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Abstract In this paper, a new approach to analyze synchronization of linearly coupled
map lattices (LCMLs) is presented. A reference vector bx(t) is introduced as the projection
of the trajectory of the coupled system on the synchronization manifold. The stability
analysis of the synchronization manifold can be regarded as investigating the difference
between the trajectory and the projection. By this method, some criteria are given for
both local and global synchronization. These criteria indicate that the left and right
eigenvectors corresponding to the eigenvalue “0” of the coupling matrix play key roles in
the stability of synchronization manifold for the coupled system. Moreover, it is revealed
that the stability of synchronization manifold for the coupled system is different from the
stability for dynamical system in usual sense. That is, the solution of the coupled system
does not converge to a certain knowable s(t) satisfying s(t+1) = f(s(t)) but to the reference
vector on the synchronization manifold, which in fact is a certain weighted average of each
xi(t) for i = 1, · · · , m, but not a solution s(t) satisfying s(t + 1) = f(s(t)).
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1 Introduction

Word “synchronization” comes from Greek, which means “share time”. Today, in science

and technology, it comes to be considered as “time coherence of different processes”. This phe-

nomenon also appears in wide range of real systems, such as in biology (see [1]), neural networks

(see [2]), physiological process (see [3]) and others. In applications, there are many kinds of

concepts of synchronization. For example, phase synchronization, imperfect synchronization,

lag synchronization, and almost synchronization etc. In this paper, we consider complete syn-

chronization, which can be described as lim
t→∞

xi(t) − xj(t) = 0, where xi(t) denotes the state

variable of node i, for all i = 1, · · · , m.

Synchronization technique is applied to many fields, such as communication, seismology,

and neural networks. In [4] and other papers, authors presented transmitter-receiver discrete-

time systems with chaos synchronization for communication purpose. In this cryptographic

Manuscript received November 9, 2005. Revised February 14, 2006. Published online March 5, 2007.
∗School of Mathematical Sciences and Laboratory of Mathematics for Nonlinear Sciences, Fudan University,
Shanghai 200433, China.

∗∗Corresponding author. School of Mathematical Sciences and Laboratory of Mathematics for Nonlinear
Sciences, Fudan University, Shanghai 200433, China. E-mail: tchen@fudan.edu.cn

∗∗∗Project supported by the National Natural Science Foundation of China (No. 60374018, No. 60574044)
and the Graduate Student Innovation Foundation of Fudan University.



150 W. L. Lu and T. P. Chen

scheme, the message is masked by some chaotic signal, which is transmitted to a receiver

system. With synchronization between transmitter and receiver, the message can be recovered.

In [5], authors observed existence of synchronized chaos in three-block Burridge-Knopoff model

for earthquakes. By this technique, the dimensionality of the chaotic attractor decreases. It

makes the analysis of the system much easier. In [6], we proposed a new model to recognize

image by synchronization. As we showed that this method has strong robustness in recognition.

It is clear that for applications in various research fields, theoretical analysis of synchronization

is an important and necessary step.

Linearly coupled map lattices (LCMLs) is a large class of dynamical systems with discrete

space and time, as well as continuous state. This class of dynamical systems has been investi-

gated as theoretical models of spatiotemporal phenomena in a variety of problems in nonlinear

systems and computation studies (for example, see [11, 12]). Coupled oscillator and chaotic

systems were studied in [7–9]. In general, the coupled system can be described as

xi(t + 1) = f(xi(t)) +

m∑

j=1

bijf(xj(t)), i = 1, · · · , m, (1.1)

where xi(t) = (xi
1(t), x

i
2(t), · · · , xi

n(t))⊤ ∈ Rn is the state variable of the i-th node, t ∈ N is

the discrete time, f : Rn → Rn is a continuous map, B = (bij) ∈ Rm,m is the coupling matrix

connecting the lattices, which is determined by the topological structure of the LCMLs and its

entries satisfy bij ≥ 0, for all i 6= j, and
m∑

j=1

bij = 0.

In many studies, the coupling scheme is assumed as:

xi(t + 1) = f(xi(t)) +
ε

ki

m∑

j=1

aijf(xj(t)), i = 1, · · · , m, (1.2)

where aij = aji = 1, if there is a connection between node i and j; otherwise, aij = aji = 0,

ki =
∑
j 6=i

aij is the number of connection incidents of node i, ε > 0 is the coupling strength. Or

more general

xi(t + 1) = f(xi(t)) + ci

m∑

j=1

aijf(xj(t)), i = 1, · · · , m, (1.3)

where A = (aij) is a symmetric coupling matrix, and ci is coupling strength at node i.

