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Abstract: In this paper, we investigate the relationships among the convergence concepts

on quasi-probability space. By using analogy method, some new convergence concepts for quasi-

random variables are proposed on quasi-probability space and the relationships among the con-

vergence concepts are discussed. Convergence theory about fuzzy measure is obtained, and all

conclusions are natural extensions of the classical convergence concepts to the case where the mea-

sure tool is fuzzy.
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1 Introduction

Convergence theory was well developed based on classical measure theory, and some
applications can be found in [1–3]. As for convergence theory in fuzzy environments, in-
formation and data are usually vague or imprecise which is essentially different from the
classical measure case [4–6]. Therefore, it is more reasonable to utilize quasi-probability
measure, which is an important extension of probability measure [1–2] to deal with fuzzi-
ness, to study such convergence theory. Quasi-probability measure was introduced by Wang
[6], which offered an efficient tool to deal with fuzzy information fusion, subjective judge-
ment, decision making, and so forth [7–11].

Convergence concepts play an important role in classical measure theory. Some math-
ematics workers explored them for fuzzy (or non-additive) measures such as Liu [12–13],
Wang [14], Zhang [4–5], Gianluca [15], and so on. While the measure tool is non-additive,
the convergence concepts are very different from additive case. In order to investigate quasi-
probability theory deeper, we will propose in the present paper some new convergence con-
cepts on quasi-probability space, and discuss the relationships among the convergence con-
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cepts. Our work helps to build important theoretical foundations for the development of
quasi-probability measure theory.

The paper is outlined as follows: Section 1 is for introduction. In Section 2, some
preliminaries are given. In Section 3, we study convergence concepts of q-random variables
sequence and, ultimately, Section 4 is for conclusions.

2 Quasi-Probability Measure

In this paper, let X be a nonempty set and (X,F) be a measurable space, here F is a
σ-algebra of X. If A, B ∈ F , then the notation A ⊂ B means that A is a subset of B, and
the complement of A is denoted by Ac.

Definition 2.1 [6] Let a ∈ (0,+∞], an extended real function is called a T -function iff
θ : [0, a] → [0,+∞] is continuous, strictly increasing, and such that θ(0) = 0, θ−1({∞}) = ∅
or {∞}, according to a being finite or not.

Let a ∈ (0,+∞], an extended real function θ : [0, a] → [0,+∞] is called a regular
function, if θ is continuous, strictly increasing, and θ(0) = 0, θ(1) = 1 [10].

Obviously, if θ is a regular function, then θ−1 is also a regular function.
Definition 2.2 [6] µ is called quasi-additive iff there exists a T -function θ, whose

domain of definition contains the range of µ , such that the set function θ ◦ µ defined on F
by (θ ◦ µ)(E) = θ [µ(E)] (∀E ∈ F), is additive; µ is called a quasi-measure iff there exists
a T -function θ such that θ ◦ µ is a classical measure on F . The T -function θ is called the
proper T -function of µ.

Definition 2.3 If θ is a regular T -function of µ, then µ is called a quasi-probability.
The triplet (X,F , µ) is called a quasi-probability space.

From Definition 2.3, we know probability is a quasi-probability with θ(x) = x as its
T -function.

Example 2.1 Suppose that X = {1, 2, · · · , n}, ρ(X) is the power set of X. If

µ(E) = (
|E|
n

)2,

where |E| is the number of those points that belong to E, then µ is a quasi-probability with
θ(x) =

√
x, x ∈ [0, 1] as its T -function [6].

Definition 2.4 Let (X,F , µ) be a quasi-probability space, and ξ = ξ(ω), ω ∈ X, be
a real set function on X. For any given real number x, if {ω| ξ(ω) ≤ x} ∈ F , then ξ is
called a quasi-random variable, denoted by q-random variable. The distribution function of
q-random variable ξ is defined by Fµ(x) = µ{ω ∈ X| ξ(ω) ≤ x}.

Let ξ and η be two q-random variables. For any given real numbers x, y, if

µ(ξ ≤ x, η ≤ y) = θ−1[(θ ◦ µ)(ξ ≤ x) · (θ ◦ µ)(η ≤ y)],

then ξ and η are independent q-random variables [10].
Theorem 2.1 Let µ be a quasi-probability on F . Then there exists a regular T -function

θ, such that θ ◦ µ is a probability on F [4].
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Theorem 2.2 If µ is a quasi-probability, then µ is continuous and µ(∅) = 0 [4].
Theorem 2.3 Let µ be a quasi-probability on F , A,B ∈ F , then we have
(1) if A ⊂ B, then µ(A) < µ(B);
(2) if µ(A) = 0, then µ(Ac) = 1;
(3) µ(A

⋃
B) ≤ θ−1[(θ ◦ µ)(A) + (θ ◦ µ)(B)].

