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Abstract In this paper, the exact synchronization for a coupled system of wave equations
with Dirichlet boundary controls and some related concepts are introduced. By means of
the exact null controllability of a reduced coupled system, under certain conditions of com-
patibility, the exact synchronization, the exact synchronization by groups, and the exact
null controllability and synchronization by groups are all realized by suitable boundary
controls.
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1 Introduction

Synchronization is a widespread natural phenomenon. Thousands of fireflies may twinkle
at the same time; audiences in the theater can applaud with a rhythmic beat; pacemaker cells
of the heart function simultaneously; and field crickets give out a unanimous cry. All these are
phenomena of synchronization.

In principle, synchronization happens when different individuals possess likeness in nature,
that is, they conform essentially to the same governing equation, and meanwhile, the individuals
should bear a certain coupled relation.

The phenomenon of synchronization was first observed by Huygens [4]. The theoretical
research on synchronization phenomena dates back to Fujisaka and Yamada’s study of syn-
chronization for coupled equations in 1983 (see [2]). The previous studies focused on systems
described by ODEs, such as

dXi

dt
= f(Xi, t) +

N∑
j=1

AijXj , i = 1, · · · , N, (1.1)

where Xi (i = 1, · · · , N) are n-dimensional vectors, Aij (i, j = 1, · · · , N) are n × n matrices,
and f(X, t) is an n-dimensional vector function independent of n. The right-hand side of
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(1.1) shows that every Xi (i = 1, · · · , N) possesses two basic features, that is, satisfying a
fundamental governing equation and bearing a coupled relation among one another.

In this paper, we will consider the synchronization of the following hyperbolic system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂2U

∂t2
− ΔU + AU = 0 in Ω,

U = 0 on Γ0,

U = H on Γ1,

t = 0 : U = U0,
∂U

∂t
= U1,

(1.2)

where U = (u(1), · · · , u(N))T is the state variable, A ∈ MN (R) is the coupling matrix, and
H = (h(1), · · · , h(N))T is the boundary control. Different from the ODE situation, the coupling
of PDE systems can be fulfilled by coupling of the equations or (and) the boundary conditions.
Our goal is to synchronize the state variable U through boundary control H . Roughly speaking,
the problem is to find a T > 0, and through boundary control on [0, T ], we have that from
time t = T on, the system states tend to be the same. That is to say, we hope to achieve the
synchronization of the system state not only at the moment t = T under the action of boundary
controls on [0, T ], but also when t ≥ T withdrawing all the controls. This is forever (instead of
short-lived) synchronization, as is desired in many actual applications. Obviously, if the system
has the exact boundary null controllability, it must have the exact synchronization, but this is
a trivial situation that should be excluded beforehand.

The exact synchronization is linked with the exact null controllability. In fact, let W =
(w(1), · · · , w(N−1))T with w(i) = u(i+1) − u(i) (i = 1, · · · , N − 1). Then under some conditions
of compatibility on the coupling matrix A, the new state W satisfies a reduced system of N − 1
equations as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂2W

∂t2
− ΔW + AW = 0 in Ω,

W = 0 on Γ0,

W = H on Γ1,

t = 0 : W = W0,
∂W

∂t
= W1,

(1.3)

where A is a matrix of order N − 1. Under such conditions of compatibility, the exact syn-
chronization of system (1.2) of N equations is equivalent to the exact null controllability of
the reduced system (1.3) of N − 1 equations. Our study will be based on two key points. We
will first establish the exact null controllability of system (1.3) via the boundary control H of
N − 1 components. We next find some conditions of compatibility on the coupling matrix A to
guarantee the reduction of system (1.2) to system (1.3).

There are many works on the exact controllability of hyperbolic systems by means of bound-
ary controls. Generally speaking, one needs N boundary controls for the exact controllability
of a system of N wave equations. In the case of less controls, we can not realize the exact
controllability in general (see [8]). However, for smooth initial data, the exact controllability of
two linear wave equations was proved by means of only one boundary control (see [1, 11]). Li
and Rao [9] introduced the asymptotic controllability and established the equivalence between
the asymptotic controllability of the original system and the weak observability of the dual
system. Moreover, in [12], the optimal polynomial decay rate of energy of distributed systems
with less boundary damping terms was studied by means of Riesz basis approach.
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The exact synchronization is another way to weaken the notion of exact null controllability.
In fact, instead of bringing all the states of system to zero, we only need to steer the states of
the system to the same, which is unknown a priori. In terms of degree of freedom, we will use
N − 1 boundary controls to realize the exact synchronization for a system of N equations.

Now we briefly outline the contents of the paper. In Section 2, using a recent result on the
observability of compactly perturbed systems of Mehrenberger [13], we establish the exact null
controllability for (1.3). In Section 3, we consider the exact synchronization for the coupled
system (1.2). We first give necessary conditions of compatibility on the coupling matrix A for
the exact synchronization. We next prove that under these conditions of compatibility, the
system (1.2) of N equations can be exactly synchronized by means of N −1 boundary controls.
In Section 4, we generalize the notion of synchronization to the exact synchronization by groups.
Section 5 is devoted to a mixed problem of synchronization and controllability. In Section 6,
we study the behaviors of the final synchronizable state for a system of two wave equations.

2 Exact Controllability for a Coupled System of Wave Equations

Let Ω ⊂ Rn be a bounded open set with smooth boundary Γ of class C2. Let Γ = Γ1∪Γ0 be
a partition of Γ, such that Γ1 ∩ Γ0 = ∅. Furthermore, we assume that there exists an x0 ∈ Rn,
such that, by setting m = x − x0, we have

(m, ν) > 0, ∀x ∈ Γ1, (m, ν) ≤ 0, ∀x ∈ Γ0, (2.1)

where ν is the unit outward normal vector, and ( · , · ) denotes the inner product in Rn.
Let

W = (w(1), · · · , w(M))T, H = (h
(1)

, · · · , h
(M)

)T, A ∈ M
M (R).

Consider the following mixed problem for a coupled system of wave equations:

∂2W

∂t2
− ΔW + AW = 0 in Ω, (2.2)

W = 0 on Γ0, (2.3)

W = H on Γ1, (2.4)

t = 0 : W = W0,
∂W

∂t
= W1. (2.5)

If the coupling matrix A is symmetric and positively definite, the exact controllability of (2.2)–
(2.5) follows easily from the classical results (see [4, 10]). In this section, we will establish
the exact controllability for any coupling matrix A. We first establish the observability of the
corresponding adjoint problem, and then the exact controllability follows from the standard
HUM method of Lions.

Now let
Φ = (φ(1), · · · , φ(M))T.

Consider the corresponding adjoint problem as follows:

∂2Φ
∂t2

− ΔΦ + A
T
Φ = 0 in Ω, (2.6)

Φ = 0 on Γ, (2.7)

t = 0 : Φ = Φ0,
∂Φ
∂t

= Φ1. (2.8)
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It is well-known that the above problem is well-posed in the space V ×H:

V = (H1
0 (Ω))M , H = (L2(Ω))M . (2.9)

Moreover, we have the following direct and inverse inequalities.