Synchronization of chaotic systems has been an active topic for applications in many research

fields (see [10]). There also are several papers in literatures, in which LCMLs with various

coupling schemes were investigated. For example, in [13], local connected network, random

network, global coupling network etc., were investigated. Spectral properties of various kinds

of LCMLs, such as small-world lattice and scale-free network were discussed in [14, 15]. In [16],

authors presented a thorough and theoretical analysis for synchronization of LCMLs.

Different from the approaches proposed in literature, in this paper, we present a new

approach to analyze local (global) synchronization of LCMLs. A reference vector x̂(t) =

[x(t), · · · , x(t)]⊤ on the synchronization manifold, where x(t) =
m∑

k=1

ξkxk(t) is some weighted
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average of the states of the coupled system, is introduced. This reference vector plays a key

role in the investigation of stability of synchronization manifold. We derive synchronization by

proving x(t) − x̂(t) → 0 when t → ∞. Moreover, it must be emphasized that generally x(t) is

not a solution of the coupled system (1.1).

Furthermore, with the help of the reference vector, criteria for both local and global synchro-

nization are given. These criteria indicate that the left and right eigenvectors corresponding to

eigenvalue “0” of the coupling matrix play key roles in the stability of synchronization manifold

for coupled system.

2 Some Preliminaries and Lemmas

In this section, we give some definitions and lemmas, which are used throughout this paper.

Definition 2.1 S = {x = [x1, · · · , xm], xi ∈ Rn, xi = xj , i, j = 1, 2 · · · , m} is said to be

the synchronization manifold.

It is easy to see that synchronization manifold S is an invariant manifold for the coupled

system (1.1).

Definition 2.2 x(t, x0) = [x1(t, x1
0), · · · , xm(t, xm

0 )] is defined as the solution of equations

(1.1) with initial values

xi(0) = xi
0 for all i = 1, 2, · · · , m, (2.1)

where xi
0 = (xi

0,1, · · · , xi
0,n)⊤ ∈ Rn and x0 = (x1

0, · · · , xm
0 ). For simplicity, we denote x(t, x0)

by x(t).

Definition 2.3 We say the synchronization manifold S is locally exponentially stable for

the coupled system (1.1), or the coupled system (1.1) is locally exponentially synchronized, if

there exist x0 ∈ Rn×m, δ > 0, M > 0, and 0 < γ < 1 such that for each ‖xi(0) − x0‖ ≤ δ,

‖xi(t) − xj(t)‖ ≤ Mγt

holds for all i, j = 1, · · · , m and t ≥ 0.

Definition 2.4 We say the synchronization manifold S is globally exponentially stable for

the coupled system (1.1), or the coupled system (1.1) is locally exponentially synchronized, if for

each xi(0) ∈ Rn×m, there exist M > 0, and 0 < γ < 1 such that

‖xi(t) − xj(t)‖ ≤ Mγt

holds for all i, j = 1, · · · , m and t ≥ 0.

Definition 2.5 Suppose κ > 0, f : Rn → Rn. If

[f(x) − f(y)]⊤[f(x) − f(y)] ≤ κ2(x − y)⊤(x − y) (2.2)

holds for all x 6= y ∈ Rn, then we say f(x) ∈ F (κ).
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Definition 2.6 A matrix of order m A = (aij)
m
i,j=1 is said A ∈ A1, if

(1)

aij ≥ 0, i 6= j, aii = −

m∑

j=1,j 6=i

aij , i = 1, 2, · · · , m. (2.3)

(2) Real part of eigenvalues of A are all negative except an eigenvalues 0 with multiplicity

one.

Definition 2.7 A matrix of order m A = (aij)
m
i,j=1 is said A ∈ A2, if A is irreducible and

aij = aji ≥ 0, i 6= j, aii = −

m∑

j=1,j 6=i

aij , i = 1, 2, · · · , m. (2.4)

Furthermore, if

aij = aji = 1, i 6= j, aii = −
m∑

j=1,j 6=i

aij , i = 1, 2, · · · , m, (2.5)

then it is said that A ∈ A3.