Proof (1) Since A ⊂ B, and there exists a T -function θ such that θ ◦µ is a probability,
we have (θ ◦ µ)(A) < (θ ◦ µ)(B), θ is continuous, strictly increasing, it is clear that µ(A) <

µ(B).
(2)Since θ ◦ µ is a probability, one can have

1 = (θ ◦ µ)(X) = (θ ◦ µ)(A
⋃

Ac) = (θ ◦ µ)(A) + (θ ◦ µ)(Ac),

which implies that

(θ ◦ µ)(Ac) = 1− (θ ◦ µ)(A) = 1− θ(µ(A)) = 1− θ(0) = 1,

namely, θ(µ(Ac)) = 1. It follows from the regularity of θ that µ(Ac) = 1.

(3) θ ◦ µ is a probability, we have

(θ ◦ µ)(A
⋃

B) ≤ (θ ◦ µ)(A) + (θ ◦ µ)(B),

that is,
µ(A

⋃
B) ≤ θ−1[(θ ◦ µ)(A) + (θ ◦ µ)(B)].

3 Convergence Concepts of q-Random Variables Sequence

In the section, we introduce some new convergence concepts such as convergence almost
surely, convergence in distribution, fundamental convergence almost everywhere, fundamen-
tal convergence in quasi-probability, etc., and we will investigate the relationships among
the convergence concepts.

Definition 3.1 [4] Suppose that ξ, ξ1, ξ2, · · · , ξn, · · · are q-random variables defined
on the quasi-probability space (X,F , µ). If

µ{ lim
n→∞

ξn = ξ} = 1,

then we say that {ξn} converges almost surely to ξ. Denoted by

lim
n→∞

ξn = ξ (µ− a.s.).

Definition 3.2 Suppose that ξ, ξ1, ξ2, · · · , ξn, · · · are q-random variables defined on
the quasi-probability space (X,F , µ). If there exists E ∈ F with µ(E) = 0 such that {ξn}
converges to ξ on Ec, then we say {ξn} converges to ξ almost everywhere. Denoted by

ξn → ξ (a.e.).
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Definition 3.3 Suppose that ξ1, ξ2, · · · , ξn, · · · are q-random variables defined on
the quasi-probability space (X,F , µ). If there exists E ∈ F with µ(E) = 0 such that for any
x ∈ Ec,

lim
n, m→∞

(ξn(x)− ξm(x)) = 0,

then we say {ξn} is fundamentally convergent almost everywhere.
Definition 3.4 [4] Suppose that ξ1, ξ2, · · · , ξn, · · · is a sequence of q-random variables.

If there exists a q-random variable ξ, such that ∀ε > 0,

lim
n→∞

µ{| ξn − ξ |≥ ε} = 0,

namely,
lim

n→∞
µ{| ξn − ξ |< ε} = 1,

then we say that {ξn} converges in quasi-probability to ξ. Denoted by

ξn → ξ (µ).

Definition 3.5 Suppose that ξ1, ξ2, · · · , ξn, · · · are q-random variables. If for any
given ε > 0,

lim
n, m→∞

µ(|ξn − ξm| ≥ ε) = 0,

then we say {ξn} fundamentally converges in quasi-probability.
Definition 3.6 Suppose that Fµ(x), F 1

µ(x) F 2
µ(x) · · · are the distribution functions of

q-random variables ξ, ξ1, ξ2, · · · , respectively. The sequence {ξn} is said to be convergent
in distribution to ξ if

lim
n→∞

F n
µ (x) = Fµ(x)

at any continuity point of Fµ(x).
Theorem 3.1 If {ξn} converges in quasi-probability to ξ, then {ξn} fundamentally

converges in quasi-probability.
Proof Suppose that {ξn} converges in quasi-probability to ξ, then for any given ε > 0,

we have
lim

n→∞
µ{| ξn − ξ |≥ ε

2
} = 0.

According to [2],

{|ξn − ξm| ≥ ε} ⊂ {|ξn − ξ| ≥ ε

2
}
⋃
{|ξm − ξ| ≥ ε

2
}.

