Vol 87 (2017) J. of Math. (PRC)

BIFURCATION IN A RATIO-DEPENDENT
PREDATOR-PREY SYSTEM WITH
STAGE-STRUCTURED IN THE PREY POPULATION

QIAO Mei-hong!?, LIU An-ping!
(1.S’chool of Mathematics & Physics, China University of Geoscience, Wuhan 430074, China)
(2. Center for Mathematical Sciences, Huazhong University of Science and Technology,
Wuhan 430074, China)

Abstract: In this paper, we study the bifurcation of ratio-dependent predator-prey system.
By using the characteristic equation of the linearized system and the center manifold theorem, we
derive the stability of the system and direction of the Hopf bifurcation.
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1 Introduction

Over the years, predator-prey models described by the ordinary differential equations
(ODEs), which were proposed and studied widely due to the pioneering theoretical works
by Lotka [1] and Volterra [2].

A most crucial element in these models is the functional response, the function that
describes the number of prey consumed per predator per unit time for given quantities of
prey z and predator y.

Arditi and Ginzburg [3] suggested that the essential properties of predator-dependence
could be rendered by a simpler form which was called ratio-dependence. The trophic function
is assumed to depend on the single variable % rather than on the two separate variables x
and y. Generally, a ratio-dependent predator-prey model of Arditi and Ginzburg [3] is

jj"(t) = xf(z) —yp(z/y), (1.1)
y(t) = syq(z/y) — oy

In this paper, we will focus our attention on the ratio-dependent type predator-prey
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model with Michaelis-Menten type functional response, which takes the form of

. — _ _Bzy
0 e (12)
y(t) = y(=ds+ 7 5),

where «, 3, m,ds and (; are positive constants; ds, 3, m and (3; stand for the predator death
rate, capturing rate, half saturation constant and conversion rate, respectively. The dynamics
of predator-prey system was studied extensively [4-11].

In order to reflect that the dynamical behaviors of models that depend on the past
history of the system, it is often necessary to incorporate time-delays into the models. Sup-
pose that in a certain environment there are the prey and predator species with respective
population densities x(t) and y(t) at time t.

Based on the above discussion, by incorporating age-structure of prey and time delay
into system (1.2) and supposing that the predator species captures only the adult prey

species, we establish the following model

lel(t) = OZIEQ(t) —d1$1<t) —’}/leg(t—T),
Bat) = ywa(t —7) — UM — s (t) — pad(b), (1.3)
i) = Genm )

where x1(t), x2(t), y(t) represents the densities of immature prey, mature prey and predator,
respectively, a, dy, ds, ds, 3,7, m, i and (3; stand for the birth rate of prey, the immature prey
death rate, the mature prey death rate, the predator death rate, capturing rate, the conver-
sion rate of immature prey to mature prey, half saturation constant, the density dependence
rate of the mature prey and conversion rate, respectively. 7 is called the maturation time of
the prey species.

2 Stability of a Positive Equilibrium and the Existence of Hopf Bifur-
cations

In this section, we will discuss the local stability of a positive equilibrium and the
existence of Hopf bifurcations in system (1.3). It is easy to deduce that system (1.3) has a
unique positive equilibrium E* = (z7, 25, y*) if the following holds.

(H1) >, 01 > d3 and (v — do) (1 — d3) > ﬁ(ﬁ:ni;lis)z’ where

R i S mds (’Y—dz)(ﬁl—dﬂ—%
T = ——F Ty, Ty = s — .
1 dl 2 2 /61 _ d3y Yy umds
Set
fO = amy(t) — diay (t) — yaa(t — 7),
SO = mlt =)~ iy — (o) — ue()
3 o Brxa(t)y(t
O = P —day(t), 2 (2.1)
b1 = _d17p2:aap3:77p4:d2_27+%(1_%%)7
2 2
ps = —%,% = 7([%;13) yP7 = d3(§*§ —1).
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Then we can get the linear part of system (1.3),

1(t) = piwi(t) + pawa(t) — p3za(t — 7),
@o(t) = pawa(t —7) + paza(t) + psy(t), (2.2)
y(t) = pera(t) + pry(t),

where p; (i =1,2,3,4,5,6,7) are defined in (2.1).