Theorem 2.1 Let T > 0 be suitably large. Then there exist positive constants c and C,
such that for any given initial data (Φ0, Φ1) ∈ V ×H, the solution Φ to (2.6)–(2.8) satisfies the
following inequalities:

c

∫ T

0

∫
Γ1

∣∣∣∂Φ
∂ν

∣∣∣2dΓdt ≤ ‖Φ0‖2
V + ‖Φ1‖2

H ≤ C

∫ T

0

∫
Γ1

∣∣∣∂Φ
∂ν

∣∣∣2dΓdt. (2.10)

Before proving Theorem 2.1, we first give a uniqueness result.

Lemma 2.1 Let B be a square matrix of order M , and Φ ∈ H2(Ω) be a solution to the
following system:

ΔΦ = BΦ in Ω. (2.11)

Assume furthermore that

Φ = 0,
∂Φ
∂ν

= 0 on Γ1. (2.12)

Then we have Φ ≡ 0.

Proof Let

B̃ = PBP−1 =

⎛⎜⎜⎝
b̃11 0 · · · 0
b̃21 b̃22 · · · 0

· · ·
b̃M1 b̃M2 · · · b̃MM

⎞⎟⎟⎠ , Φ̃ = PΦ,

where B̃ is a lower triangular matrix of complex entries. Then (2.11)–(2.12) can be reduced to⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δφ̃(k) =

k∑
p=1

b̃kpφ̃
(p) in Ω,

φ̃(k) = 0,
∂φ̃(k)

∂ν
= 0 on Γ1

(2.13)

for k = 1, · · · , M . In particular for k = 1, we have⎧⎪⎨⎪⎩
Δφ̃(1) = b̃11φ̃

(1) in Ω,

φ̃(1) = 0,
∂φ̃(1)

∂ν
= 0 on Γ1.

Thanks to Carleman’s uniqueness result (see [3]), we get

φ̃(1) ≡ 0. (2.14)

Inserting (2.14) into the second set of (2.13) leads to⎧⎪⎨⎪⎩
Δφ̃(2) = b̃22φ̃

(2) in Ω,

φ̃(2) = 0,
∂φ̃(2)

∂ν
= 0 on Γ1,
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and we can repeat the same procedure. Thus, by a simple induction, we get successively that

φ̃(k) ≡ 0, k = 1, · · · , M.

This yields that
Φ̃ ≡ 0 ⇒ Φ ≡ 0.

The proof is complete.

Proof of Theorem 2.1 We rewrite (2.6)–(2.8) as(
Φ
Φ′

)′
=
(

0 I
Δ 0

)(
Φ
Φ′

)
+

(
0 0

−A
T

0

)(
Φ
Φ′

)
= A

(
Φ
Φ′

)
+ B

(
Φ
Φ′

)
, (2.15)

where I = IM is the unit matrix of order M . It is easy to see that A is a skiew-adjoint operator
with compact resolvent in V × H, and B is a compact operator in V × H. Therefore, they
generate respectively C0 groups in the energy space V ×H.

Following a recent perturbation result of Mehrenberger [13], in order to prove (2.10) for a
system of this kind, it is sufficient to check the following assertions:

(i) The direct and inverse inequalities

c

∫ T

0

∫
Γ1

∣∣∣∂Φ̃
∂ν

∣∣∣2dΓdt ≤ ‖Φ0‖2
V + ‖Φ1‖2

H ≤ C

∫ T

0

∫
Γ1

∣∣∣∂Φ̃
∂ν

∣∣∣2dΓdt (2.16)

hold for the solution Φ̃ = SA(t)(Φ0, Φ1) to the decoupled problem (2.6)–(2.8) with A = 0.
(ii) The system of root vectors of A+ B forms a Riesz basis of subspaces in V ×H. That is

to say, there exists a family of subspaces Vi × Hi (i ≥ 1) composed of root vectors of A + B,
such that for all x ∈ V ×H, there exists a unique xi ∈ Vi ×Hi (i ≥ 1), such that

x =
+∞∑
i=1

xi, c1‖x‖2 ≤
+∞∑
i=1

‖xi‖2 ≤ c2‖x‖2,

where c1, c2 are positive constants.
(iii) If (Φ, Ψ) ∈ V ×H and λ ∈ C, such that

(A + B)(Φ, Ψ) = λ(Φ, Ψ) and
∂Φ
∂ν

= 0 on Γ1,

then (Φ, Ψ) = 0.
For simplification of notation, we will still denote by V × H the complex Hilbert space

corresponding to V ×H.
Since the assertion (i) is well-known (see [9]), we only have to verify (ii) and (iii).

Verification of (ii). Let μ2
i > 0 be an eigenvalue corresponding to an eigenvector ei of −Δ

with homogeneous Dirichlet boundary condition:{
−Δei = μ2

i ei in Ω,

ei = 0 on Γ.

Let
Hi × Vi = {(αei, βei) : α, β ∈ C

M}.
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Obviously, the subspaces Hi × Vi (i = 1, 2, · · · ) are mutually orthogonal, and

H× V =
⊕
i≥1

Hi × Vi. (2.17)

In particular, for any given x ∈ H × V (i ≥ 1), there exists an xi ∈ Hi × Vi (i ≥ 1), such that

x =
+∞∑
i=1

xi, ‖x‖2 =
+∞∑
i=1

‖xi‖2. (2.18)

On the other hand, Hi×Vi is an invariant subspace of A+B and of finite dimension 2M . Then,
the restriction of A+B in the subspace Hi ×Vi is a linear bounded operator, and therefore, its
root vectors constitute a basis in the finite dimensional complex space Hi × Vi. This together
with (2.17)–(2.18) implies that the system of root vectors of A + B forms a Riesz basis of
subspaces in H× V .

Verification of (iii). Let (Φ, Ψ) ∈ V ×H and λ ∈ C, such that

(A + B)(Φ, Ψ) = λ(Φ, Ψ) and
∂Φ
∂ν

= 0 on Γ1.

Then we have
Ψ = λΦ, ΔΦ − A

T
Φ = λΨ,

namely, {
ΔΦ = (λ2I + A

T
)Φ in Ω,

Φ = 0 on Γ.
(2.19)

It follows from the classic elliptic theory that Φ ∈ H2(Ω). Moreover, we have

∂Φ
∂ν

= 0 on Γ. (2.20)

Then, applying Lemma 2.1 to (2.19)–(2.20), we get Φ = 0, then Ψ = 0. The proof is then
complete.

By a standard application of the HUM method, from Theorem 2.1 we get the following
result.

