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1 Introduction

Let S denote the sphere spectrum localized at p and p denote an odd prime. From
[14], the homotopy group of n-dimensional sphere 7, ,.S™ (r > 0) is a finite group. So the
determination of m,,.S™ has become one of the central problems in algebraic topology.

Ever since the introduction of the Adams spectral sequence (ASS) in the late 1950’s (see
[1]), the study of the homotopy groups of spheres 7,.S was split into algebraic and geometric
problems, including the computation of Ext’;"(Z,,Z,) and the detection which element of
Exty"(Z,,Z,) can survive to EX*, here A is the mod p Steenrod algebra, Ext’y*(Z,,Z,) is
the Es-term of the ASS. By [2],

Byt =2 Bxt (Zy, Zy) = TS,

and the Adams differential is d, : E$' — EsTmitr=1,

In addition, we also have the Adams-Novikov spectral sequence (ANSS) [12, 13] based
on the Brown-Peterson spectrum BP in the determination of 7,.S.

Many wonderful results were obtained, however, it is still far from the total determina-
tion of 7,S. After the detection of 1; € mpigtpg—2S for p =2, j # 2, by Mahowald in [11],
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which was represented by hih; € Ext%” Tatp (Zy,Z,), many nontrivial elements in 7,.S were

found. Please see references [5-9] for details. In recent years, the first author established
several convergence of elements by an arithmatic method, see [16-18, 21].

In [5], Cohen made the nontrivial secondary Adams differential dy(h;) = agb;—1 (p >
2,7 > 0) as geometric input, then, a nontrivial element & € m(,i+141)S (i > 0) is detected.
In this paper, we also detect a new family in 7,5 by geometric method, the only geometric
input used in the proof is the secondary nontrivial differential given in [20).

The main result is obtained as follows.

Theorem 1.1 Let3<s<p—1,n>3,p=>=7, then

. ) n+1 n 2 _ _ _
0 # Fshogn € Extf4+3’p q+2p"q+sp q+(s—1)pg+(s—1)g+s 3(Zp,Zp)

is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element
of order p in Tpnt1g12pngtsp?qt(s—1)pg+(s—1)g—69 -

The paper is organized as follows. After giving some necessary preliminaries and useful
knowledge about the MSS in Section 2. The proof of Theorem 1.1 and some results on Ext

groups will be given in Section 3.

2 Related Spectrum and the May Spectral Sequence

For the convenience of the reader, let us briefly indicate the necessary preliminaries in
the proof of the propositions and theorems.
Let M be the Moore spectrum modulo an odd prime p given by the cofibration

S5 ng

Let a: Y.“ M — M be the Adams map and V(1) be its cofibre given by the cofibration
SIM % M > V(1) L= satipg,

Let £ Z(p+1)q V(1) — V(1) be the vo-mapping and V(2) be the cofibre of 3 sitting in the
cofibration
sty (1) V(1) L v(2) L sttty (),

oS T

Furthermore, 7: Z(p2+p+1)q V(2) — V(2) is the v3-mapping and the y-element ~y, = 555" v*i"ii
is a nontrivial element in Tg,2q1 (s—1)pg+(s—2)q—35, Where p > 7 (see [15]).
From [19], we know that the third periodicity family ~, is represented by the third Greek
letter family element
3, € Exti{sz?ﬁ(sfl)pﬁ(872)q+573(ZWZp)

in the ASS, which is represented by the element

s(s —1)(s — 2)a3 *hsoho1hi 2
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in the May spectral sequence (MSS).
Let L be the cofibre of oy = jaui: Zq_l S — § given by the cofibration

i-19 2 § > [ > 30,
From [10], we can see that Ext}*(Z,,Z,) has Z,-bases
a € Ext}Y(Z,,Z,), h; € Ext}?(Z,,7Z,)(i > 0).
Ext%*(Z,, Z,) has Z,-bases
g, a3, aph; (i >0), g; (i >0), k; (i >0),b; (i >0), and hih; (j =i+ 2,i>0),
whose internal degrees are
2q+1,2,p'q+1, 2p'q +p'tq, 2p" +p'q, p'tlg and piq + plg,

respectively. Aikawa computed Ext%*(Z,,Z,) by M-algebra in [3].