Therefore the corresponding characteristic equation [18] of system (2.2) is

(A— Pl)[/\2 — (pa +p7)A —p3(A — P?)eﬂ\T + papr — psps) = 0. (2.3)

It is well-known that the zero steady state of system (2.2) is asymptotically stable if
all roots of eq. (2.3) have negative real parts, and is unstable if eq. (2.3) has a root with
positive real part. In the following, we will study the distribution of roots of eq. (2.3).

Obviously, A = p; = —d; < 0 is a negative root of eq. (2.3).

If iw(w > 0) is a root of eq. (2.3), then

A — (p1+pr)A — p3(A — pr)e™ ™ + papr — psps = 0, (2.31)

—twT

—w? —i(ps + pr)w — p3(iw — pr)e”"" + papr — psps = 0.

Separating the real and imaginary parts of above formula gives the following equations

—w? = pspg — PaP7 + P3w SiN WT — p3pr COSWT,

2.4
—(p4 + p7)w = psw COS WT + P3p7 SIN WT, (2:4)

which implies that
w* + (p] + P — P + 2pspe)w® + (papr — Pspe)® — p3p7 = 0. (2.5)

Let

A = ph+ pE+ ph — 2p2p2 — 2p2p2 + Ap2pspe + 20202 + Apspep? — ApEpsps + Spapspepr,

further note that if

Bds d3 d3 d3

P93 1 4 9y (0 — dy)ds(1 — B2)| < eyt — B2, H2
—( 5%)( v — da)ds( ﬁ1)| vds| ﬁ1| (H2)
then (pap7 — psps)? — Pap2 < 0, we will derive A > 0.

Positive root of equation (2.4) is given by

2 — (P5—pi—p7 — 2psps) + v (P8 — p3 — p? — 2pspe)? + 4p3p? — (papr — pspe)?] (2.6)
2 = o (@
2

Again from (2.4), we get

wo(wg + Psps + P3)
Pawd + Pap3 — Pspepr

tanwymy =
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Solving for 7y, we get

1 2 2) 2
Ton = — arctan] ol + psps + pr) +

-~ g , (2.7)
wo Daw( + PapP7 — PsPeP7 wo

where n =0,1,2,3,--- .
The smallest 7y is obtained by choosing n = 0, then from (2.5), we get

wo(wi + + p?
To = — arctan| Og 0 p;)pa pr) ,
Wo DPawgy + pap7 — PsPeD7

then (79,,wo) solves eq. (2.4). This means that when 7 = 79,, eq. (2.3) has a pair of purely
imaginary roots iwy.

Now let us consider the behavior of roots of eq. (2.3) near 7g,. Denote A\(7) = (1) +
iw(T) as the root of eq. (2.3) such that

a(TOR) =0, uJ(TOn) = Wo-

Substituting A(7) into eq. (2.3i) and differentiating both sides of it with respect to T,

we have
d\(T) (2\ — py — pr)e™ 1 T

-1
= + -z
) —psA(A=pr) A =pr) A

Noting that A = %iwg,wy satisfy (2.5), therefore we have

d\(T) ., (2\ — py — pr)e? 1 T
Re R, == Re T=Ton + Re /N N NJST=T0n
S = G e TRy T
1

= R [—(pa + p7) COS WoTo, — 2w SINWoTop

e{l—s——
P3wy + 1P3prwo
—D3

+i(2wq cos woTon — (ps4 + p7) sSinwoTo, )]} + Re{————
(2t coscauri, = (ps + pr)simcrin)|} + Re( g P

1 2 2 2 3,
= ——F—5 55 — P3wy — + wp COS WoTon — 2W Sin wo Ty
p%wé T p%p?wg p3wy — p3(pa + pr)wy 0Ton 0P3 0Ton
+2wg pspr COS WoTon — P3P7wo(pa + Pr) SinwoTon
1 .
= f{*(m + p7)wo [P3wo €OS WoTon + P3P7 SINWoToy)
—2wg [p3wo sin woTo, — P3P7 COS WoTon] — pgwg}

1
= ppat pr) 2wy — 2wl (—wi — pspe + Papr) — P3wy

= %(m + p1)? + 2w2 + 2(psps — papr) — D
- ‘%3\/@5 — pi — % — 2pspe)? + 4[p3p? — (pap7r — Psps)?],
where we have used egs. (2.4), (2.6) and T' = p3wj + p3pswg > 0. Hence it follows that
eRe(BE)) . — sgnie( 42

: w3 2 2 2 2 T:Towé 2 2 (2'8>
= s1gn{T\/(p3 — pi — D3 — 2pspe)? + 4[p3p3 — (papr — pspe)?]} > 0.
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Therefore, when the delay 7 near o, is increased, the root of eq. (2.3) crosses the imaginary
axis from left to right. In addition, note that when 7 = 0, eq. (2.3) has roots with negative
real parts only if

(H3) p3 + pa +pr <0 and p3pr + papr — psps > 0.