The following two lemmas play key roles in the discussion of stability of synchronization

manifold. Proofs for them will be given in Appendix.

Lemma 2.1 If the matrix B ∈ A1, then

(1) 1 = [1, 1, · · · , 1]⊤ is the right eigenvector of B corresponding to eigenvalue 0 with mul-

tiplicity 1.

(2) The left eigenvector of B : ξ = [ξ1, ξ2, · · · , ξm]⊤ ∈ Rm
(
without loss of generality, we

assume
m∑

i=1

ξi = 1
)

corresponding to eigenvalue 0 has the following properties: It is non-zero

and its multiplicity is 1; all ξi ≥ 0, i = 1, · · · , m. More precisely,

(a) B is irreducible if and only if all ξi > 0, i = 1, · · · , m.

(b) B is reducible if and only if for some i, ξi = 0. In such case, by suitable rearrangement,

we can assume that ξ⊤ = [ξ⊤+ , ξ⊤0 ], where ξ+ = [ξ1, ξ2, · · · , ξp]
⊤ ∈ Rp, with all ξi > 0, i =

1, · · · , p; ξ0 = [ξp+1, ξp+2, · · · , ξm]⊤ ∈ Rm−p with all ξj = 0, p + 1 ≤ j ≤ m, and B can be

rewritten as
[

B11 B12

B21 B22

]
, where B11 ∈ Rp,p is irreducible and B12 = 0.

Based on Lemma 2.1, we define the following transverse subspace L of synchronization

manifold S.

Definition 2.8 L =
{
x = [x1, · · · , xm] : xi ∈ Rn, i = 1, · · · , m, and

m∑
k=1

ξkxk = 0
}
.

In the following, we define

x(t) =
m∑

k=1

ξkxk(t), δxi(t) = xi(t) − x(t),

x̂(t) = [x(t), · · · , x(t)], δx(t) = x(t) − x̂(t).

Geometrically, we decompose any x(t) = x̂(t)
⊕

δx(t), where x̂(t) ∈ S, δx(t) ∈ L. We derive

synchronization by proving that δx converges to zero.
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3 Local Stability of Synchronization Manifold

In this section, we investigate local stability of synchronization manifold.

Because
m∑

k=1

ξkbkj = 0, it is easy to see that

x(t + 1) =
m∑

k=1

ξkxk(t + 1) =
m∑

k=1

ξk

[
f(xk(t)) +

m∑

j=1

bkjf(xj(t))
]

=
m∑

k=1

ξkf(xk(t)), (3.1)

δxi(t + 1) = xi(t + 1) − x(t + 1) = f(xi(t)) − f(x(t))

−

m∑

k=1

ξk[f(xk(t)) − f(x(t))] +

m∑

j=1

bij [f(xj(t)) − f(x(t))]. (3.2)

By first order approximation, we have the following variation equations

δxi(t + 1) = Df(x(t))
[
δxi(t) +

m∑

j=1

bijδx
j(t)

]
.

Denote δX(t) = [δx1(t), δx2(t), · · · , δxm(t)] ∈ Rn,m, we have

δX(t + 1) = Df(x(t))δX(t)(Im + B⊤).

Let B⊤ = SJS−1 be the Jordanian decomposition of B⊤, where

J =




0
λ2 e2

. . .

λm−1 em−1

λm




is its Jordan block matrix and ei = 0 or 1, i = 2, · · · , m with 0 = λ1 > λ2 ≥ λ2 ≥ · · · ≥ λm are

eigenvalues of B. By Lemma 2.1, the first column of S is ξ and the first row of S−1 is 1⊤.

Let δY (t) = [δy1(t), · · · , δym(t)] = δX(t)S. Then, we have

δY (t + 1) = Df(x(t))δY (I + J),

because δX(t)ξ = 0. Thus

δy1(t) = 0 for all t > 0 (3.3)

and

δyk(t + 1) = Df(x(t))[δyk(t)(1 + λk) + ek−1δy
k−1(t)], k = 2, · · · , m. (3.4)

Theorem 3.1 Suppose B ∈ A1. If there exist constants 0 < γ0 < γ < 1 and an integer t0

such that

‖Df(x(t))‖2 max
k=2,m

|1 + λk| ≤ γ0, t > t0, (3.5)

then the synchronization manifold is locally exponentially stable for system (1.1); moreover, the

convergence rate can be estimated by O(γt).
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Proof Firstly, we consider the equation in system (3.4) with ek−1 = 0. In this case, we

have

‖δyk(t + 1)‖2 ≤ ‖Df(x(t))‖2‖δy
k‖|1 + λk| ≤ γ0‖δy

k,1(t)‖2 for all t > t0.