In the following, recall the Adams resolution of some spectra related to S from [4]. Let

L *2 > 272E2 @1 S 271E1 d0‘> EO =9 (21)
bgl bll bni
Y 2KG, SIKG, KGy

be the minimal Adams resolution of the sphere spectrum S which satisfies

(A) E, Ly KG, S Fsiq LI Y E, are cofibrations for all s > 0, which induce short

exact sequences in Z,-cohomology

c* br
0—=H*FE, 1 —> H*KG, —= H*E, —— (.

(B) KGy are the graded wedge sums of Eilenberg-Maclane spectrum KZ, of type Z,.
(C) mKG, are the E*-terms of the ASS,

(bsCs_1)s : mKG,_1 — mKG,

are the d}~ "'-differentials of the ASS, and 7, KG, = Ext}"(Zy,Z,). Then, an Adams reso-
lution of an arbitrary spectrum V' can be obtained by smashing V' to (2.1).

Remark 2.1 In the ANSS, & is a permanent cycle and converges to the corresponding
homotopy element i'ia; (o = jai € m;—1S) in m,_; K. Furthermore, if some suppositions
on Ext groups are given, then there exists W € mpn+1442,m4—2K such that i'i§ = o” -w (mod
FA7r,K) and  is represented by (i), (gn) € Exti{pnﬂqunq(H*K, Z,) in the ASS, where
£ € Tpnt1gyopng—aS is the homotopy element which is represented by hol,, € Extj’p "ttt
(Z,,7Z,) in the ASS and F*m,K denotes the group consisting of all elements in 7. K with

filtration no less than 4.
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To detect 7,5 with the ASS, we must compute the Es-term of the ASS, Ext’y"(Z,,Z,).
The most successful method for computing it is the MSS.
From [13], there is a MSS {E%"*, d,.}, which converges to Ext%'(Z,,Z,) with E;-term

Er™" =FE(hij|i>0,j>0)®P(bi;|i>0,j>0)®P(a; |i>0), (22)
where E( ) denotes the exterior algebra, P( ) denotes the polynomial algebra, and

b, € Ef?(pi*l)pj“,p(?i*l)

1,2(p*—1)p?,2i—1 1,2p°—1,2i+1
hi,j S El (P P a; € El P ot .

) )

One has d,: E3VM — EstbtM=r (» > 1) If x € ES* and y € E¥*'*, then
di(z - y) = dr(z)y + (1) zd,(y). (2.3)
Furthermore, the May F-term is graded commutative in the sense that

amhn,j = h/n,ja'ma hm,khn,j = _hn,jhm,ka
ambn,j = bn,jaﬁw hm,kbn,j = bn,jhm,kv

AmGn = AnQm, bm,nbi,j = bi,jbm,n-

The first May differential d; is given by

di(hij) == > hickrtihe,
0<k<i

dl(ai) = — Z hi—k,k,aka (2-4)
0<k<i

dl(bi,j) - 0

For each element x € Ef’”, if we denote dim =z = s, deg x = t, we have

dimhi’j = dimai = 1, dlmbw = 27
deg hiJ = 2(]9Z — 1)p3 = (pi+j—1 4+ .. _|_pj)q’

degbi; = 2(p' — /™ = (9 + - +p)g, (2.5)
dega; =2p' —1=(p" ' +---+1)g+1,
degag = 1.

Remark 2.2 Any positive integer ¢ can be expressed uniquely as t = q(c,p"+c,_1p" 1+
ot eptceg)te, where0< ;< p(0<i<n),0<c,<p 0<e<q.
Then, it is easy to get the following result from [16].

Proposition 2.3 In the MSS, we have E;"** = 0 for some j (0 < j < n), s < ¢;, where
s is also a positive integer with 0 < s < p.

3 Some Adams F,-Terms

In this section, we mainly give some important results about Adams Es-terms. At the

end, the proof of Theorem 1.1 will be given.
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Proposition 3.1 Let 3<s<p—1,n>3, p>7, then
n+1 n 2
0 # Fohogn € Exti;rg’p tlg+2p™q+sp q+(8*1)pq+(8*1)q+873(zp’Zp)'

Proof Consider the structure of E;7>"* in the MSS, where t = p"t'q + 2p™q + sp>q +
(s—1)pg+(s—1)g+s—3. Dueto3<s<p—1,then 5<s+2<p+1.

