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Abstract: In this paper, we study the Dirichlet problem for semilinear second order elliptic

equation. By using the mountain pass lemma and the least action principle, we obtain the existence

of weak solution to semilinear second order elliptic equation under some new conditions which are

different from the previous ones.
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1 Introduction

We consider the following elliptic equation with Dirichlet boundary value condition
{
−∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where Ω is a bounded domain in Rn(n ≥ 3) with smooth boundary ∂Ω and f ∈ C(Ω×R,R).
Many authors were interested in studying the existence of nontrivial solution of (1.1)

via variational methods, for example, see [1–14].
Ambrosetti, Rabinowitz [1] established the existence of nontrivial solution of (1.1) by

applying mountain pass lemma under the following conditions (also see [3]).
(f1) There exist positive constants a, b and s ∈ (

0, n+2
n−2

)
such that for (x, u) ∈ Ω× R,

|f(x, u)| ≤ a + b |u|s ;

(f2) lim inf
u→+∞

f(x,u)
u

> λ1 uniformly in x ∈ Ω;

(f3) There exist positive constants µ > 2 and r > 0 such that for x ∈ Ω and |u| ≥ r,

0 < µF (x, u) ≤ uf(x, u),
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where F (x, u) =
∫ u

0
f(x, t)dt and λ1 is the first eigenvalue of the Laplacian (−∆) on Ω with

zero Dirichlet boundary condition;
(f4) lim sup

u→0

f(x,u)
u

< λ1 uniformly in x ∈ Ω.

As is well known, (f3) is so-called Ambrosetti-Rabinowitz condition (see [1]), (AR)
for short, which guarantees that Palais-Smale sequence of the Euler-Lagrange functional
is bounded. Actually, integrating (AR) it follows that lim inf

u→+∞
f(x,u)

u
= +∞ uniformly in

x ∈ Ω, and hence condition (f2) can be eliminated in [3, Theorem 4.8.13]. Recently, Mavinga
and Nkashama in [15] provided a new method to ensure that (PS) condition is satisfied.
Motivated by above references, we in this paper prove the existence of solution for (1.1) by
using mountain pass lemma, and replace (f1)–(f3) with

(f′1) λ1 < lim inf
|u|→∞

f(x,u)
u

≤ lim sup
|u|→∞

f(x,u)
u

< λ2 uniformly in x ∈ Ω, where λ2 is the second

eigenvalue of the Laplacian (−∆) on Ω with zero Dirichlet boundary condition.
We also establish the existence of solution for (1.1) by the least action principle under

the conditions:
(f′2) lim sup

|u|→∞
f(x,u)

u
< λ1 uniformly in x ∈ Ω;

(f′3) lim inf
u→0+

f(x,u)
u

> λ1 uniformly in x ∈ Ω.

Let the norm of u in Sobolev space W 1,2
0 (Ω) be ‖u‖1,2 = (

∫
Ω
|Du|2dx)

1
2 and ‖u‖2 =

(
∫
Ω
|u|2dx)

1
2 stand for the usual L2-norm. In addition, the W 1,2

0 (Ω)-inner product is defined
as [u, v] =

∫
Ω

Du · Dvdx and we denote the n-dimensional Lebesgue measure of Ω by |Ω|.
From [10] we know that under (f1) the Euler-Lagrange functional

I(u) =
1
2

∫

Ω

|Du|2 dx−
∫

Ω

F (x, u)dx, ∀u ∈ W 1,2
0 (Ω)

belongs to C1(W 1,2
0 (Ω),R) and

(I ′(u), ϕ) =
∫

Ω

Du ·Dϕdx−
∫

Ω

f(x, u)ϕdx, ∀u, ϕ ∈ W 1,2
0 (Ω).

Thus the critical points of I are the weak solutions to (1.1).
From [5] we have the following facts. The Laplacian (−∆) on Ω with zero Dirichlet

boundary condition has a sequence of eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λj ≤ · · · → ∞
as j →∞. The first eigenvalue

λ1 = min
u∈W 1,2

0 (Ω),‖u‖2 6=0

[u, u]
‖u‖2

2

= min
u∈W 1,2

0 (Ω),‖u‖2 6=0

‖u‖2
1,2

‖u‖2
2

(1.2)

is simple and there exists an eigenfunction ϕ1 ∈ W 1,2
0 (Ω) ∩ C2(Ω) (see [2, Theorem 1.16])

corresponding to λ1 such that ϕ1(x) > 0 in Ω and

λ1‖ϕ1‖2
2 = ‖ϕ1‖2

1,2. (1.3)
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The eigenspace corresponding to λ1 can be expressed as V = span{ϕ1} = {tϕ1 : t ∈ R} and

λ2 = min
u∈W 1,2

0 (Ω)∩V ⊥,‖u‖2 6=0

‖u‖2
1,2

‖u‖2
2

. (1.4)

Now we introduce some auxiliary results which will be need in the sequel.
Let E be a real Banach space. For I ∈ C1(E,R), we say I satisfies the Palais-Smale

condition ((PS) for short) if any sequence {um} ⊂ E for which {I(um)} is bounded and
I ′(um) → 0 as m →∞ possesses a convergent subsequence.

