx

−εx

+
∫ ∞

εx

)
nP

(
Xn ∈ x − y + Δ, Xn >

x

v2

)
P

(
Sn−1 ∈ dy, Mn−1 ≤ x

v2

)
= J11 + J12 + J13. (5.13)

First, we estimate J11. Since F (x + Δ) is almost decreasing and x − y > (1 + ε)x > x for all
y < −εx, there exist constants A and x0, such that

J11 = n

∫ −εx

−∞
P (Xn ∈ x − y + Δ)P

(
Sn−1 ∈ dy, Mn−1 ≤ x

v2

)
≤ AnF (x + Δ)P (Sn−1 ≤ −εx)

holds for all x > x0. By the strong law of large numbers of i. i. d. r. v. s., it follows that

lim
n→∞ sup

x≥γnτ

J11

nF (x + Δ)
≤ lim

n→∞AP (Sn−1 ≤ −εγnτ) = 0. (5.14)

Next, we deal with J13. Clearly,

J13 ≤ nP
(
Sn−1 > εx, Mn−1 ≤ x

v2

)
= nP (S̃n−1 > εx).
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Hence, it follows from (5.5)–(5.6) that

lim
n→∞ sup

x≥γnτ

J13

nF (x + Δ)
= 0. (5.15)

Finally, we discuss J12. Since (1 − ε)x ≤ x − y ≤ (1 + ε)x for all |y| < εx, it follows that

J12 = n

∫ εx

−εx

P
(
Xn ∈ x − y + Δ, Xn >

x

v2

)
P

(
Sn−1 ∈ dy, Mn−1 ≤ x

v2

)
≤ n sup

|y|≤εx

F (x − y + Δ)P
(
|Sn−1| ≤ εx, Mn−1 ≤ x

v2

)
≤ n sup

(1−ε)x≤z≤(1+ε)x

F (z + Δ).

Hence, we have that

lim
n→∞ sup

x≥γnτ

J12

nF (x + Δ)
≤ lim

n→∞ sup
x≥γnτ

sup
(1−ε)x≤z≤(1+ε)x

F (z + Δ)

F (x + Δ)

≤ lim sup
x→∞

sup
(1−ε)x≤z≤(1+ε)x

F (z + Δ)

F (x + Δ)
.

Letting ε ↓ 0, it follows that

lim
n→∞ sup

x≥γnτ

J12

nF (x + Δ)
≤ L+

FΔ
. (5.16)

From (5.13)–(5.16), we have

lim
n→∞ sup

x≥γnτ

J1

nF (x + Δ)
≤ L+

FΔ
. (5.17)

Consequently, (5.3) follows from (5.4), (5.6), (5.12) and (5.17). This completes the proof of the
first part of Theorem 3.1. The second part of Theorem 3.1 follows immediately from the first
part since F (x + Δ) ∈ IR implies that L−

FΔ
= L+

FΔ
= 1.

Proof of Corollary 3.1 Taking T = 1 and x = m − 1 in Theorem 3.1, we have that

P (m − 1 < Sn − na ≤ m) ∼ np[m+a]

holds uniformly for m ≥ γnτ as n → ∞, where [y] denotes the largest integer no more than y.
Corollary 3.1 follows since the fact that the sequence {pk : k = 0,±1,±2, · · · } belongs to the
class IR implies that the sequence belongs to the class L.

Proof of Corollary 3.2 Corollary 3.2 follows immediately from Theorem 3.1 and Propo-
sitions 4.3 and 4.5.
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