Theorem 2.2 There exists a positive constant T > 0, such that for any given initial data

W0 ∈ (L2(Ω))M , W1 ∈ (H−1(Ω))M , (2.21)

there exist boundary control functions

H ∈ (L2(0, T ; L2(Γ1)))M , (2.22)

such that (2.2)–(2.5) admits a unique weak solution

W ∈ (C0([0, T ]; L2(Ω)))M ,
∂W

∂t
∈ (C0([0, T ]; H−1(Ω)))M , (2.23)

satisfying the null final condition

t = T : W = 0,
∂W

∂t
= 0. (2.24)

Remark 2.1 Note that we do not need any assumption on the coupling matrix A in
Theorem 2.2.

Remark 2.2 The same result on the controllability for a coupled system of 1-dimensional
wave equations in the framework of classical solutions can be found in [7, 14].
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3 Exact Synchronization for a Coupled System of Wave Equations

Let
U = (u(1), · · · , u(N))T, A ∈ M

N (R).

Consider the following coupled system of wave equations with Dirichlet boundary controls:

∂2U

∂t2
− ΔU + AU = 0 in Ω, (3.1)

U = 0 on Γ0, (3.2)

U = H on Γ1, (3.3)

t = 0 : U = U0,
∂U

∂t
= U1. (3.4)

According to the result given in the previous section, we have the exact null controllability of
the problem (3.1)–(3.4) by means of N boundary controls. If the number of boundary controls
is less than N , generally speaking, we can not realize the exact controllability (see [7], for more
general discussion).

Definition 3.1 Problem (3.1)–(3.4) is exactly synchronizable at the moment T > 0, if
for any given initial data U0 ∈ (L2(Ω))N and U1 ∈ (H−1(Ω))N , there exist suitable boundary
controls given by a part of H ∈ (L2(0, +∞; L2(Γ1)))N , such that the solution U = U(t, x) to
(3.1)–(3.4) satisfies the following final condition:

t ≥ T : u(1) ≡ u(2) ≡ · · · ≡ u(N) := u, (3.5)

where u = u(t, x) is called the synchronizable state.

Remark 3.1 If problem (3.1)–(3.4) is exactly null controllable, then we have certainly the
exact synchronization. This trivial situation should be excluded. Therefore, in Definition 3.1,
we should restrict ourselves to the case that the number of the boundary controls is less than
N , so that (3.1)–(3.4) can be assumed to be not exactly null controllable.

Theorem 3.1 Assume that (3.1)–(3.4) is exactly synchronizable, but not exactly null
controllable. Then the coupling matrix A = (aij) should satisfy the following conditions of
compatibility:

N∑
p=1

akp := ã, k = 1, · · · , N, (3.6)

where ã is a constant indepentdent of k = 1, · · · , N .

Proof By synchronization, there exists a T > 0 and a scalar function u, such that

u(k)(t, x) ≡ u(t, x), t ≥ T, k = 1, 2, · · · , N.

Then for t ≥ T , we have

∂2u

∂t2
− Δu +

( N∑
p=1

akp

)
u = 0 in Ω, k = 1, 2, · · · , N.

In particular, we have

t ≥ T :
( N∑

p=1

akp

)
u =

( N∑
p=1

alp

)
u in Ω, k, l = 1, · · · , N.
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By the non-exact null controllability, there exists at least an initial datum (U0, U1) for which
the corresponding solution U , or equivalently u, does not identically vanish for t ≥ T , whatever
boundary controls H are chosen. This yields the conditions of compatibility (3.6). The proof
is completed.

Theorem 3.2 Assume that the conditions of compatibility (3.6) hold. Then the problem
(3.1)–(3.4) is exactly synchronizable by means of some boundary controls H with compact sup-
port on [0, T ] and h(1) ≡ 0.

Proof Let

w(i) = u(i+1) − u(i), i = 1, · · · , N − 1. (3.7)

We will transform the problem (3.1)–(3.4) to a reduced problem on the variable W = (w(1), · · · ,

w(N−1))T. By (3.1), we get

∂2w(i)

∂t2
− Δw(i) +

N∑
p=1

(ai+1,p − aip)u(p) = 0, i = 1, · · · , N − 1. (3.8)

Noting (3.7), we have

u(i) =
i−1∑
j=1

w(j) + u(1), i = 1, · · · , N.

Then a direct computation gives

N∑
p=1

(ai+1,p − aip)u(p)

=
N∑

p=1

(ai+1,p − aip)
( p−1∑

j=1

w(j) + u(1)
)

=
N∑

p=1

(ai+1,p − aip)
p−1∑
j=1

w(j) +
N∑

p=1

(ai+1,p − aip)u(1).

Because of (3.6), the last term vanishes, and then it follows from (3.8) that

∂2w(i)

∂t2
− Δw(i) +

N−1∑
j=1

aijw
(j) = 0, i = 1, · · · , N − 1, (3.9)

where

aij =
N∑

p=j+1

(ai+1,p − aip) =
j∑

p=1

(aip − ai+1,p), i, j = 1, · · · , N − 1. (3.10)

Correspondingly, for the variable W , we set the new initial data as

w
(i)
0 = u

(i+1)
0 − u

(i)
0 , w

(i)
1 = u

(i+1)
1 − u

(i)
1 , i = 1, · · · , N − 1, (3.11)

and the new boundary controls as

h
(i)

= h(i+1) − h(i), i = 1, · · · , N − 1. (3.12)
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Noting (3.9)–(3.12), the new variable W satisfies the reduced problem (2.2)–(2.5) (in which
M = N − 1). Then, by Theorem 2.2, there exist boundary controls H ∈ L2(0, T ; L2(Γ1))N−1,
such that the corresponding solution W = W (t, x) to the reduced problem (2.2)–(2.5) satisfies
the null final condition. Moreover, taking H ≡ 0 for t > T , it is easy to see that

t ≥ T : w(i) ≡ 0, i = 1, · · · , N − 1. (3.13)

In order to determine h(i) (i = 1, · · · , N) from (3.12), setting h(1) ≡ 0, we get

h(i+1) = h
(i)

+ h(i) =
i∑

j=1

h
(j)

, i = 1, · · · , N − 1, (3.14)

which leads to H ≡ 0 for t ≥ T . Once the controls h(i) (i = 1, · · · , N) are chosen, we solve the
original problem (3.1)–(3.4) to get a solution U = U(t, x). Clearly, the exact synchronization
condition (3.5) holds for the solution U . Moreover, from the expression (3.14), we see that
h(1) ≡ 0 and H are with compact support on [0, T ], since H are with compact support on [0, T ].
The proof is complete.

Remark 3.2 In Definition 3.1, the synchronization condition (3.5) should be required for
all t ≥ T . In fact, assuming that (3.5) is realized only at some moment T > 0, if we set
hereafter H ≡ 0 for t > T , then the corresponding solution does not satisfy automatically the
synchronization condition (3.5) for t > T . This is different from the exact null controllability,
where the solution vanishes with H ≡ 0 for t ≥ T . To illustrate it, let us consider the following
system: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2
− Δu = 0 in Ω,

∂2v

∂t2
− Δv = u in Ω,

u = 0 on Γ,

v = h on Γ.