Lemma 1 [10] (Mountain pass lemma) Let I ∈ C1(E,R) satisfy (PS). Suppose I(0) = 0
and

(I1) there are constants ρ, α > 0 such that I
∣∣
∂Bρ

≥ α, and
(I2) there is an e ∈ E\Bρ such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α. Moreover c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

I(u),

where Γ = {g ∈ C([0, 1], E) | g(0) = 0, g(1) = e}.
Lemma 2 [11] (The least action principle) Suppose E is a reflexive Banach space and

I : E → R is coercive and (sequentially) weakly lower semi-continuous, that is, the following
conditions are fulfilled:

(i) I(u) →∞ as ‖u‖ → ∞;
(ii) For any u ∈ E, any sequence {um} in E such that um → u weakly in E there holds

I(u) ≤ lim inf
m→∞

I(um).

Then I is bounded from below and attains its infimum which is a critical value if I ∈
C1(E,R).

2 Main Results and Proofs

Theorem 1 If (f′1) and (f4) are satisfied, then (1.1) has at least one nontrivial weak
solution u ∈ W 1,2

0 (Ω).
Proof We know easily from (f′1) that (f1) is fulfilled. By (f′1) we take ε > 0 such that

λ1 +ε < lim inf
|u|→∞

f(x,u)
u

≤ lim sup
|u|→∞

f(x,u)
u

< λ2−ε. Then there exists r > 0 such that for |u| ≥ r,

λ1 + ε ≤ f(x, u)
u

≤ λ2 − ε, ∀x ∈ Ω. (2.1)

First we prove that the functional I satisfies (PS). By (2.1) we denote τ : Ω × R → R
by

τ(x, u) =

{
f(x,u)

u
, |u| ≥ r,

f(x,r)+f(x,−r)
2r2 u + f(x,r)−f(x,−r)

2r
, |u| < r.

(2.2)
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Since f is continuous, τ is continuous in Ω× R. It is easy to see from (2.1) that

λ1 + ε ≤ τ(x, u) ≤ λ2 − ε, ∀(x, u) ∈ Ω× R. (2.3)

Define l : Ω× R→ R by l(x, u) = f(x, u)− τ(x, u)u. Then it follows from the continuity of
f and τ that there exists a constant k > 0 such that

|l(x, u)| ≤ k (2.4)

for all (x, u) ∈ Ω× R.
Now suppose {um} ⊂ W 1,2

0 (Ω) for which {I(um)} is bounded and lim
m→∞

I ′(um) = 0. Let

um = vm + wm, where vm ∈ V, wm ∈ X = V ⊥.
Since lim

m→∞
I ′(um) = 0, there exists N > 0 such that(I ′(um), wm−vm) ≤ ε‖wm − vm‖1,2

for all m ≥ N . According to the orthogonality of wm and vm in W 1,2
0 (Ω), we have

(I ′(um), wm − vm) =
∫

Ω

Dum ·D(wm − vm)dx−
∫

Ω

f(x, um)(wm − vm)dx

=
∫

Ω

D(vm + wm) ·D(wm − vm)dx−
∫

Ω

f(x, um)(wm − vm)dx

=
∫

Ω

|Dwm|2 dx−
∫

Ω

|Dvm|2 dx−
∫

Ω

l(x, um)wmdx +
∫

Ω

l(x, um)vmdx

−
∫

Ω

τ(x, um)w2
mdx +

∫

Ω

τ(x, um)v2
mdx.

Thus

‖wm‖2
1,2 − ‖vm‖2

1,2 −
∫

Ω

τ(x, um)w2
mdx +

∫

Ω

τ(x, um)v2
mdx

≤ ε‖wm − vm‖1,2 +
∫

Ω

l(x, um)wmdx−
∫

Ω

l(x, um)vmdx.