Casel 5<s+2<p. Let h=uxz25---x,, be the generator of Es+2 Ex
of ag, h; ; orbu,z,0<k<n+2,0<i+j\n+2,0<u+z n+1,i>0,7>0,u>0,
z=0.

Assume that degz; = q(¢; p1p" ™+ -+ ciip+cio) + €, where ¢;; =0or 1, e; = 1 if

, where z; is one

x; = a or ¢; = 0, then

degh:Zdegxi:q((ZcmH s +(Zcm +-+ Zczo Zez
i=1

=1 =1 =1

= q(p"*' 4 2p" + sp® +(8*1)p+(8*1))+8*3,

dimh = Zdimxi =54+ 2.

i=1

Note that dimz; = 1 or 2, we can see that m < s + 2 < p from Zdlmxzfs+2 By
i=1
the fact that ¢; ; =0or 1, e, =0o0r 1, m < s+ 2 < p, we have

m

e;=5s—3, E cio=s—1, g cll—s—l,g Cia = 8,
=1

Ci3 =" "= Cin— I_OE Czn_2§ Cszrl_l
i=1

1 —

NE

1

5
3

M

7

From the above results, we can see that b; ,01,—1h1n, honhin, honbin—1, ban_1hin,
bin—1ban—1, b1nbi, 1, hins1b?,,y and hypi1byn_1hy, are contained in the z;. By the

commutativity of E{"™", we can denote

hy =122+ Tim—3b1,n 01,01 -1, h,l =T1Tg " Typ_3 € Ef—&t’v*;
he = 129+ xm—3b1,nbin_l, h’2 = 21%2 - Tymg € Ef74’tl’*;
hy = x122 - - - $m—3h1,n+1b%,n_17 by = 21T T3 € Eff?”t/v*;
hy = 2122+ Ty —2ho nhi hy =x120 o € Efvt'a*;

hs = x120 -+ - 2N b1 -1, hy =129 Tpyo € Ef‘lvt'v*;
he = 2122+ Tin—2b2 1M1 p, hg = 1T+ Tpy—o € Effl’tl’*;
hy = 21%9 - Ty—2b2 n1b1 11, Rt =xixy - Tpyo € Ef‘2’t/7*;

’ s—2,t" %
hS =12 x?n—3h1,n+1h1,nb1,n—17 hs =T1T2- " Tym-3 € E1 )

where t' = sp?q+ (s — 1)pg + (s — 1)g + s — 3.
We list all the possibilities of A/ in the following table (i = 1,2,---,8), thus h doesn’t

exist in this case.
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Table 1: the possibilities of A
The possibility Analysis The existence of h

m—3

h §—3< Y cia=s Nonexistent
i=1
m—3

hb, s—4< Y cia=s Nonexistent
i=1
m—3

hi 5—3< Y ca=s Nonexistent
i=1

I h= ag_?’h%)ohl)o =0 Nonexistent
m—2

hi s=1< > ¢a=s Nonexistent
i=1
m—2

hy s=1< > ¢ia=s Nonexistent
i=1
m—2

ht §—=2< Y ¢ia=s Nonexistent
i=1

m—3
hy §—=2< 3 ¢ia=s Nonexistent
i=1

Case 2 If s +2 = p, then E}™>""" = EP'"" where t” = p"*1q + 2p"q + (p — 2)p°q +
(p—3)pg+ (p—3)g+p—>5. Let h = 125 - - -, be the generator of EY" *, and assume that

degz; = q(cinsi1p" ™ + cind™ + -+ ciip+ cio) + e,

where ¢; j =0or 1, e; =1 if 2; = ag, or e; =0, then

T T T T

degh = Z degx; = q((z Cinp1)P" T+ (Z Cin)p" o+ (Z cio)) + (D _e)

1=1 =1 1=1 =1 =1
=q(p"™ 2"+ (p—2)p* +(p—3)p+(p—3)) +p—5,

dimh = Zdimxi =p.