(3.15)

Since the first equation is separated from the second one, for any given initial data (u0, u1), we
can first find a solution u. Once u is determined, we look for a boundary control h, such that
the solution v to the second equation satisfies the final synchronization conditions

t = T : v = u,
∂v

∂t
=

∂u

∂t
. (3.16)

If we set h ≡ 0 for t > T , generally speaking, we can not get v ≡ u for t ≥ T . So, in order to keep
the synchronization for t ≥ T , we have to maintain the boundary control h in action for t ≥ T .
However, for the sake of applications, it is more interesting to get the exact synchronization by
some boundary controls with compact support. Theorems 3.1 and 3.2 guarantee that this can
be realized if the coupling matrix A satisfies the conditions of compatibility (3.6).

Remark 3.3 In the reduction of the problem (3.1)–(3.4), we have taken w(i) = u(i+1)−u(i)

with w
(i)
0 = u

(i+1)
0 − u

(i)
0 and w

(i)
1 = u

(i+1)
1 − u

(i)
1 for i = 1, · · · , N − 1, but it is only a possible

choice for proving Theorem 3.2. Since the boundary controls h
(i)

(i = 1, · · · , N−1) for the exact
controllability of the reduced problem depend on the initial data (w(i)

0 , w
(i)
1 ) (i = 1, · · · , N −1),

we should find a suitable permutation σ of {1, 2, · · · , N}, such that, setting w(i) = uσ(i+1)−uσ(i)

for i = 1, · · · , N − 1, the corresponding initial data (w(i)
0 , w

(i)
1 ) (i = 1, · · · , N − 1) have the
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smallest energy. On the other hand, in the resolution of (3.12), we have chosen h(1) ≡ 0 as a
possible choice. A good strategy consists in finding some i0, such that, by setting h(i0) ≡ 0, the
final state u has the smallest energy. These problems would be very interesting.

Theorem 3.3 Assume that the conditions of compatibility (3.6) hold. Then the set of the
values (u, ut) at the moment t = T of the synchronizable state u = (t, x) is actually the whole
space L2(Ω)×H−1(Ω) as the initial data U0 and U1 vary in the space (L2(Ω))N × (H−1(Ω))N .

Proof For t ≥ T , the synchronizable state u = u(t, x) defined by (3.5) satisfies the following
wave equation with homogenous Dirichlet boundary condition:⎧⎨⎩

∂2u

∂t2
− Δu + ãu = 0 in Ω,

u = 0 on Γ,

(3.17)

where ã is given by (3.6). Hence, the evolution of the synchronizable state u = u(t, x) with
respect to t is completely determined by the values of (u, ut) at the moment t = T :

t = T : u = û0, ut = û1. (3.18)

Now for any given (û0, û1) ∈ L2(Ω) × H−1(Ω), by solving the backward problem (3.17)–
(3.18) on the time interval [0, T ], we get the corresponding solution u = u(t, x) with its value
(u, ut) at t = 0,

t = 0 : u = u0, ut = u1. (3.19)

Then, under the conditions of compatibility (3.6), the function

U(t, x) = (u, u · · · , u)T(t, x) (3.20)

is the solution to (3.1)–(3.3) with the null control H ≡ 0 and the initial condition

t = 0 : U = U0 = (u0, u0 · · · , u0)T, Ut = U1 = (u1, u1 · · · , u1)T. (3.21)

Therefore, from the initial condition (3.21), by solving (3.1)–(3.3) with null boundary controls,
we can reach any given synchronizable state (û0, û1) at the moment t = T . This fact shows
that any given state (û0, û1) ∈ L2(Ω) × H−1(Ω) can be expected to be a synchronizable state.
Consequently, the set of the values (û0, û1) of the synchronizable state u = (t, x) is actually
the whole space L2(Ω) × H−1(Ω) as the initial data U0 and U1 vary in the space (L2(Ω))N ×
(H−1(Ω))N . The proof is complete.

Definition 3.2 Problem (3.1)–(3.4) is exactly anti-synchronizable at the moment T > 0, if
for any given initial data U0 ∈ (L2(Ω))N and U1 ∈ (H−1(Ω))N , there exist suitable boundary
controls given by a part of H ∈ (L2(0, +∞; L2(Γ1)))N , such that the solution U = U(t, x) to
(3.1)–(3.4) satisfies the final condition

t ≥ T : u(1) ≡ · · · ≡ u(m) ≡ −u(m+1) ≡ · · · ≡ −u(N). (3.22)

Theorem 3.4 Assume that (3.1)–(3.4) is exactly anti-synchronizable, but not exactly null
controllable. Then the coupling matrix A = (aij) should satisfy the following conditions of
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compatibility: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m∑
p=1

akp −
N∑

p=m+1

akp = ã, k = 1, · · · , m,

m∑
p=1

akp −
N∑

p=m+1

akp = −ã, k = m + 1, · · · , N,

(3.23)

where ã is a constant independent of k = 1, · · · , N .
Inversely, assume that the conditions of compatibility (3.23) hold, and then (3.1)–(3.4) is

exactly anti-synchronizable by means of some boundary controls H with compact support and
h(1) ≡ 0.

Proof Let us define

û(i) =

{
u(i), 1 ≤ i ≤ m,

−u(i), m + 1 ≤ i ≤ N

and

âij =

{
aij , 1 ≤ i, j ≤ m or m + 1 ≤ i, j ≤ N,

−aij , 1 ≤ i ≤ m, m + 1 ≤ j ≤ N or m + 1 ≤ i ≤ N, 1 ≤ j ≤ m.

Then Û = (û(1), · · · , û(N))T satisfies (3.1)–(3.4) with the coupling matrix Â = (âij) instead of
A. By Theorems 3.1 and 3.2, we obtain that

m∑
p=1

âkp +
N∑

p=m+1

âkp = ã, k = 1, 2, · · · , N (3.24)

are necessary and sufficient for the exact synchronization of Û by means of N − 1 boundary
controls with compact support. Using the definition of the coefficients âij , we see that (3.24)
is precisely (3.23). The proof is complete.

4 Exact Synchronization by Groups

In this section, we will study the exact synchronization by groups. Roughly speaking, let
us rearrange the components of U , for example, in two groups, and we look for some boundary
controls H , such that (u(1), · · · , u(m)) and (u(m+1), · · · , u(N)) are independently synchronized.

Definition 4.1 Problem (3.1)–(3.4) is exactly synchronizable by 2-groups at the moment
T > 0, if for any given initial data U0 ∈ (L2(Ω))N and U1 ∈ (H−1(Ω))N , there exist suitable
boundary controls given by a part of H ∈ (L2(0,∞; L2(Γ1)))N , such that the solution U =
U(t, x) to (3.1)–(3.4) satisfies the final condition

t ≥ T :

{
u(1) ≡ · · · ≡ u(m) := u,

u(m+1) ≡ · · · ≡ u(N) := v,
(4.1)

and Ũ = (u, v)T is called to be the synchronizable state by 2-groups.