Therefore,

δyk(t) = O(γ−t
0 ), k = 1, · · · , m.

In the case that ek−1 = 1 in the equation in system (3.4), let

δyk(t + 1) = zk(t + 1) + εk(t + 1), k = 1, · · · , m,

where

zk(t + 1) = Df(x(t))[δyk(t)(1 + λk)], k = 1, · · · , m,

εk(t + 1) = Df(x(t))[ek−1δy
k−1(t)], k = 1, · · · , m.

By induction and structure of Jordan block matrix, we can assume that

δyk−1(t) = O(γ−t).

Therefore,

δyk(t + 1) = zk(t + 1) + O(γ−t).

With previous arguments, we have

‖zk(t + 1)‖2 ≤ γ0‖δy
k(t)‖2.

Thus

‖γt+1δyk(t + 1)‖2 = γ0γ‖γ
tδyk(t)‖2 + O(1),

which means that ‖γtδyk(t)‖2 is bounded and

δyk(t) = O(γ−t) for k = 2, · · · , m.

Combining with δy1(t) = 0, we have

δX(t) = O(γt).

Theorem 3.1 is proved.

Remark 3.1 In the papers [7, 9, 11, 14–16], authors all assumed that all xi(t) are some

small perturbations of a solution of the uncoupled system

s(t + 1) = f(s(t)) (3.6)

and used first order approximation around trajectory s(t) to obtain variation equations. By

these variation equations, under some conditions, stability of synchronization manifold is ob-

tained. It is well known that a prerequisite requirement for this approach is that every trajectory

xi(t) of the coupled system must be near the trajectory s(t).

The following proposition can be used to investigate local stability for the coupled system.
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Proposition 3.1 (See [17]) Suppose the uncoupled system s(t + 1) = f(t) has an attractor

set A and an attraction basin W ⊇ A. If for all i = 1, · · · , m, xi(0) ∈ W , xi(0)−s(0) are small,

and all the Lyapunov exponents in the transverse directions on s(t) for the coupled system are

negative, then xi(t), i = 1, · · · , m, can be synchronized.

Although this proposition applies to some chaotic system, it is not yet known that if all

systems satisfy conditions required in the previous proposition. In particular, s(t) is a repeller.

Instead, in our approach, we do not impose these requirements. Theorem 3.1 concludes that

if (x1(0), · · · , xm(0)) is close to the synchronization manifold S, inequalities (3.5) are satisfied

(or all the Lyapunov exponents in the transverse directions on x(t) for the coupled system are

negative), then xi(t), i = 1, · · · , m, approach to synchronized trajectory.

The following example verifies our assertion. Consider system

s(t + 1) = f(s(t)) mod 2π, (3.7)

where

f(ρ) =

{
2ρ, |ρ| ≥ 1,

(1 + ρ2)ρ, |ρ| ≤ 1.

The coupled system is

x1
ε(t + 1) = f(x1

ε(t)) + ε[f(x2
ε(t)) − f(x1

ε(t))],

x2
ε(t + 1) = f(x2

ε(t)) + ε[f(x1
ε(t)) − f(x2

ε(t))].
(3.8)

It is clear that s(t) = 0 is a solution of the system (3.7), which is unstable and has no attractor.

The variational equation in transverse direction (corresponding to the eigenvalue λ2 = −2) on

s(t) = 0 is

δy(t + 1) = Df(s(t))(1 − 2ε)δy(t),

where Df(s(t)) = 1 for all t. Therefore, for any 0 < ε < 1, by variational equations technique

(or calculating Lyapunov exponents) on s(t), the coupled system should be synchronized.