=1

T T T
We claim that ) ¢;0, >, ¢;1 and ) ¢; 2 are impossible to constitute p. The reason is

i=1 i=1 i=1
the following: if > ¢; 0 = p, because of > e; = p — 5, then
i=1 i=1
Q((Z Cin)P" T+ Qe+ 4+ (O Ci,o)) +()_e) =) e (modp),
i=1 i=1 i=1 i=1 i=1

this contradicts to ¢(p" ™ +2p"+(p—2)p*+ (p—3)p+(p—3))+p—5 = (p—3)g+p—>5 (mod p).

For the same reason, Y ¢;; and Y ¢; > are impossible to constitute p.
i=1 i=1

From dimz; = 1 or 2 and ) dimz; = p, we can see that r < p. By Remark 2.2 and
i=1
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r<p,c;=0o0rl, e =0orl, wehave

Zel p— 52620—]) 32611—}) 32@2— -2,

i=1
r r r

O’ +-+ O cnp" + O cimp)p™ T =p" T+ 27, (3.1)
=1 1=1 1=1

SO
r

(Z Ci3) -+ (Z Cin)p" %+ Z Cims1)p" 2 =p" 24 2p" (3.2)

i=1 i=1

i I
Thus p | > ¢; 3. Note that ¢;3 =0 or 1, » < p, it is known that > ¢; 3 =0 or p.

=1 i=1
Case 2.1 When ) ¢; 3 =0, we have
i=1
O capt-+ Q" P+ Qi) =p" T+ 2"
i=1 i=1 i=1

Case 2.1.1 When n > 4, we claim that Z ¢ia = 0. Otherwise, if Z ¢ia = D, then
-1 -1

r = p. So dlmxi = 1(1 < i < p) and deg:z:l = (higher terms) + pq + (lower terms).
Because of Z e; =p—5, dega, = 1(mod ¢), dim h; ; = 0(mod ¢) and dim bmz = 0(mod q),

1=

there exist factors aj aj, - aj, among the generators x; (Ji =2 5,1 <14 —5). Thus,

-5

Z ¢;3 = p — b, which contradicts to Z ¢z =0, s0 z ¢;4 = 0. By induction on j, we can
=1 =1

geth7j—O(5 j<n-—1), Ecm—2,20m+1:1.

i=

Case 2.1.2 When n = 4, it is easy to get Zcz4f2and Zcmfl

From the above discussion of Case 2.1.1 and Case 2.1.2, 51mllarly to Case 1, we can see
that b1 nb1n—1h1n, honhin, Panbin—1, b2 n_1hin, b1 n_1b2n_1, bl,nb1,n—17 Pimbin—1h1 g1
and h17n+1bin_1 are contained in the z;, so h is impossible to exist.

Case 2.2 When ) c¢;3 = p, then r = p. We get dim 2; = 1 from dim h = p, then
i=1
h:x1x2'~xp, T GE(hiﬁj |l>0,] >O)®P((1k | k}O)
Case 2.2.1 When n > 4, we get

T T

P+ cap'+ o+ O )"+ ( Zcmﬂ Pt ="t 2p,

i=1 i=1

that is (1+ > cia)+ O cis)p+-+ (O, Cins1)p" 2 =p" 3 4+2p" 4 thusp | (1+ > ¢i4),

i=1 i=1 i=1 i=1

s0 Y ¢a=p—1fromc¢; 4 =0or1and r=p. By induction on j, we can get

r

Zcm': —14<j<n—-1), Zcm—l Zc“LJrl—l

i=1
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By the reason of degree and the Proposition 2. 3 h is 1mp0851ble to exist.

Case 2.2.2 When n = 4, we know that 2014—1 2015—1from (3.2), then

=1
degh=q(p’ +2p*+(p—2)p"+ (p—3)p+p—3)+ (p—5).

By the reason of degree and the Proposition 2.3, h is impossible to exist.