Our object is to realize the exact synchronization by 2-groups by means of N − 2 boundary
controls. Of course, generally speaking, we can divide the components of U into p groups,
and consider the exact synchronization by p-groups. Here we focus our attention only on
two groups, but the results obtained in this section can be easily extended to the general
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case. On the other hand, it is clear that any given exactly synchronizable system is exactly
synchronizable by 2-groups. In what follows, we study only the case that the problem is
independently synchronizable by 2-groups, and thus the linear independence of components of
the synchronizable state (u, v)T excludes the exact synchronization of (3.1)–(3.4).

Theorem 4.1 Assume that (3.1)–(3.4) is exactly synchronizable by 2-groups. Furthermore,
assume that at least for some initial data U0 and U1, the synchronizable states u and v are
linearly independent. Then the coupling matrix A = (aij) should satisfy the following conditions
of compatibility:

m∑
p=1

akp =
m∑

p=1

alp,

N∑
p=m+1

akp =
N∑

p=m+1

alp (4.2)

for k, l = 1, · · · , m and k, l = m + 1, · · · , N , respectively.

Proof Since (3.1)–(3.4) is exactly synchronizable by 2-groups, for any given initial data U0

and U1, there exists a boundary control H , such that (4.1) holds. It follows that for t ≥ T , we
have ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂2u

∂t2
− Δu +

( m∑
p=1

akp

)
u +

( N∑
p=m+1

akp

)
v = 0 in Ω, k = 1, · · · , m,

∂2v

∂t2
− Δv +

( m∑
p=1

akp

)
u +

( N∑
p=m+1

akp

)
v = 0 in Ω, k = m + 1, · · · , N.

Therefore, we have

t ≥ T :
( m∑

p=1

akp −
m∑

p=1

alp

)
u +

( N∑
p=m+1

akp −
N∑

p=m+1

alp

)
v = 0 in Ω (4.3)

for k, l = 1, · · · , m and k, l = m + 1, · · · , N , respectively. Since at least for some initial data U0

and U1, the synchronizable states u and v are linearly independent, (4.2) follows directly from
(4.3).

Theorem 4.2 Assume that the conditions of compatibility (4.2) hold. Then (3.1)–(3.4) is
exactly synchronizable by 2-groups by means of some boundary controls H with compact support
and h(1) ≡ h(m+1) ≡ 0.

Proof Let {
w(j) = u(j+1) − u(j), j = 1, · · · , m − 1,

w(j) = u(j+2) − u(j+1), j = m, · · · , N − 2.
(4.4)

Then we have ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(j) =

j−1∑
s=1

w(s) + u(1), j = 1, · · · , m,

u(j) =
j−2∑
s=m

w(s) + u(m+1), j = m + 1, · · · , N.

(4.5)

By (3.1), it is easy to see that for 1 ≤ i ≤ N − 2, we have

∂2w(i)

∂t2
− Δw(i) +

N∑
p=1

(ai+1,p − aip)u(p) = 0.
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By a direct computation, noting (4.2), we have

N∑
p=1

(ai+1,p − aip)u(p)

=
m∑

p=1

(ai+1,p − aip)u(p) +
N∑

p=m+1

(ai+1,p − aip)u(p)

=
m∑

p=1

(ai+1,p − aip)
( p−1∑

s=1

w(s) + u(1)
)

+
N∑

p=m+1

(ai+1,p − aip)
( p−2∑

s=m

w(s) + u(m+1)
)

=
m∑

p=1

(ai+1,p − aip)
p−1∑
s=1

w(s) +
N∑

p=m+1

(ai+1,p − aip)
p−2∑
s=m

w(s)

+
m∑

p=1

(ai+1,p − aip)u(1) +
N∑

p=m+1

(ai+1,p − aip)u(m+1)

=
m−1∑
s=1

m∑
p=s+1

(ai+1,p − aip)w(s) +
N−2∑
s=m

N∑
p=s+2

(ai+1,p − aip)w(s).

Then

∂2w(i)

∂t2
− Δw(i) +

N−2∑
s=1

aisw
(s) = 0, 1 ≤ i ≤ N − 2, (4.6)

where

ais =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m∑
p=s+1

(ai+1,p − aip), 1 ≤ i ≤ N − 2, 1 ≤ s ≤ m − 1,

N∑
p=s+2

(ai+1,p − aip), 1 ≤ i ≤ N − 2, m ≤ s ≤ N − 2.

(4.7)

Corresponding to (4.4), for the variable W = (w(1), · · · , w(N−2))T, we put

h
(j)

=

{
h(j+1) − h(j), j = 1, · · · , m − 1,

h(j+2) − h(j+1), j = m, · · · , N − 2,
(4.8)

and set the new initial data as follows:

w
(j)
0 =

{
w

(j+1)
0 − w

(j)
0 , j = 1, · · · , m − 1,

w
(j+2)
0 − w

(j+1)
0 , j = m, · · · , N − 2,

(4.9)

w
(j)
1 =

{
w

(j+1)
1 − w

(j)
1 , j = 1, · · · , m − 1,

w
(j+2)
1 − w

(j+1)
1 , j = m, · · · , N − 2.

(4.10)

Noting (4.6)–(4.10), we get again a reduced problem (2.2)–(2.5) on the new variable W with
N − 2 components. By Theorem 2.2 (in which M = N − 2), there exist boundary controls
H ∈ (L2(0, T ; L2(Γ1)))N−2, such that the solution W = W (t, x) to the reduced problem (2.2)–
(2.5) satisfies the null final condition. Moreover, taking H ≡ 0 for t > T , we have

t ≥ T : w(i)(t, x) ≡ 0, i = 1, · · · , N − 2. (4.11)
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In order to determine h(i) (i = 1, · · · , N) from (4.8), setting

h(1) ≡ h(m+1) ≡ 0, (4.12)

we get ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h(i+1) =

i∑
j=1

h
(j)

, i = 1, · · · , m − 1,

h(i+1) =
i−1∑
j=m

h
(j)

, i = m + 1, · · · , N − 1,

(4.13)

which leads to H ≡ 0 for t > T . Once the controls h(i) (i = 1, · · · , N) are chosen, we solve
the original problem (3.1)–(3.4) to get a solution U = U(t, x), which clearly satisfies the final
condition (4.1). Thus the proof is complete.

Theorem 4.3 Assume that the conditions of compatibility (4.2) hold. Then the set of
the values (u, v, ut, vt) of the synchronizable state (u, v) = (u(t, x), v(t, x)) of (3.1)–(3.4) is
actually the whole space (L2(Ω))2 × (H−1(Ω))2 as the initial data U0 and U1 vary in the space
(L2(Ω))N × (H−1(Ω))N . In particular, there exist initial data (U0, U1) and boundary controls
H with compact support and h(1) ≡ h(m+1) ≡ 0, such that the synchronizable states by 2-groups
u and v of the problem (3.1)–(3.4) are linearly independent.