On the other hand, it is clear that

x1
ε(t + 1) − x2

ε(t + 1) = (1 − 2ε)[f(x1
ε(t)) − f(x2

ε(t))]. (3.9)

Pick |xi(0)| < 0.0001 and let ε vary from 0 to 1. For each ε, define the following quantity to

measure the synchronization error

Gap(ε) = 〈|x1
ε(t) − x2

ε(t)|〉,

where 〈 · , · 〉 denotes time average. Figure 1 (red line) indicates that approximately for ε ∈

[0.1, 0.9], the coupled system (3.8) is synchronized. Instead, if ε is not in this interval, (3.8) can

not be synchronized, no matter how small the initial values are. It means that the variational

equation in transverse direction on s(t) converges to zero (or negative Lyapunov exponent in

the transverse direction on s(t)) does not necessarily implies synchronization.
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Figure 1 Gap varies through ε

Instead, negative Lyapunov exponent on x̂(t) (blue line) in Figure 1 implies the coupled

system is synchronized. Instead, positive Lyapunov exponent on x̂(t) implies the coupled system

can not be synchronized. Theorem 3.1 coincides with the simulation result.

4 Global Stability of Synchronization Manifold

In this section, we investigate global stability of the synchronization manifold.

Theorem 4.1 Suppose that B ∈ A1, f ∈ F (κ), where κ > 0 is a constant. If there exist a

positive number b > κ and a positive definite matrix P such that

(Im − Ξ⊤ + B⊤)P (Im − Ξ + B) ≤
1

b2
P, (4.1)

where

Ξ =




ξ1 ξ2 · · · ξm

ξ1 ξ2 · · · ξm

...
...

...
...

ξ1 ξ2 · · · ξm


 ,

then the synchronization manifold S is globally exponentially stable for the coupled system (1.1).

Moreover, the convergence rate is O((κ
b
)t).

Proof Let δx(t) = [δx1(t), · · · , δxm(t)]. Then

δx(t + 1) = {Im − Ξ + B}[F (x(t)) − F (x(t))], (4.2)
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where

F (x(t)) = [f⊤(x1(t)), · · · , f⊤(xm(t))]⊤, F (x(t)) = [f⊤(x(t)), · · · , f⊤(x(t))]⊤.

Define V (t) = tr{δx⊤(t)Pδx(t)}. We have

V (t + 1) = tr{δx⊤(t + 1)Pδx(t + 1)}

= tr{[F (x(t)) − F (x(t))]⊤{Im − Ξ + B}⊤P{Im − Ξ + B}[F (x(t)) − F (x(t))]}

≤ tr
{ 1

b2
[F (x(t)) − F (x(t))]⊤P [F (x(t)) − F (x(t))]

}

≤ tr
{κ2

b2
δx⊤(t)Pδx(t)

}
=

κ2

b2
V (t),

which implies δx⊤(t) = O((κ
b
)t). Theorem 4.1 is proved.

If coupling matrix A ∈ A2 or A ∈ A3, we have the following corollaries, which are easier

to use in practice.

Corollary 4.1 Suppose A ∈ A2, f ∈ F (κ), where κ > 0 is a constant, C = diag{c1, c2,

· · · , cm} is a positive diagonal matrix. Let 0 = λ1 ≥ λ2 ≥ · · · ≥ λm be the eigenvalues of CA.

If

max{|1 + λ2|, |1 + λm|} <
1

κ
, (4.3)

then system (1.3) is globally stable exponentially.

Proof It is calear that ξ = [ξ1, · · · , ξm] = 1

m
[c−1

1 , · · · , c−1
m ]⊤ is the left eigenvector of CA

corresponding to eigenvalue 0.

Let A = C
1

2 AC
1

2 , which is symmetric. Its eigenvalue decomposition is A = QΛQ−1, where

Q = [q1, · · · , qm], Λ = diag[0, · · · , λm]. We take q1 = 1

m
[c

1

2

1 , · · · , c
1

2

m]⊤. Then the eigenvalue

decomposition of CA is

CA = C
1

2 AC− 1

2 = {C
1

2 Q}Λ{C
1

2 Q}−1,

where C
1

2 Q = [v1, · · · , vm]. Because ξ = [ξ1, · · · , ξm] is the left eigenvector of CA corresponding

to eigenvalue 0 satisfying ξ⊤v1 = 1, ξ⊤vi = 0 for all i = 2, · · · , m, we have

{C
1

2 Q}−1Ξ{C
1

2 Q} = E1
m,

where E1
m is the matrix having all entries E1

m(i, j) = 0 except E1
m(1, 1) = 1. Therefore,

(Im − Ξ + CA)⊤C−1(Im − Ξ + CA)

= QC
1

2 (Im − E1
m + Λ)⊤Q⊤C

1

2 C−1C
1

2 Q(Im − E1
m + Λ){C

1

2 Q}−1

= C− 1

2 Q(Im − E1
m + Λ)⊤(Im − E1

m + Λ)Q⊤C− 1

2

≤ max
i=2,··· ,m

(1 + λi)
2C− 1

2 QQ⊤C− 1

2 ≤ max
i=2,··· ,m

(1 + λi)
2C−1.