Thus summarizing the above remarks and the well-known Rouche theorem, we have the
following results on the distribution of roots of eq. (2.3).

Lemma 2.1 Let 79,(n = 0,1,2,---) be defined as in (2.7), then all roots of eq. (2.3)
have negative real parts for all 7 € [0, 7). However, eq. (2.3) has at least one root with
positive real part when 7 > 79, and eq. (2.3) has a pair of purely imaginary root +iwy,
when 7 = 75. More detail, for 7 € (7o,, Ton41](n = 0,1,2,---), eq. (2.3) has 2(n + 1) roots
with positive real parts. Moreover, all roots of eq. (2.3) with 7 = 79,(n = 0,1,2,---) have
negative real parts except +iwy.

Applying Lemma 2.1, Theorem 11.1 developed in [12], we have the following results.

Theorem 2.1 Let (H1), (H2) and (H3) hold. Let wy and 79, (n = 0,1,2,---) be defined
as in (2.6) and (2.7), respectively.

(i) The positive equilibrium E* of system (1.2) is asymptotically stable for all 7 € [0, )
and unstable for 7 > 7.

(ii) System (1.3) undergoes a Hopf Bifurcation at the positive equilibrium E* when
T=7Ton (n=0,1,2,---).

3 Direction of Hopf Bifurcation

In Section 2, we have proven that system (1.3) has a series of periodic solutions bifur-
cating from the positive equilibrium E* at the critical values of 7. In this section, we derive
explicit formulae to determine the properties of the Hopf bifurcation at critical values 7y,
by using the normal form theory and center manifold reduction [13].

Without loss of generality, denote the critical values 7y, by 7, and set 7 = 7 + . Then
1 = 0 is a Hopf bifurcation value of system (1.3). Thus we can work in the phase space
C = C([-7,0], R%).

Let ui(t) = z1(t) — af,uz(t) = za(t) — a3, us(t) = y(t) — y*. Then system (1.3) is
transformed into

U1(t) = prui(t) + pous(t) — psus(t —7)+ > o 'l'f]lul( Yu (t)ué(t —7),
itjH>2
Ua(t) = psua(t —7) +paua(t) +psus(t) + > o S (t — 7)ud (t)ub(t), (3.1)
z+j+l>2
ug(t) = peua(t) +prus(t) + z,lj, (t)ud(t),
i+j5>
where
1 3i+j+lf(1) ) ai+j+lf(2)
9T g 9Ok (t — 7) etz fije = oz (t — 7)0xl oy et300)
3 8z+jf(3

ij — W |(m{,m;,y*)azzjal 2 0>
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here f(, ) and f®) are defined in (2.1).
For the simplicity of notations, we rewrite (3.1) as

u<t) = Lﬂ(ut) + f(ua ut)v (32)

where u(t) = (uy(t),ua(t),us(t))? € R3 u(0) € C is defined by u(0) = u(t + ), and
L,:C—R,f:RxC € R are given by

p1 p2 O 0 —ps O
L,¢p= 0 ps ps |20+ 0 p3 0 | &(-7) (3.3)
0 ps pr 0 0 0
and 4 '
}+§>2 am [191(0)$5(0) g (—7)
1T] = )
fe) = | 2 wufat(-T)e0)850) |, (3.4)
g;ﬁ%g%wwam
itj>

respectively. By Riesz representation theorem, there exists a function n(f, u) of bounded

variation for § € [—7,0] such that

0
Luo= [ ant6.000(0) (35)
for ¢ € C.
In fact, we can choose
pr p2 0O 0 —p3 O
n@,p)=1 0 pi ps |66)=| 0 ps 0 |5(6+7), (3.6)
0 Pe D7 0 0 0

where 4 is the vector, whose components are the Dirac delta functions. For ¢ € C*([—7, 0], R?),
define

and

Then system (3.2) is equivalent to
iy = A(p)ue + R(p)ue, (3.7)

where z,(0) = z(t + 0) for 6 € [-7,0].
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For 4 € C([0, 7], (R*)"), define
— Bl s e (0,7,
A9ls) = /imﬁmmm—m s=0
and a bilinear inner product B
()00 = 50000 - [ / e~ anoyoterie (39

where 1(0) = n(0,0). Then A(0) and A* are adjoint operators. By discussions in Section 2

and foregoing assumption, we know that +iw, are eigenvalues of A(0). Thus, they are also

eigenvalues of A*. We first need to compute the eigenvector of A(0) and A* corresponding

to twy and —iwg, respectively.