From the above discussion, for 5 < s +2 < p+ 1, EST2* = 0, so Est2t* = 0 (r >
2). It is known that hy,hi,, hin,ad *hsohgihie € E™" are permanent cycles in the
MSS and converge nontrivially to g¢,, hn, 7s € Exty"(Z,,Z,) (n > 0), respectively, so

73h3 oha,1h1 2k nho nhio € EHS’t’* is a permanent cycle in the MSS and converges non-

trivially to Y.hogn € Ext%"(Z,,Z,). Note that Es*2t* = 0 (r > 1), thus the permanent
cycle is not d,-boundary and converges nontrivially to y,hog, € Ext”‘3 t(Z Zy), that is,
when 5 < s +2 < p+ 1, 0 # J.hogn € BExt’ > (Z,,2Z,).

Proposition 3.2 Let 3<s<p—1,n>3, p=>7,2<r<s+3, then

s+3—r,p"Tlg+2p" g+sp2q+(s—1 s—1)g+s—r—2
Ext:r mp" T q+2p" g+sp g+ (s—1)pgt(s—1)gts—r (Z,,7,) = 0.

Proof We only need to prove that EST27""* = () in the MSS, where t = p" g+ 2p"q+
sp?q+ (s —Dpg+ (s —1)g+s—r —2. Let h = x125 - - 2, be the generator of EFT37 70
where z; is ag, h;j or by, 0<E<n+2,0<i+j<n+2,0<u+2<n+1,i>0,57 >0,
u>0,2z20.

Assume that degx; = q(ci,n+1p"+1 +cinp" + -+ i) +e, wherec;; =0o0rl, e =1
if x; = ay, or e; = 0, then

m m m m m

degh = zdegxi = ((Z Ciny1)P" T+ (z Cin)p" - F (Z Cio)) + (Z e;)

i=1 i=1 i=1 =1 i=1

=q(p" + 2"+ s+ (s —Dp+(s—1)+s—r—2
m
dimh:zdimﬁizs—i—?)—r.

i=1
Note that dimx; = 1 or 2, We can see that m < s+3 —r < s+ 1 < p. We claim that
s —r —2 >0, otherwise, p>Zel—q+(s—r—2)>q—5>p. Because of ¢; ; = 0 or 1,

ei:OOrlandr<p,Wehave

m m m m

E elzs—r—2,g cio=s—1, E c1=s8—1 E Cio = S,
=1 i=1 =1 =1

m m m

§ C;3 = T = E Cin—1 = 07 E E Cin+l = 1.
i=1 i=1 i=1 i=1

From the above results, we can see that by ,b1n—1h1n, honlin, henbin—1, ban_1h1n,
bl n— 1b2n 1, b1 nb%n 15 h/l,nbl,nflhl,'rkl»l and h1’n+1b%’n71 are contained in the Z;. By the

*, kK

commutativity of E]"™", we can denote
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/ —2—r,t(r),*
hi = 2122 Ton3b1 P b1 no1 Wy = 2120+ Ty € BT 2775,
1 142 m—3Y1,n't1,nY1 ,n-1, 1 14£2 m—3 1 9
/ s—=3—r,t(r),*
h2 =X1Xg """ xm—?ybl,nb%nf]a h2 =TTy Ty—3 € El (r) ;
_ 2 r_ s—2—r,t(r),*,
hs =x129- - xm—3h1,n+1b1’n71, hy =x129- 203 € By )
’ s+1—rt(r),*
hy =x129 - Tryp_2ha phin hy=z120 o€ L ),
s 1 4 1 )
J— 4 —_ ES*T}t(’I’),*'
hs = z12 - - xmf2h2,nb17n717 h5 =T1T2 " Tm—2 € Ly )
4 s—r,t(r),*
he = x122 - - - xm7262,n71h1,n7 hg =T1T2 Tm—2 € E1 )
4 s—1—r,t(r),*,
h7 = z129 - - xmf2b2,nflb1,n717 h7 =T1To Tm—2 € E1 5

4 s—1—r,t(r),*
hs = x129 - - - xm73h1,n+1hl,nb1,n717 hs =T1T2  Tym-3 € E1 5

where t(r) = sp?q+ (s — )pg+ (s —1)g+s5s—2—.

m—3
For b, s—2—7r < >  ¢;2 = s, by Proposition 2.3, we get that h/ is impossible to exist.
i=1
For the same reason, h} (i = 2,3,---8) are impossible to exist. So we have Ej
that is Ext’* """ (Z,,2,) = 0.
Proposition 3.3 Let p > 7, tq = p"Tlq + 2p"q, n > 3, then

(1)

S+3— rt*_o
— Y

Extjthrquru(Z Y/ ):0(7":2 3 4 u=—1 OOI"I":3747 U:1)7
Exty'""(Z,,Z,) = Z,{hol,}; Exty'(Z,,Z,) = 0;
Ethtq—i_?qH (Zp, Zp) = Zp{dagn}, aogn # 0.