Proof Let Ã = (ãij) be the 2 × 2 matrix with the entries⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ã11 =

m∑
p=1

akp, ã12 =
N∑

p=m+1

akp, k = 1, · · · , m,

ã21 =
m∑

p=1

akp, ã22 =
N∑

p=m+1

akp, k = m + 1, · · · , N.

(4.14)

For t ≥ T , the synchronizable state by 2-groups Ũ = (u, v)T defined by (4.1) satisfies the
following coupled system of wave equations:

∂2

∂t2
Ũ − ΔŨ + ÃŨ = 0 in Ω (4.15)

with the homogeneous boundary condition

Ũ = 0 on Γ. (4.16)

Thus, the evolution of Ũ = Ũ(t, x) with respect to t is completely determined by the value of
(Ũ , Ũt) at the time t = T . In a way similar to that of Theorem 3.3, we get that the set of values
(Ũ , Ũt) at the moment t = T of the synchronizable state by 2-groups Ũ = (u, v)T is actually
the whole space (L2(Ω))2 × (H−1(Ω))2. The proof is complete.

Remark 4.1 Under the condition that, at least for some initial data U0 and U1, the
synchronizable states u and v are linearly independent, we have shown that the conditions
of compatibility (4.2) are necessary and sufficient for the synchronization by 2-groups of the
problem (3.1)–(3.4). These conditions are still sufficient for the synchronization by 2-groups of
the problem (3.1)–(3.4) without the linear independence of u and v. But we do not know if
they are also necessary in that case. This seems to be an open problem to our knowledge.
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5 Exact Null Controllability and Synchronization by Groups

In general, a system of N wave equations is not exactly controllable by means of less N

boundary controls (see [7, 10]). By Theorem 3.2, (3.1)–(3.4) is exactly synchronizable by
means of N − 1 boundary controls. These results are quite logical from the viewpoint of the
degree of freedom system and the number of controls. It suggests us to consider the partial
controllability for a system of N equations by means of less boundary controls. Since this is still
an open problem in the general situation, we would like to weaken our request by asking if it
is possible or not, based on the idea of synchronization, to realize the exact null controllability
of N − 2 components of the solution to a system of N equations by means of N − 1 boundary
controls. This is the goal of this section, in which we will discuss this problem in a more general
situation.

Definition 5.1 Problem (3.1)–(3.4) is exactly null controllable and synchronizable by 2-
groups at the moment T > 0, if for any given initial data U0 ∈ (L2(Ω))N and U1 ∈ (H−1(Ω))N ,
there exist suitable boundary controls given by a part of H ∈ (L2(0, +∞; L2(Γ1)))N , such that
the solution U = U(t, x) to (3.1)–(3.4) satisfies the final condition

t ≥ T : u(1) ≡ · · · ≡ u(m) ≡ 0, u(m+1) ≡ · · · ≡ u(N) := u, (5.1)

and u = u(t, x) is called the partially synchronizable state.

Theorem 5.1 Assume that the problem (3.1)–(3.4) is exactly null controllable and syn-
chronizable by 2-groups, but not exactly null controllable. Then the coupling matrix A = (aij)
should satisfy the following conditions of compatibility:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N∑
p=m+1

akp = 0, k = 1, · · · , m,

N∑
p=m+1

akp =
N∑

p=m+1

alp, k, l = m + 1, · · · , N.

(5.2)

Proof By the exact null controllability and synchronization by 2-groups, there exist a
T > 0 and a scalar function u, such that

t ≥ T :

{
u(k)(t, x) ≡ 0, k = 1, · · · , m,

u(k)(t, x) ≡ u(t, x), k = m + 1, · · · , N.

Then for t ≥ T , we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( N∑

p=m+1

akp

)
u = 0 in Ω, k = 1, · · · , m,

∂2u

∂t2
− Δu +

( N∑
p=m+1

akp

)
u = 0 in Ω, k = m + 1, · · · , N.

Since the problem is not exactly null controllable, we may assume that u �≡ 0 and this yields
the conditions of compatibility (5.2).

Theorem 5.2 Assume that the conditions of compatibility (5.2) hold. Then the problem
(3.1)–(3.4) is exactly null controllable and synchronizable by 2-groups by means of some bound-
ary controls H with compact support on [0, T ] and h(m+1) ≡ 0.
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Proof Let {
w(j) = u(j), j = 1, · · · , m,

w(j) = u(j+1) − u(j), j = m + 1, · · · , N − 1.
(5.3)

We have

u(j) =
j−1∑

s=m+1

w(s) + u(m+1), j = m + 1, · · · , N. (5.4)

Then the first m equations of (3.1) become

∂2w(i)

∂t2
− Δw(i) +

m∑
p=1

aipw
(p) +

N∑
p=m+1

aipu
(p) = 0, i = 1, · · · , m.

Using (5.4) and the first condition in (5.2), we have

N∑
p=m+1

aipu
(p) =

N∑
p=m+1

p−1∑
s=m+1

aipw
(s) +

( N∑
p=m+1

aip

)
u(m+1)

=
N−1∑

p=m+1

N∑
s=p+1

aisw
(p).

Then

∂2w(i)

∂t2
− Δw(i) +

N−1∑
p=1

aipw
(p) = 0, 1 ≤ i ≤ m, (5.5)

where

aip =

⎧⎪⎪⎨⎪⎪⎩
aip, 1 ≤ i ≤ m, 1 ≤ p ≤ m,

N∑
s=p+1

ais, 1 ≤ i ≤ m, m + 1 ≤ p ≤ N − 1.
(5.6)

Next, by (3.1) and noting the first part of (5.3), for m + 1 ≤ i ≤ N − 1, we have

∂2w(i)

∂t2
− Δw(i) +

m∑
p=1

(ai+1,p − aip)w(p) +
N∑

p=m+1

(ai+1,p − aip)u(p) = 0.

By a direct computation, noting the second condition in (5.2), we have

N∑
p=m+1

(ai+1,p − aip)u(p)

=
N∑

p=m+1

(ai+1,p − aip)
( p−1∑

s=m+1

w(s) + u(m+1)
)

=
N∑

p=m+1

(ai+1,p − aip)
p−1∑

s=m+1

w(s) +
N∑

p=m+1

(ai+1,p − aip)u(m+1)

=
N−1∑

s=m+1

N∑
p=s+1

(ai+1,p − aip)w(s).
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Then

∂2w(i)

∂t2
− Δw(i) +

N−1∑
p=1

aipw
(p) = 0, m + 1 ≤ i ≤ N − 1, (5.7)

where

aip =

⎧⎪⎪⎨⎪⎪⎩
ai+1,p − aip, m + 1 ≤ i ≤ N − 1, 1 ≤ p ≤ m,

N∑
s=p+1

(ai+1,s − ais), m + 1 ≤ i ≤ N − 1, m + 1 ≤ p ≤ N − 1.
(5.8)

Corresponding to (5.3), for the variable W = (w(1), · · · , w(N−1))T, we put

h
(i)

=

{
h(i), 1 ≤ i ≤ m,

h(i+1) − h(i), m + 1 ≤ i ≤ N − 1,
(5.9)

and set the new initial data as follows:

w
(i)
0 =

{
u

(i)
0 , 1 ≤ i ≤ m,

u
(i+1)
0 − u

(i)
0 , m + 1 ≤ i ≤ N − 1,

(5.10)

w
(i)
1 =

{
u

(i)
1 , 1 ≤ i ≤ m,

u
(i+1)
1 − u

(i)
1 , m + 1 ≤ i ≤ N − 1.