Corollary 4.1 is a direct consequence of Theorem 4.1.
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Corollary 4.2 Suppose A satisfies Condition A3, f ∈ F (κ), where κ > 0 is a constant.

Let C = diag{ 1

k1

, · · · , 1

km

} and 0 = λ1 ≥ λ2 ≥ · · · ≥ λm be the eigenvalues of CA. If

max{|1 + ελ2|, |1 + ελm|} <
1

κ
, (4.4)

then system (1.2) is globally stable exponentially.

Remark 4.1 In discussion of global stability of synchronization manifold, two factors play

key role. One is the dynamical property of identical system of each node s(t + 1) = f(s(t)),

which is described by the Lipschitz constant κ of f( · ). The other is the coupling configuration,

which is described by a linear matrix inequality (LMI) (4.1).

5 Conclusions

In this paper, we present a new approach to analyze synchronization of LCMLs. A projec-

tion of the trajectory of the coupled system x̂(t) on the synchronization manifold is introduced.

Decomposition of Rn,m into synchronization manifold S and transverse subspace L is pro-

posed. Based on the decomposition, stability analysis of the synchronization manifold reduces

to proving that the component in L converges to zero.

By this new approach, we discuss both local and global synchronization for the LCMLs.

Some simple criteria to guarantee local and global stability of the synchronization manifold are

given.

Appendix

Proof of Lemma 2.1 Since A satisfies Condition A1, [1, 1, · · · , 1]⊤ is the right eigenvector

of A corresponding to eigenvalue 0 with multiplicity 1.

Because Rank(A) = m−1, there exists a nonsingular (m−1)×(m−1) minor of A. Without

loss of generality, we suppose

A =

[
a11 A12

A21 A22

]
,

where A22 ∈ Rm−1,m−1 is nonsingular. Now, we construct a nonsingular matrix

Ã =

[
1 A12

0 A22

]
,

and let ξ be the unique solution of the linear equation ξ⊤Ã = (1, 0, 0, · · · , 0).

Let

ξ = [ξ1, · · · , ξn]⊤ = [ξ1, ξ
′⊤]⊤,

where ξ′ ∈ Rm−1. We will prove that all ξi ≥ 0. First, it is easy to see that ξ1 = 1 and

ξ′ = −(A
⊤

22)
−1A⊤

12. Because A ∈ A1, −A
⊤

22 is a nonsingular M matrix (see [20, pp. 21–22]),

which implies that all elements of −(A
⊤

22)
−1 are nonnegative. Moreover, all elements of A12

are also nonnegative. Thus, all ξi ≥ 0. With Condition A1, the first column of A is a linear

combination of the remaining columns. Therefore, ξ⊤A = 0, which means that ξ is the left

eigenvector corresponding to the eigenvalue 0.
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If the eigenvector ξ is of the form ξ⊤ = [ξ⊤+ , 0], where ξ+ = [ξ1, ξ2, · · · , ξp]
⊤ ∈ Rp with all

ξi > 0 for i = 1, 2, · · · , p, writing

A =

[
A11 A12

A21 A22

]
,

where A11 ∈ Rp,p, then by ξ⊤A = 0 we have

ξ⊤+A11 = 0, ξ⊤+A12 = 0.

If A12 6= 0, then A11 is a nonsingular M matrix. Hence, ξ+ = 0, which contradicts the

assumption that all entries of ξ+ are greater than 0. Therefore, A12 = 0.

On the other hand, if A is reducible, then without loss of generality A can be written as

[
A11 0
A21 A22

]
,

where A11 ∈ Rp,p and 1 ≤ p ≤ m − 1. Let

ξ⊤ = [ξ1⊤, ξ2⊤].

From ξ⊤A = 0, we have

ξ1⊤A11 + ξ2⊤A21 = 0, ξ2⊤A22 = 0.

Because A22 is non-singular, we conclude that

ξ2⊤ = 0 and ξ1⊤A11 = 0.

Lemma 2.1 is proved.
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