Suppose that q(0) = (p1, 1, p2)Te™0? is the eigenvector of A(0), (3.5) and (3.6) that

P1 — iwo p2 — pse” 0T 0 0
0 P4+ pse” 0T — dwy Ps q0)=10
0 De Pr — W 0
We therefore derive that
P2 + Py — iwg + 2o D
q 0) = ,17 T _ : 0—P7 .1, - T-
(0) = (p1,1, p2) ( o — 11 o — po

On the other hand, suppose that ¢*(s)

D(o1,1,09)e™0% is the eigenvector of A*

corresponding to —iwp. From the definition of A*, (3.5) and (3.6), we have

P1 + iwo 0 0 0
P2 — p3€™°T  py + p3e™T +iwy Do ()" =10 |,
0 Ps pr + iwp 0
which yields
* Ps T
0) = D(oy,1,05) = D(0,1, — — 25
'(0) = Dlor, 1,02) = DO.1, )

In order to assure (¢*(s),q(6)) = 1, we need to determine the value of D. From (3.7),

we have

—(pa + pr)w = p3w cosWT + psp7 sinwr,

(q"(s),4(0))

0
D1+ pagq — /
—i?wg'

D1+ pyGy + pste

= PsPg — PaP7 + P3w SIN WT — P3pr COS WT,

0 0
D(0,1,52)(p1, 17p2)T — / / 0,1, 52)€—i(£—9)wodn(9)(ph 1, pQ)TeingdE
—7Je=0

(07 17 52)96wwodn(9) (ph 17 pZ)T
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Thus we can choose
1

T 14 pa0n + pareinen’
such that (¢*(s),q(#)) =1, {(¢*(s),q(d)) = 0.

In the remainder of this section, we will compute the coordinates to describe the center
manifold Cy at u = 0. Let u; be the solution of eq. (3.2) with p = 0.

Define

2(t) = (q",ue), W(t,0) = ui(0) — 2Re{z(t)q(0)}. (3.9)

On the center manifold Cy, we have W (t,6) = W (z(t), z2(t),0), where

2 52

W (2(t), 2(t), 6) = wm(e)% W (0)25 + WOQ(G)% .

z and Z are local coordinates for center manifold Cy in the direction of ¢* and ¢*.

Note that W is real if u; is real. We only consider real solutions. For the solution

uy € Cy of (3.2), since = 0, we have

= iwez+(q7(0), F(0,W(2(1), 2(),0) + 2Re{zq(6)}))
= iwoz +q"(0)f(0, W(z(t), 2(t), 0) + 2Re{2q(0)})
= iwoz +q"(0)f(0, W(z(t), 2(t),0) + 2Re{2¢(0)})
= iwoz + ¢ (0)fo(2,2). (3.10)

We rewrite (3.10) as 2 = iwpz + g(z, z) with

2 22

z
9(2,2) = q°(0) fo(z, 2) = g +gnzzt g+ (3.11)

Noting that
up(0) = (u14(0), u2 (), us (0)) = W(t,0) + zq(0) + z2q(0)

and q(0) = (p1,1, p2)" e, we have

22 72
une(0) = prz + P17+ Wig (0) 5 + Wiy (0)27 + Wy (0) 5 + -+

22 52
st (0) = 2 + 2 + Wi (0 ) W (022 + Wi (0) 5+,
- —iwoT iwoT = @, 7 2/ =\._= @), \Z
gt (—=T) = €Tz + 0Tz + Wy (_7)5+W11 (=7)zz + W, (‘7')5"'"‘ )

22 52
u3(0) = paz + p2Z + WQ(S’)(O)E + Wl(f)(())zz + Wég’)(o)a e
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thus it follows from (3.4) and (3.11) that