(5.11)

Noting (5.5), (5.7) and (5.10)–(5.11), we get again a reduced problem (2.2)–(2.5) on the
new variable W with N − 1 components. By Theorem 2.2 (in which M = N − 1), there
exist controls H ∈ (L2(0, T ; L2(Γ1)))N−1, such that the solution W = W (t, x) to the reduced
problem (2.2)–(2.5) satisfies the null final condition. Moreover, taking H ≡ 0 for t > T , we
have

t ≥ T : w(i)(t, x) ≡ 0, i = 1, · · · , N − 1. (5.12)

In order to determine h(i) (i = 1, · · · , N) from (5.9), setting h(m+1) ≡ 0, we get⎧⎪⎪⎨⎪⎪⎩
h(i) = h

(i)
, i = 1, · · · , m,

h(i+1) =
i∑

j=m+1

h
(j)

, i = m + 1, · · · , N − 1,
(5.13)

which leads to H ≡ 0 for t > T . Once the controls h(i) (i = 1, · · · , N) are chosen, we solve
the original problem (3.1)–(3.4) to get a solution U = U(t, x), which clearly satisfies the final
condition (5.1). Then the proof is complete.

Remark 5.1 Let
N∑

p=m+1

akp = ã, k = m + 1, · · · , N, (5.14)

where ã is a constant independent of k = m + 1, · · · , N (see (5.2)). For t ≥ T , the partially
synchronizable state u = u(t, x) satisfies the following wave equation:

∂2u

∂t2
− Δu + ãu = 0 in Ω (5.15)
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with the homogeneous boundary condition

u = 0 on Γ. (5.16)

Hence the evolution of u = u(t, x) with respect to t can be completely determined by its initial
values (u, ut) at the moment t = T . Moreover, in a way similar to that of Theorem 3.3, the set of
values (u, ut) at the moment t = T of the partially synchronizable state u is actually the whole
space L2(Ω)×H−1(Ω) as the initial values U0 and U1 vary in the space (L2(Ω))N ×(H−1(Ω))N .

Remark 5.2 Taking m = N − 2 in Theorem 5.2, under the corresponding conditions of
compatibility, we can use N − 1 (instead of N − 2!) boundary controls to realize the exact null
controllability for N − 2 state variables in U .

6 Approximation of the Final State for a System of Vibrating Strings

Once the exact synchronization is realized at the moment T , the final state u = u(t, x) for
t ≥ T will be governed by a corresponding wave equation with homogeneous Dirichlet boundary
condition (see also (3.17)) ⎧⎨⎩

∂2u

∂t2
− Δu + ãu = 0 in Ω,

u = 0 on Γ,

(6.1)

where the constant ã is given by (3.6). However, for lack of the value of the final state at
the moment T , we do not know how the final state u will evolve henceforth. The goal of this
section is to give an approximation of the final state u = u(t, x) for t ≥ T for a coupled system
of vibrating strings with a perturbation of a synchronizable state as the initial data.

Let 0 < a < 1. Consider the following 1-dimensional problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u′′ − uxx − av = 0, 0 < x < π,

v′′ − vxx − au = 0, 0 < x < π,

u(t, 0) = u(t, π) = 0,

v(t, 0) = 0, v(t, π) = h(t),
t = 0 : (u, v) = (u0, v0), (ut, vt) = (u1, v1).

(6.2)

Using the spectral analysis as in [8], we can prove that (6.2) is asymptotically controllable,
but not exactly controllable. By Theorem 3.2, this problem is exactly synchronizable by means
of boundary control h. More precisely, by setting

y = v − u, (6.3)

for T > 2π, there exists a boundary control h ∈ L2(0, T ), which realizes the exact null control-
lability at the moment T for the following reduced problem:⎧⎪⎨⎪⎩

y′′ − yxx + ay = 0, 0 < x < π,

y(t, 0) = 0, y(t, π) = h(t),
t = 0 : y = v0 − u0, y′ = v1 − u1.

(6.4)

Moreover, by the HUM method (see [9]) or the moment method (see [6]), there exists a positive
constant C > 0, such that

‖h‖L2(0,T ) ≤ C‖(v0 − u0, v1 − u1)‖L2(0,π)×H−1(0,π). (6.5)
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In what follows, we will give an expression of the final state u = v of the problem (6.2) for
t ≥ T . To this end, setting

w = u + v, w0 = u0 + v0, w1 = u1 + v1, (6.6)

we consider the following anti-synchronization problem:⎧⎪⎨⎪⎩
w′′ − wxx − aw = 0, 0 < x < π,

w(t, 0) = 0, w(t, π) = h(t),
t = 0 : w = w0, w′ = w1.

(6.7)

Assume that w0 ∈ L2(0, π) and w1 ∈ H−1(0, π), whose coefficients a0
j and b0

j (j ≥ 1) on

the orthonormal basis
(√

2
π sin(jx)

)
j≥1

in L2(0, π) and
(√

2
π j sin(jx)

)
j≥1

in H−1(0, π) are

respectively given by

a0
j =

√
2
π

∫ π

0

w0(x) sin(jx)dx, jb0
j =

√
2
π

∫ π

0

w1(x) sin(jx)dx. (6.8)

Correspondingly, for any given t ≥ T , the coefficients aj(t) and bj(t) (j ≥ 1) of the

final state u(t, x) and u′(t, x) on the orthonormal basis
(√

2
π sin(jx)

)
j≥1

in L2(0, π) and(√
2
π j sin(jx)

)
j≥1

in H−1(0, π) are respectively given by

aj(t) =

√
2
π

∫ π

0

u(t, x) sin(jx)dx, jbj(t) =

√
2
π

∫ π

0

u′(t, x) sin(jx)dx. (6.9)

Now let μj =
√

j2 − a (j ≥ 1). Multiplying the equation in (6.7) by sin(μjs) sin(jx) and
integrating with respect to s and x on [0, t]× [0, π], by integration by parts, we get[ ∫ π

0

w′(s, x) sin(μjs) sin(jx)dx
]t

0
−
[
μj

∫ π

0

w(s, x) cos(μjs) sin(jx)dx
]t

0

−
[ ∫ t

0

wx(s, x) sin(μjs) sin(jx)ds
]π

0
+
[
j

∫ t

0

w(s, x) sin(μjs) cos(jx)ds
]π
0

+ (−μ2
j + j2 − a)

∫ π

0

∫ t

0

w(s, x) sin(μjs) sin(jx)dsdx = 0.

