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Abstract: In this paper, we perform a further investigation for the polylogarithm function at
negative integral arguments. By applying the generating function methods and Padé approximation
techniques, we establish some new recurrence formulae for this type function and present some
illustrative special cases of main results.
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1 Introduction

Let s and z be complex numbers, the polylogarithm function Lig(2) is defined by means
of the Dirichlet series

Liy(2) = Z% (1.1)

which is valid for arbitrary complex order s and for all complex arguments z with |z] < 1
and can be extended to |z| > 1 by the process of analytic continuation.

The polylogarithm function at zero and negative integral arguments are referred to as
the polypseudologarithms (or polypseudologs) of order n by Lee [8]. It is worth noticing
that the values of polypseudologrithms at z = 1 are related to the values of the Riemann
zeta function ((s) at negative integers and are expressed in terms of the Bernoulli numbers

B, as follows (see, e.g., [4, 8])

Li_,(=1) = (2" = 1)¢(=n) = (1 — 2”“)% (n=1,2,---). (1.2)

In [11], Truesdell gave a closed formula for the polypseudologarithms, as follows

n

Lin(z)=3 (=1)"*RS(n, k)2 (n=1,2,---), (1.3)

— »)k+1
= 1)
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where S(n, k) is the familiar Stirling numbers of the second kind. In [6], Eastham showed

that there is no pure recurrence relation of the form
Ap(z)Lin(2) + A1(2)Lip—1(2) + - - + Ar(2)Li,—r(2) = 0, (1.4)

where n is a positive integer, r > n is allowed. The A, (z) are algebraic functions of z and
Ap(z) is not identically zero. More recently, Cvijovi¢ [5] discovered some similar ones for the
polypseudologarithms to formula (1.3), and also established a new type closed formula for
the polypseudologarithms in the following way

o (—1)EEE

Li_,(z) = 2n1+1 [(—1)[51]T(n, 1) + ; (*%ﬂn +1,k) G f z> k] : (1.5)

where [x] denotes the greatest integer < z and T'(n, k) is the tangent numbers (of order k)

or the higher order tangent numbers given by (see, e.g., [3])
(o) tn
tan® (t) :Z:r(n,k)a (k=1,2,---). (1.6)
n=~k

Motivated by the work of Eastham and Cvijovié¢, in this paper we perform a further
investigation for the polylogarithm function at negative integral arguments, and establish
some new recurrence formulae for this type function to state that there exist some explicit
recurrence relations of form (1.4) for the polypseudologarithms by applying the generating
function methods and Padé approximation techniques. And we accordingly consider some

illustrative special cases as well as immediate consequences of the main results.

2 Padé Approximants

We begin by recalling the definition of Padé approximation to general series and their
expression in the case of the exponential function. Let m,n be non-negative integers and let
‘P be the set of all polynomials of degree < k. Given a function f with a Taylor expansion

oo

flu) = chtk (2.1)

k=0

in a neighborhood of the origin, a Padé form of type (m,n) is a pair (P, Q) satisfying that

P=) pthePn, Q=) at'e€P, (Q£0) (2.2)
k=0 k=0
and
Qf — P =0t ast— 0. (2.3)

It is clear that every Padé form of type (m,n) for f(t) always exists and obeys the same
rational function. The uniquely determined rational function P/Q@ is called the Padé ap-
proximant of type (m,n) for f(t), and is denoted by [m/n];(t) or 7y, ,,[f; ], see for example,
1, 2.
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The study of Padé approximants to the exponential function was initiated by Hermite
[7] and then continued by Padé [9]. Given a pair (m,n) of nonnegative integers, the Padé

approximant of type (m,n) for e! is the unique rational function

Pt

Rm,n(t) = : ( ) (Pm,n S P’ma Qm,n € Pnme,n(O) = 1) (24>
Qrm.n(t)

with the property that
et — Ry n(t) = O™ ) ast — 0. (2.5)

Unlike Padé approximants to other functions, it is possible to determine explicit formulae
for P, and Q.. (see, e.g., [10, p.245])

" oml-(m4n—k)! t*
Palt) = kz_; (m —I—(n)! m /i)! R (2:6)

" onl-(m+n—k) (=)
Qm’"(t)zz(mfn)!.(n—;z)!' i (2.7)

and

Qun(B)et — Py (1) = (—1)7 /1 2"(1 — 2)"edr (2.8)
m,n m,n (m +TL)' ; . .

We here refer respectively to P, ,(t) and @, »(t) as the Padé numerator and denominator
of type (m,n) for e'. In next section, we shall use the above Padé approximation to the ex-
ponential function to establish some new recurrence formulae for the polylogarithm function

at zero and negative integral arguments.