) ! _

> it (0)us) (0)ul (—7)
i+j+1>2

_ (2), (4) (7) 0}

9(2,2) = q(0) fo(2,2) = D(51,1,52) _+§>2 i!jlm ijl Wat (0)us; (—=7)ug,; (0)

ij+1>
> S ul) 0)ul) (0)
i+5>2
> (1) (%% f2(1)2) (2) f200 (%;
= D(51(f110p1 + f011 emT + 79?)22 + (f110 ST 4 f1 P2 + == 795)22

2 2 5
+aa(fi7 P2 + 75 fzo + ;3),0 )2% + 71 (2f 11 Repy + 25 Ree ™07 + f) + féé%plﬁl)zz
+(2f1(foRee_W°T + 2f101Rep2 + f2 + f002p2p2)22 + 02(2f11)Rep2 + f2 f o png) >
b+ e+ B B g s S S
+oulfi'en + fm 02;) P+ o 33(W2%2 = W%( Lo+ W + WP )
)+ D WO gy + v o)+ )

ﬁlWQ(é)(O)

Wy (=7) , Wi(0)
2

2 2

twoT

1222 + [F (WD (—7) +

(3)
W 00, W O w2 ) + AV 0

_ W(3) 0
2o Oz 4 o1 (WD (0) +

W20 (0) ﬁ2W2(8) (0)

+ A2 (WP (0) +

W (0)e™07) + fior (W1 (0) +
Wéé (0)

(3) (2)
20 ( ) 20 ( ) —2

) + fooz(P2W1(f) (0) + 9 9

2 3 2 3 _
+Wfl>< 0)p2) + f30 (Wi (0) + =25°7) + 53 (02 W7 (0) + P22 4 )
Comparing the coefficients in (3.11), we get
g20 = (Ul(2f1lopl + 2f036ﬂw07 + fozo + f2 P?) + (2f1?())€7wm + 2f1((2)%p2 + f2 + foozpz)
Jra2(2fl1 P2 +f + f(gQ p3))D,
gu = (01 (2f110Rep1 + 2fouRe e + fo + fzooplpl)
(fofORee‘“OT + 2f101Re,02 + f200 + f002P2P2) + 02(2f1(1)Rep2 + f20 + f02 P2P2))D
g2 = (1(2f{1m + 2foiiew + foz0 + Fionpd) + 00T + 2£{0) oo + Fion + Fos3)
+52(2f ﬁ2+f +f02 p3))D,
1 2 _ 2 1 1 _ 2), _
g1 = (G1lf0 (Wi (0) + Wia (0)71 + 2WiT(0)p1 + 2W1(0)) + fi11 @S (—7) + Wi (—7)

+WS) (0)erT +2Wff>< 0)e™™) + fim W (0) + Wig (0))

+Fsop 2o WL (0) + 5 Wi (0)] + [FT @W D (—7) + Wi (—7) + Wia) (0)e™o”

+2W ()™ T) + o1 W (0) + W (0) + WS (0)s + 2W5 (0)pa) + Fion(2WLT(0)
TS (0)) + fioh(2pa W (0) + pa Wi (0))] + G [ (2W1Y) (0) + W3 (0)

FWS (0)p2 + 2W 3 (0)02) + £33 WS (0) + Wig) (0))
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+163 20aWiT(0) + W33 ()] D, (3.12)
We now compute Wyo(#) and Wiy (). It follows from (3.7) and (3.9) that

AW — 2Re{7*(0) £(0)q(6)},6 € (0,7],

AW — 2Re{q* (0) £(0)q(0)} + fo,0 = 0 = AW + H(z,2,0), (3.13)

W_m—m—m_{

where
2 2

H(z,7,0) = Hal0) 5 + Hi(0)27 + HOQ(e)% Foen (3.14)
On the other hand, on Cj near the origin
W =W.2+ W32, (3.15)
we derive from (3.13)—(3.15) that
(A — 2iwg)Wao(0) = —Hao(0), AW11(0) = —H11(0),--- . (3.16)
It follows from (3.11)and (3.13) that for 6 € [—7,0),

H(z,2,0) = =" (0)f(0)q(0) — ¢"(0) f(0)q(6) = —gq(¥) — ga(0). (3.17)

Comparing the coefficients in (3.14) and formula of g(z, z) gives that for 6 € [—7,0),

Hao(0) = —g20q(0) — Go2q(0) (3.18)
and

Hyi(0) = —g119(0) — §114(0). (3.19)
We derive from (3.16) and (3.18) and the definition of A that