It follows from Theorem 2.3 that

µ{|ξn − ξm| ≥ ε} ≤ µ[{|ξn − ξ| ≥ ε

2
}
⋃
{|ξm − ξ| ≥ ε

2
}]

≤ θ−1[(θ ◦ µ){|ξn − ξ| ≥ ε

2
}+ (θ ◦ µ){|ξm − ξ| ≥ ε

2
}].
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And θ, θ−1 are strictly increasing and continuous,

lim
n, m→∞

µ{|ξn − ξm| ≥ ε} ≤ lim
n, m→∞

θ−1[(θ ◦ µ){|ξn − ξ| ≥ ε

2
}+ (θ ◦ µ){|ξm − ξ| ≥ ε

2
}]

= θ−1[θ( lim
n→∞

µ{|ξn − ξ| ≥ ε

2
}) + θ( lim

m→∞
µ{|ξm − ξ| ≥ ε

2
})]

= θ−1[θ(0) + θ(0)] = θ−1(0) = 0.

This means that {ξn} fundamentally converges in quasi-probability.
Lemma 3.1 [2] Suppose that ξn, ξ ∈ F , and for any given εk > 0, lim

n→∞
εk = 0, then

we have
(1) {ξn → ξ} =

⋂
ε>0

∞⋃
m=1

∞⋂
n=m

{|ξn − ξ| ≥ ε} =
∞⋂

k=1

∞⋃
m=1

∞⋂
n=m

{|ξn − ξ| < εk};

(2) {|ξn − ξm| → 0} =
∞⋂

ε>0

∞⋃
n=1

∞⋂
v=1

{|ξn+v − ξn| < ε} =
∞⋂

k=1

∞⋃
n=1

∞⋂
v=1

{|ξn+v − ξn| < εk}.
Theorem 3.2 Suppose that ξ1, ξ2, · · · , ξn, · · · are q-random variables, then

ξn → ξ (a.e.)

if and only if

µ(
∞⋂

n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ ε} = 0, ∀ε > 0

if and only if

lim
n→∞

µ(
∞⋃

v=1

{|ξn+v − ξ| ≥ ε}) = 0, ∀ε > 0.

Proof If ξn → ξ a.e., then ∀ε > 0. According to Lemma 3.1,

µ(
∞⋂

n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ ε} ≤ µ(
⋃
ε>0

∞⋂
n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ ε} = µ({ξn → ξ}c) = 0.

On the other hand, if

µ(
∞⋂

n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ ε} = 0, ∀ε > 0,

then for any given εk > 0, lim
k→∞

εk = 0, it follows from Theorems 2.1 and 2.3 that

µ({ξn → ξ}c) = µ(
∞⋃

k=1

∞⋂
n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ εk})

= θ−1[(θ ◦ µ)(
∞⋃

k=1

∞⋂
n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ εk})]

≤ θ−1[
∞∑

k=1

(θ ◦ µ)(
∞⋂

n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ εk})]

= θ−1[
∞∑

k=1

θ(µ(
∞⋂

n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ εk}))] = θ−1(0) = 0,



1004 Journal of Mathematics Vol. 37

that is ξn → ξ a.e.. And since
∞⋃

v=1

{|ξn+v − ξ| ≥ ε}

is decreasing for n, it follows from the continuity of µ that

µ(
∞⋂

n=1

∞⋃
v=1

{|ξn+v − ξ| ≥ ε} = lim
n→∞

µ(
∞⋃

v=1

{|ξn+v − ξ| ≥ ε}).

Now the theorem is proved.
Theorem 3.3 [4] Suppose that ξ, ξ1, ξ2, · · · , ξn, · · · are q-random variables defined

on the quasi-probability space (X,F , µ). If {ξn} converges almost surely to ξ, then {ξn}
converges in quasi-probability to ξ.

Example 3.1 [4] Suppose that ξ1, ξ2, · · · , ξn, · · · are independent q-random variables
defined on the quasi-probability space (X,F , µ). If

µ{ξn =
1
n
} = 1− 1

n
, µ{ξn = n + 1} =

1
n

, n = 1, 2, · · · ,

then {ξn} converges in quasi-probability to 0. However, {ξn} does not converges almost
surely to 0.