Ext} N7, 7,) =0 (r=1,3,4); Ext}"""(Z,,Z,) =0 (r =2,3);
Ext} Y7, 7)) = 7, {a,}; Ext%' (2, 72,) = Z,{a2l,};
Ext%"*(Z,,Z,) = 0.

Proof (1) Consider the second degrees (mod p"*'q) of the generators in the F;-terms
of the MSS, where 0 < j <n+1,

deg hs ; = (psﬂl 4 p)g (mod p"tg), 0K j<s+ji—1<n+1,
="+ +p)g(modp"g), 0<j<s+j—1=n+1;
deg by j_1 (psﬂ Lo p)g(mod p"thg), 1<j<s+j—1<n+1,
="+ +p)g(modp"tg), 1<j<s+j—1=n+1;
degaj = + - +1)g+1(modp"™q), 0<j<n+1,
="+ +1)g+1(modp"tq), j=n+1.

For the second degree k = tq+rq+u (0 <r <4,—1 < u < 2)=2p"q+rqg+u(mod p"Hiq),
and excluding the factor which has second degree > tq + pq, we can get that the possibility
of the factor of the generators in E}"" 7" (4 < w < 5) are ag, a1, h1.0, Pintt, him, hom,
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bin, b1 n—1 and by, —1. Thus from the degree we know that

EPIHTattE — 0 (r = 3,4,u = 1);

=0
Epltraters — o (p = 2,3, 4,u = —1,0);
E;L’tq’* = Zp{b1n_1b2n-1};
E;l’tq-‘rq’* = Zp{hlyohl’nbznfly hQ,TLbl,n*lhl,O};

4,tq+2q+1,%
El = Zp{alhlvohl’nhgm}.

In the MSS, note that d,(zy) = d,(z)y + (—1)*zd.(y) (z € EX%*,y € EX). Since
di(b1n—1hanhio) # 0, then EM =7, {by ,,_1hy nh1o} (r > 2). Moreover, ha ,hy ki is
permanent cycle in the MSS which converges to hog, € Ext%*(Z,,Z,), then d,.(E>!te*) = 0
for r > 1, so that by ,,_1h1 k1 is not d,-boundary and it converges nontrivially to hol,,.

In addition, we say that Extj’tq(Zp,Zp) = 0, since Ef’tq’* = Zp{bin—1 ban_1}, where

b1,n—1 converges to b,_;, while in the Exti’*(Zp,Zp), there is no element in relation to

2,p" tg4p"g,x
b2,n—1 S El .

(2) Similarly, due to the reason of the degree, we can get the following results

5,tq+q+1,% .
EY 2 Zp{arbin_1ba n_1, aohiohonbin_1, aoh1,0b2n—1h14};

EPHTTLE — 0 (r = 3,4);

EPHTTET =0 (r = 2,3);

EPratt o2 7 Lag by obo e 1ha s honbin—1hioar}s
Ei)’thrz’* = Zp{aghl,nb2,n—1a aghQ,nbl,n—l};

Els’thrl’* = Zp{aobin—1b2n—1, aohi n_1h1 nhint1}
The generators of E>'T%"1* in the MSS all die, this is because that

dl(albl,n—lbz,n—l) = —aohl,obl,n—1b2,n—1 7& 0,

a0h1,0h2,nb1,n71 = _dl(a1h2,nb1,n71>

and
a0h1,obz,n71h1,n =—d; (ath,nflhl,n)

So we have Ext%""9*(Z,,7,) = 0. In addition, with a similar proof of (1), we know that

d,E}1+2* = 0. So the generator of E>'""** in the MSS converges to a2l,,.