Wao(0) = 2iwoWao(0) + g20q(8) + Go2d(0).
Note that q(6) = q(0)e™°?, it follows that

Wao(8) = 22 4(0)ei=0? + 12 G(0)e=i0b 1 (it (3.20)
wWo 3(4}0
where C = (Cf”,C{Q), C’f?’)) € R3 is a constant vector.
Similarly, from (3.16) and (3.19), we can obtain

i , ig ,
Wi (6) = =22 q(0)e™? + T g0)e " + C, (3.21)
wo Wo
where C5 = (Cél), 02(2), C’ég)) € R? is a constant vector.
In the following, we seek appropriate Cy and Cs. From the definition of A and (3.16),
we obtain

-7



966

Journal of Mathematics

Vol. 37

and

—7

where n(0) = n(0,60). From (3.13), it follows that

Hy4(0) = —g20q(0)

H11(O) = —911Q(0)

/ dn(0)W11(0) = —H1:(0),

(€]

1 1) —iwor 1
2f1(1())P1 + 2f(§1%€ o7 + foan + f(O%pl
. 2) _iwoT 2 2
— G02q(0) + 2f1(1())e o+ 2f1(0%/02 + f2(0()) + foozpz
3 3 3
2102+ 1) + f53p
2f1(i())Rel)1 + 2f(§1%Re€_W°T + fozo + f200/)1:01

—g119(0) + fofg)Ree_wM + 2flo)ReP2 + fzoo + f002P2P2

2f11 Repa + f20 + f02 P2p2

Substituting (3.20) and (3.24) into (3.22) and noticing that

and

we obtain

0
(inol—/ e

which leads to

It follows that

(twol — / e™%dn(6))q(0) = 0

-7

(il — / =00 dn(9))q(0) = 0,

1)

00P1

2
0%/’%

. 2f110P1 + 2f01167w0T + fo + f(
2wotn(@))Cy = | 2707 1218 + 12 4 11
2f(3)P2 + f(3) + f(3)
2wy — p1 —pa + pae” 2T 0
0 2iwg — py — pge 2T —DPs Ch
0 —DPs 21wy — pr
1 (1 e—iwoT
2f1(12)ﬁ’1 + 2f0 : o+ fozo + f2oop1
2) i (2
2f1(1) “o + 2f10102 + fzoo + foo%ﬂ%
2f11 p2 + f20 + f02
. 2% _ —1
2iwy — Py —p2 + pze” T 0
0 2iwg — py — pge 20T —Ds
0 —Ds 2iwg — pr
2f1 oP1 + 2f 11€_WOT + fo + f200p1
() —iwnr 2
2f11()) woT 2f1(01:02 =+ f2 + f002P2
3 3
2f1(1):02+f2 f()

(3.23)

(3.24)

. (3.25)
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Similarly, substituting (3.21) and (3.25) into (3.23), we get

—p1 —patps O 2f{10Re(p1) + 251 Re(e07) + fi3) + f%&mpl
2 72&) T 2 2
0 —pi—p3 —ps |Co= 2f1(1% Re(e™°T) + 2fl(oiRe(P2) + f2(0<)) + f002ﬂ2/’2
0 —Ds —p7 2f D Re(po) + £33 + 185 pai

Thus we can determine Waq(#) and Wi1(0) from (3.20) and (3.21). Furthermore, we can
determine go;. Therefore, each g;; in (3.12) is determined by the parameters and delay in

system (3.1). Thus we can compute the following values

) 2
c1(0) = 2; (911920 — 2|g11|* — ‘902‘ )+ %7

[ = gggl,(T)}, By = 2Re{c1(0)} (3.26)
T2 _ _ Imcy(0)+peIm) (7)
wo )

which determine the quantities of bifurcating periodic solutions in the center manifold at the
critical value 7, i.e., yo determines the direction of the Hopf bifurcation: if ps > 0 (u2 < 0),
then the Hopf bifurcation is supercritical(subcritical) and the bifurcating periodic solutions
exist for 7 > 7 (7 < T); [ determines the stability of the bifurcating periodic solutions: the
period increase (decrease) if 7o > 0 (T3 < 0).

From what has been discussed above, we could determine the stability and direction of

periodic solutions bifurcating from the positive equilibrium E* at the critical pint 7g,.
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