Theorem 3.3 shows that convergence almost surely implies convergence in quasi-probability.
Example 3.1 shows that convergence in quasi-probability does not imply convergence almost
surely. But for independent q-random series, convergence almost surely is equivalent to
convergence in quasi-probability.

Theorem 3.4 [4] If {ξn} is a sequence of independent q-random variables, then
∞∑

n=1

ξn

converges almost surely if and only if
∞∑

n=1

ξn converges in quasi-probability.

Theorem 3.5 Suppose that ξ, ξ1, ξ2, · · · , ξn, · · · are q-random variables defined on
the quasi-probability space (X,F , µ). If {ξn} converges in quasi-probability to ξ, then {ξn}
converges in distribution to ξ.

Proof Assume that F n
µ (x), Fµ(x) are the distribution functions of ξn, ξ, respectively.

Let x, y, z be the given continuity points of the distribution function Fµ(x).
On the one hand, for any y < x, we have

{ξ ≤ y} = {ξn ≤ x, ξ ≤ y}
⋃
{ξn > x, ξ ≤ y} ⊂ {ξn ≤ x}

⋃
{|ξn − ξ| ≥ x− y}.

It follows from Theorem 2.3 that

µ{ξ ≤ y} ≤ µ[{ξn ≤ x}
⋃
{|ξn − ξ| ≥ x− y}]

≤ θ−1[(θ ◦ µ){ξn ≤ x}+ (θ ◦ µ){|ξn − ξ| ≥ x− y}].

Since {ξn} converges in quasi-probability to ξ, and θ, θ−1 are continuous, we have

µ{ξ ≤ y} ≤ θ−1[θ( lim
n→∞

µ{ξn ≤ x}) + θ( lim
n→∞

µ{|ξn − ξ| ≥ x− y})]
= θ−1[θ( lim

n→∞
µ{ξn ≤ x}) + θ(0)] = θ−1[θ( lim

n→∞
µ{ξn ≤ x})],



No. 5 Convergence theory on quasi-probability measure 1005

which implies that

Fµ(y) ≤ lim
n→∞

F n
µ (x)

for any y < x.

Let y → x, we obtain

Fµ(x) ≤ lim
n→∞

F n
µ (x).

On the other hand, for any z > x, we have

{ξn ≤ x} = {ξn ≤ x, ξ ≤ z}
⋃
{ξn ≤ x, ξ > z} ⊂ {ξ ≤ z}

⋃
{|ξn − ξ| ≥ z − x}.

Since µ{|ξn − ξ| ≥ z − x} → 0 as n →∞, and θ, θ−1 are continuous, we get

lim
n→∞

µ{ξn ≤ x} ≤ θ−1[θ( lim
n→∞

µ{ξ ≤ z}) + θ( lim
n→∞

µ{|ξn − ξ| ≥ z − x})]
= θ−1[θ( lim

n→∞
µ{ξ ≤ z}) + θ(0)] = θ−1[θ( lim

n→∞
µ{ξ ≤ z})] = µ{ξ ≤ z}.

It means that

lim
n→∞

F n
µ (x) ≤ Fµ(z)

for any z > x. Let z → x, we get

lim
n→∞

F n
µ (x) ≤ Fµ(x).

Finally, one can see that

lim
n→∞

F n
µ (x) = Fµ(x),

that is to say {ξn} converges in distribution to ξ.

According to Theorems 3.3 and 3.5, we conclude that convergence almost surely implies
convergence in quasi-probability; convergence in quasi-probability implies convergence in
distribution.

4 Conclusions

This paper proposed some new convergence concepts for quasi-random variables. Firstly,
the properties of quasi-probability measure were further discussed. Secondly, the concepts
of convergence in quasi-probability, convergence almost surely, convergence in distribution
and convergence almost everywhere were introduced on quasi-probability space. Finally,
the relationships among the convergence concepts were investigated in detail. All investiga-
tions helped to lay important theoretical foundations for the systematic and comprehensive
development of quasi-probability measure theory.
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关于拟概率测度的收敛理论

张春琴,张 辉

(河北大学数学与信息科学学院, 河北保定 071002)

摘要: 本文研究了拟概率空间上收敛概念之间的关系这一问题. 利用类比的方法, 在拟概率空间上提

出了一些新的关于拟-随机变量的收敛概念并讨论了这些收敛概念之间的关系, 获得了模糊测度下的收敛理

论, 推广了关于经典测度的收敛概念.
关键词: 拟概率测度; 收敛理论; 收敛概念; 拟-随机变量
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