It follows from (2.3), (1.4) and (1.3) that

‖wm‖2
1,2 − ‖vm‖2

1,2 −
∫

Ω

τ(x, um)w2
mdx +

∫

Ω

τ(x, um)v2
mdx

≥ ‖wm‖2
1,2 − ‖vm‖2

1,2 − (λ2 − ε)
∫

Ω

w2
mdx + (λ1 + ε)

∫

Ω

v2
mdx

≥ ‖wm‖2
1,2 − ‖vm‖2

1,2 −
λ2 − ε

λ2

‖wm‖2
1,2 +

λ1 + ε

λ1

‖vm‖2
1,2 =

ε

λ2

‖wm‖2
1,2 +

ε

λ1

‖vm‖2
1,2,

and from (2.4) and (1.2) that

ε‖wm − vm‖1,2 +
∫

Ω

l(x, um)wmdx−
∫

Ω

l(x, um)vmdx

≤ ε(‖wm‖1,2 + ‖vm‖1,2) + k

∫

Ω

|wm| dx + k

∫

Ω

|vm| dx

≤ ε(‖wm‖1,2 + ‖vm‖1,2) + k|Ω| 12 ‖wm‖2 + k|Ω| 12 ‖vm‖2

≤ (ε + k|Ω| 12 λ
− 1

2
1 )(‖wm‖1,2 + ‖vm‖1,2).
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Therefore,

ε

λ2

‖wm‖2
1,2 +

ε

λ1

‖vm‖2
1,2 ≤ (ε + k|Ω| 12 λ

− 1
2

1 )(‖wm‖1,2 + ‖vm‖1,2).

By the orthogonality of wm and vm, we have

ε

λ2

‖um‖2
1,2 =

ε

λ2

(‖wm‖2
1,2 + ‖vm‖2

1,2) ≤
ε

λ2

‖wm‖2
1,2 +

ε

λ1

‖vm‖2
1,2,

and ‖wm‖1,2 + ‖vm‖1,2 ≤ 2‖um‖1,2. Hence

‖um‖2
1,2 ≤ 2(ε + k|Ω| 12 λ

− 1
2

1 )
λ2

ε
‖um‖1,2,

which implies that {um} is bounded in W 1,2
0 (Ω). By [10, Proposition B.35], I satisfies (PS).

By means of mountain pass lemma, the rest of proof is similar to the proofs in [3,
Theorem 4.8.13] and [2, Theorem 8.11].

Theorem 2 If (f1), (f′2) and (f′3) are satisfied, then (1.1) has at least one nontrivial
weak solution u ∈ W 1,2

0 (Ω).
Proof It follows from (f1) and [10, Proposition B.10] that I is weakly lower semi-

continuous. We will prove that I is coercive.
By (f′2) and (f′3), we can take 0 < ε < λ1 and there exists 0 < r < R such that for

|u| > R,
f(x, u)

u
≤ λ1 − ε,∀x ∈ Ω, (2.5)

and for 0 < u < r,
f(x, u) ≥ (λ1 + ε)u, ∀x ∈ Ω. (2.6)

From (2.5) we have that for |u| > R, F (x, u) ≤ 1
2
(λ1 − ε)u2,∀x ∈ Ω. For |u| ≤ R, it is easy

to see from (f1) that F (x, u) ≤ aR + b
s+1

Rs+1 , C, ∀x ∈ Ω. Then for every (x, u) ∈ Ω× R,

F (x, u) ≤ 1
2
(λ1 − ε)u2 + C. (2.7)

Thus for u ∈ W 1,2
0 (Ω), we have from (2.7) and (1.2) that

I(u) ≥ 1
2
‖u‖2

1,2 −
1
2
(λ1 − ε)‖u‖2

2 − C|Ω| ≥ ε

2λ1

‖u‖2
1,2 − C|Ω|

and I is coercive. It follows from Lemma 2 that I has a critical point in u ∈ W 1,2
0 (Ω) such

that I(u) = inf
v∈W 1,2

0 (Ω)
I(v).

Now we show that it is nontrivial. In fact, let ϕ1 ∈ W 1,2
0 (Ω)∩C2(Ω) be the eigenfunction

corresponding to λ1 with 0 < ϕ1(x) < r in Ω. Hence by (2.6) and (1.3) we have

I(ϕ1) =
1
2

∫

Ω

|Dϕ1|2dx−
∫

Ω

(∫ ϕ1

0

f(x, t)dt
)
dx

≤ 1
2
‖ϕ1‖2

1,2 −
1
2
(λ1 + ε)‖ϕ1‖2

2 = − ε

2λ1

‖ϕ1‖2
1,2 < 0.
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Therefore,
I(u) = inf

v∈W 1,2
0 (Ω)

I(v) ≤ I(ϕ1) < 0.

The proof is completed.
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关于二阶半线性椭圆方程的Dirichlet边值问题一个注记

敖 恩1,2 ,张国伟1
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摘要: 本文研究二阶半线性椭圆方程的Dirichlet边值问题. 利用山路引理和最小作用原理, 获得了在

新条件下具有Dirichlet边值问题的二阶半线性椭圆方程的弱解的存在性的结果.
关键词: 椭圆方程; 山路引理; 最小作用原理; 临界点
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