Since dy (h2,nbin_1h10a1) # 0, then E>' 20t =7, Lby . 1hy ,hipar} for r > 2. More-
over, hs,hinhipa; is a permanent cycle in the MSS which converges to dagn(aihio is a
permanent cycle in the MSS and converges to as € Ext’y*(Z,,Z,)), then d,.(EXt+21t1) = (
for r > 1. Thus b ,—1h1 ,h1 001 is not d,-boundary and converges nontrivially to asl,,.

Since ag, b1, -1, h1,, and hq ,41 are all permanent cycles in the MSS and converge to
ag, bp—1, hy and h, 41, respectively, it is easy to get that apby n—1h1 nh1 nt1 1S a permanent
cycle in the MSS and converges to agb,_1h,h,i1 which equals 0 € ExtSA’thrl(Zp,Zp) by
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hnhpi1 = 0. Furthermore, we have dap_1(ban—1) = b1 nh1 — b1 n—1h1,n41 from [10], then
dgp_l(aobg’n_lblm_l) # 0 and so EXtthJrl (Zp, Zp) =0.
Theorem 3.4 Let p > 7, n > 3, then

n+1 n
hogn € ExtP a2 atyz, 7.

is a permanent cycle in the ASS, and converges to a nontrivial element in 7pn+1442pmg4q—35-

Proof From [20, Theorem 1.1], there is a nontrivial differential ds(g,) = aol,(n > 1)
in the ASS, the elements g, and [, are called a pair of ag-related elements. The condition
of Theorem A in [7] can be established by the Z,-bases of Ext%"(Z,,Z,) (s < 3) in [10]
and Proposition 3.3 in the above. Furthermore, we have k- (a1), = (1g, A p)f with f €
1L By (see [7], 9.2.34), then (1, Ad)k - (oq) = 0. Thus

(g, N1 A (kA1) = (1g, AL Ad) (kA1) ((ar)L A1) =0,

where 7/ € m,L A L such that ((a;); A 1.)i"” = ¢. It can be easily proved that (k A
11)¢p = (¢3 AN 1L)o¢p, where 0¢ € Tygi0,(K G5 A L) is a dy-cycle which represents (¢).(o) €
Ext%"**(H*L,7,). Thus

(63 A\ lL/\M)(lKG3 VAN ’L)O'¢ =0.

So we can get that (17, Ai).0.(gn) € Exti’pnﬂq”pnﬁq(H*L/\ M,7Z,) is a permanent cycle in
the ASS. Then Theorem 3.4 will be concluded by Theorem C in [7], here ¢ € [>27' 8, L],
K € Tigr1 4.

The Proof of Theorem 1.1 From Theorem 3.4, hog, € Exti{pnﬂq“pnﬁq(Zp,Zp) is
a permanent cycle in the ASS and converges to a nontrivial element ¢ € Tn+1449png4q—35
for n > 3.

Consider the following composition of mappings

% 1t y

f~‘ " 2p g3 g

Zfs(p2+p+1)qv(2) ELEN s> +p+a+(p+atag

because ¢ is represented by hgg, in the ASS, then the above fis represented by

<) 1S

9= 0373")«(v)x("1'1)s (hogn) = (j5'5"~v*i"1"i)(hogn)

Syl sl

in the ASS. Furthermore, we know that v, = jj j ~%i"i'i € m,S is represented by 7, in the
ASS. By using the Yoneda products, we know that the composition

(,L-//

Extl(Zy, Z,) 2> Ext$O(H*V(2), Z,)

G337 e et
MEth(sp%(s Dp+(s—2))q+ 3(Zp,Zp)
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is a multiplication (up to nonzero scalar) by

3, € EXt28p2q+(S*l)pq+(8*2)q+873(Zp’Zp)'

Hence, the composite map fis represented (up to nonzero scalar) by

~ +3,p" ! q+2p" g+5p° g+ (5—1)pg+(s—1)g+s—3
%hognGEXtZ p" T q+2p" q+sp g+ (s—1)pg+(s—1)g+s (ZP7ZP)

in the ASS.

From Proposition 3.1, we see that ¥,hog, # 0. Moreover, from Proposition 3.2, it follows

that Yshog, can not be hit by any differential in the ASS. Thus 7shog, survives nontrivially

to a homotopy element in 7,S.

i)
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