It follows that

sin(μjt)
∫ π

0

w′(t, x) sin(jx)dx − μj cos(μjt)
∫ π

0

w(t, x) sin(jx)dx

+ μj

∫ π

0

w0(x) sin(jx)dx + (−1)jj

∫ t

0

h(s) sin(μjs)ds = 0. (6.10)

Noting that w(t, x) = 2u(t, x) and w′(t, x) = 2u′(t, x) for t ≥ T , by (6.9), we have∫ π

0

w(t, x) sin(jx)dx = 2
∫ π

0

u(t, x) sin(jx)dx =
√

2π aj(t), (6.11)∫ π

0

w′(t, x) sin(jx)dx = 2
∫ π

0

u′(t, x) sin(jx)dx =
√

2π jbj(t). (6.12)
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Inserting (6.11)–(6.12) into (6.10) and noting (6.8), we get

aj(t)μj cos(μjt) − jbj(t) sin(μjt) =
1
2
μja

0
j + (−1)jj

√
1
2π

∫ t

0

h(s) sin(μjs)ds. (6.13)

Similarly, multiplying the equation in (6.7) by cos(μjs) sin(jx) and integrating with respect
to s and x on [0, t] × [0, π], by integration by parts, we get[ ∫ π

0

w′(s, x) cos(μjs) sin(jx)dx
]t

0
+
[
μj

∫ π

0

w(s, x) sin(μjs) sin(jx)dx
]t

0

−
[ ∫ t

0

wx(s, x) cos(μjs) sin(jx)ds
]π
0

+
[
j

∫ t

0

w(s, x) cos(μjs) cos(jx)ds
]π
0

+ (−μ2
j + j2 − a)

∫ π

0

∫ t

0

w(s, x) cos(μjs) sin(jx)dsdx = 0.

It follows that

cos(μjt)
∫ π

0

w′(t, x) sin(jx)dx + μj sin(μjt)
∫ π

0

w(t, x) sin(jx)dx

−
∫ π

0

w1(x) sin(jx)dx + (−1)jj

∫ t

0

h(s) cos(μjs)ds = 0. (6.14)

Then noting (6.11)–(6.12) and (6.8), we get

aj(t)μj sin(μjt) + jbj(t) cos(μjt) =
1
2
jb0

j − (−1)jj

√
1
2π

∫ t

0

h(s) cos(μjs)ds. (6.15)

It follows from (6.13) and (6.15) that

aj(t) =
μja

0
j cos(μjt) + jb0

j sin(μjt)
2μj

+ (−1)j j

μj

√
1
2π

∫ t

0

h(s) sin[μj(s − t)]ds, (6.16)

bj(t) =
−μja

0
j sin(μjt) + jb0

j cos(μjt)
2j

− (−1)j

√
1
2π

∫ t

0

h(s) cos[μj(s − t)]ds. (6.17)

Now assume that (v0, v1) is a small perturbation of (u0, u1), so that by (6.5), the optimal
control h is small in L2(0, T ). Then⎧⎪⎪⎨⎪⎪⎩

ãj(t) =
μja

0
j cos(μjt) + jb0

j sin(μjt)
2μj

,

b̃j(t) =
−μja

0
j sin(μjt) + jb0

j cos(μjt)
2j

(6.18)

provide an approximation of the coefficients aj(t) and bj(t), respectively. Indeed, let

ũ(t, x) =
+∞∑
j=1

ãj(t) sin(jx), ũ′(t, x) =
+∞∑
j=1

jb̃j(t) sin(jx). (6.19)

(ũ, ũ′) would be a good approximation of the final state (u, u′) for t ≥ T . In fact, we have the
following result.

Theorem 6.1 Let T > 2π. Assume that

(u0, u1) ∈ L2(0, π) × H−1(0, π), (v0, v1) ∈ L2(0, π) × H−1(0, π). (6.20)
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Then for all t ≥ T , we have

‖(u(t, ·) − ũ(t, ·), u′(t, ·) − ũ′(t, ·))‖L2(0,π)×H−1(0,π)

≤ C‖(v0 − u0, v1 − u1)‖L2(0,π)×H−1(0,π). (6.21)

Proof Define

sj(t) =
∫ t

0

h(s) sin[μj(s − t)]ds, cj(t) =
∫ t

0

h(s) cos[μj(s − t)]ds. (6.22)

Noting that the reals {μj}j≥1 are distinct, and for all j ≥ 1, we have the following gap condition:

μj+1 − μj =
2j + 1√

(j + 1)2 − a +
√

j2 − a
≥ 2j + 1

2
√

(j + 1)2 − a
≥ 3

2
√

4 − a
> 0, (6.23)

where the last inequality is due to the growth of the function x → 2x+1

2
√

(x+1)2−a
(x ≥ 0). Then

for any fixed t ≥ T , the system {sin[μj(s− t)], cos[μj(s− t)]}j∈N is a Riesz sequence in L2(0, T ).
Consequently, there exists a positive constant C > 0 independent of t, such that the following
Bessel’s inequality holds for all t ≥ T (see [5, 15]):

+∞∑
j=1

(|sj(t)|2 + |cj(t)|2) ≤ C‖h‖2
L2(0,T ) ≤ C‖(v0 − u0, v1 − u1)‖2

L2(0,π)×H−1(0,π), (6.24)

where the last inequality is due to (6.5). Then, it follows from (6.16)–(6.17) that

+∞∑
j=1

(|aj(t) − ãj(t)|2 + |bj(t) − b̃j(t)|2)

≤ C

+∞∑
j=1

(|sj(t)|2 + |cj(t)|2) ≤ C‖(v0 − u0, v1 − u1)‖2
L2(0,π)×H−1(0,π), (6.25)

which yields (6.21). The proof is complete.

Remark 6.1 Let (v0, v1) be a perturbation of (u0, u1). Then the norm of their difference
‖(v0−u0, v1−u1)‖L2(0,π)×H−1(0,π) is a small quantity, so that (6.21) shows that (ũ, ũ′) is indeed
a good approximation of the final state (u, u′). Furthermore, noting that j

μj
∼ 1 for j large

enough, we have

|ãj(t)|2 + |̃bj(t)|2 ∼ 1
4
(|a0

j |2 + |b0
j |2). (6.26)

Noting that a0
j (j ≥ 1) are the coefficients of w0 = u0 + v0 in L2(0, π) and b0

j (j ≥ 1) are the
coefficients of w1 = u1 + v1 in H−1(0, π), (6.26) shows that the approximate final state (ũ, ũ′)
has the same norm as that of the average of the initial data for high frequencies.
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