3 The Restatements of Results

In [4], Cvijovié¢ discovered some similar formulae to (1.3) by making use of the following
generating functions for the polypseudologarithms (see, e.g., [11, 12])

oo o n

1 . " z e - t
= ;Ll_n<2)m, m :0(—1) Ll_n(Z)a (31)

and

o0 tn

logfe! = 2) = 3 (-1 L <H><z>a,

1 1+ ze i Z Llf (32)

1= zet

We shall replace the exponential function e’ not by its Taylor expansion around ¢ = 0 but
by its Padé approximant in the generating function of the polypseudologarithms. We first

rewrite the first formula of (3.1) as follows

(1= ze) ZLij(z)jj! 1 (3.3)
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If we denote the right hand side of (2.8) by S,,.,.(t), the Padé approximant for the exponential
function e’ can be expressed as
o Pan)+ S0t
Qum,n(t)
We now apply (3.4) to (3.3) and then obtain

(3.4)

(Qunn(t) = 2Py () — 2Sm n(t) ZLI_] -~ —an(t) (3.5)

If we apply the exponential series e®® = > z*¢*/k! in the right hand side of (2.8), with the
k=0
help of the familiar beta function, we get

m+n+1 k 1
Spun(t) = (=1 E:t/ (1 — 2)"de
0

(m +n)! £~ k!
7 Z m[ (n + k‘) tm+n+k+1 (3 6)
N (m+n “(m+n+k+1)! kK '

For convenience, we consider Dy, n:k, @mnik a0d Sy, ni Of the coefficients of the polynomials
Ppn(t), Qm.n(t) and S, ,(t) such that

Pmn(t) - me,n;ktka Qm,n(t) - Z Qm,n;ktka Sm,n(t) - Z Sm,n;kt7n+n+k+1- (37)

Obviously, the coefficients pp, n:ky @mnike @0d 84, 5. ObEy

~ oml-(m+n—k)!  (=D)knl - (m+n—k)!
Pronsk =t ) kL (m— k) ™ )l KL (n— k)] (3:8)
and
Sk = (C1)mi-(n +E) (3.9)

(m+n)!- k! (m+n+k+1)!’
respectively. If we apply (3.7) to (3.5), we obtain

<qunkt >ZL1_J (menkt >ZL1_]
- 2 <i sm,n;ktm+”+k+1> Z Li_j(z)ﬁ = Z G meit” (3.10)
k=0

k=0 =1

from which and the familiar Cauchy product, we discover

th Z th Z pmnkLl—J z)

=1 k4j=l =1 k4j=l
k>0,5>1 k>0,]>1

zitl Z smnkLl_j(z qunkt’“ (3.11)

=1 k+j=l-m—n—1
k>0,j>1
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Comparing the coefficients of ¢! in (3.11) gives that for 1 <1 < m +n,

Li_j( Ll,
Z qm,n;k j Z Pmnk— ) = Adm,n;l» (312)

k+j=l k+j=1
k>0,5>1 k>0,5>1

which together with (3.8) yields the following result.
Theorem 3.1 Let [, m,n be non-negative integers. Then for positive integer | with

max(m,n) <l <m+n,

i(’;)(—nk(mn_k)@u k) sz;< > m*”_k)!Li(z(l_IZ)(!Z)' (3.13)

k=0

We next discuss some special cases of Theorem 3.1. Setting [ = m + n in Theorem 3.1,

we obtain that for positive integers m, n,

Xn: (Z>( )" *Li_ (m) (2 Zi< ) 1 (ntk) (2)- (3.14)

k=0
It is obvious that the case m =1 in (3.14) gives that for positive integer n,

> (Z) (—1)FLi_ (1 k) (2) = 2Li_p(2) + 2Li_(ny1)(2) (3.15)
k=0

and the case n =1 in (3.14) arises

n

ZZ (Z) Li_(ng1-k)(2) = Linqny(2) —Lis,(2) (n>1). (3.16)

k=0

If we compare the coefficients of #! in (3.11) for I > m +n + 1, then

Z qmnkLl_J Z pmnkLl_] )

k+j=l k+j=1
k>0,7>1 k>0,5>1

= Y e (3.17)

k+j=l-m—n—1
k>0,j>1

Hence applying (3.8) and (3.9) to (3.17) gives the following result.
Theorem 3.2 Let m,n be non-negative integers. Then for positive integer [ with
[>m+n+1,

i(g)(—l)k(ann—k).Ll(lk)_ZZ( ) m+n_k)!Li(_l(l__;Z)(!z)

m
k=0 k=0

_ (_1)"zm!l;"! 3 (l_ m—1= ><li Li_x( (3.18)

k=1
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It follows that we show some special cases of Theorem 3.2. Taking ! = m+n+1 in

Theorem 3.2, we obtain that for non-negative integers m,n,

"~ (n e L (g (2) =S (m\ Li— (1) (2)
_1 n—k _ _— = . .1
Z<k>( ) m+k+1 ZZ k n+k+1 0 (3.19)

k=0 k=0

In particular, the case m = 0 in (3.19) arises

“ n _ Li_ k+1)(2> ZLi,(nJrl)(Z)
) L = . 3.20
; (k:>( ) k+1 n+1 ( )

More generally, by setting m = 0 and | = n+r in Theorem 3.2, we get that for non-negative

integer n and positive integer r,

" /n ke r i (k) (2 n! .
Z <k> (=1)""E! (k(’i:;)(' ) _ © +r)'le_(n+T>(z>

_ (4)%&12 <” ek 1) (” . ”) Li_u(2). (3.21)

And the case n = 0 in (3.21) yields another recurrence formula to compute the values of the

polypseudologarithms with Lig(z) = z/(1 — 2):

n—1
(1-2)Lisa(z) =2 <Z> Lix(2) (n>2). (3.22)
k=1
It becomes obvious that formulae (3.15), (3.16) and (3.22) mean that there exists pure
recurrence relations of form (1.4) for the polypseudologarithms, respectively.
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