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1 Introduction

According to Chen [1], one of the most important problems in submanifold theory is
to find simple relationships between the main extrinsic invariants and the main intrinsic
invariants of a submanifold. Related with famous Nash embedding theorem [2], Chen intro-
duced a new type of Riemannian invariants, known as δ-invariants [3, 4, 5]. The author’s
original motivation was to provide answers to a question raised by Chern concerning the
existence of minimal isometric immersions into Euclidean space [6]. Therefore, Chen ob-
tained a necessary condition for the existence of minimal isometric immersion from a given
Riemannian manifold into Euclidean space and established inequalities for submanifolds in
real space forms in terms of the sectional curvature, the scalar curvature and the squared
mean curvature [7]. Later, he established general inequalities relating δ(n1, · · · , nk) and
the squared mean curvature for submanifolds in real space forms [8]. Similar inequalities
also hold for Lagrangian submanifolds of complex space forms. In [9], Chen proved that,
for any δ(n1, · · · , nk), the equality case holds if and only if the Lagrangian submanifold is
minimal. This interesting phenomenon inspired people to look for a more sharp inequality.
In 2007, Oprea improved the inequality on δ(2) for Lagrangian submanifolds in complex
space forms[10]. Recently, Chen and Dillen established general inequalities for Lagrangian
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submanifolds in complex space forms and provided some examples showing these new im-
proved inequalities are best possible [11]. Such invariants and inequalities have many nice
applications to several areas in mathematics [12].

Afterwards, many papers studied similar problems for different submanifolds in various
ambient spaces, like complex space forms [13], Sasakian space forms [14], (κ, µ)-contact
space forms [15], Lorentzian manifold [16], Euclidean space [17] and locally conformal almost
cosymplectic manifolds [18].

This paper is organized as follows. In Section 2, the basic elements of the theory
of δ-invariants are briefly presented. In Section 3, we establish general inequalities of δ-
invariants for submanifolds of a Riemannian manifold of quasi-constant curvature [19], which
generalize a result of paper [20]. In Section 4, we obtain an inequality between the Ricci
curvature and the squared mean curvature for submanifolds of the ambient space by using a
algebraic lemma. Finally, in Section 5, we establish inequalities between the warping function
f (intrinsic structure) and the squared mean curvature (extrinsic structure) for warped
product submanifolds M1 ×f M2 in a Riemannian manifold of quasi-constant curvature, as
another answer of the basic problem in submanifold theory which we have mentioned in the
introduction.

2 Preliminaries

In [19], Chen and Yano introduced the notion of a Riemannian manifold (N, g) of
quasi-constant curvature as a Riemannian manifold with the curvature tensor satisfying the
condition

R(X, Y, Z, W ) = a[g(X, Z)g(Y, W )− g(Y, Z)g(X, W )] + b[g(X, Z)T (Y )T (W )

− g(X, W )T (Y )T (Z) + g(Y, W )T (X)T (Z)− g(Y, Z)T (X)T (W )],
(2.1)

where a, b are scalar functions and T is a 1-form defined by

g(X, P ) = T (X) (2.2)

and P is a unit vector field. If b = 0, it can be easily seen that the manifold reduces to a
space of constant curvature.

Decomposing the vector field P on M uniquely into its tangent and normal components
P T and P⊥, respectively, we have

P = P T + P⊥. (2.3)

Let M be an n-dimensional submanifold of an (n+p)-dimensional Riemannian manifold
of quasi-constant curvature Nn+p. The Gauss equation is given by

R(X, Y, Z, W ) = R(X, Y, Z, W ) + g(h(X, Z), h(Y, W ))− g(h(X, W ), h(Y, Z)) (2.4)

for all X, Y, Z, W ∈ TM , where R and R are the curvature tensors of M and Nn+p, respec-
tively, and h is the second fundamental form.
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In Nn+p we choose a local orthonormal frame e1, · · · , en, en+1, · · · , en+p, such that,
restricting to Mn, e1, · · · , en are tangent to Mn. We write hr

ij = g(h(ei, ej), er). The mean

curvature vector ζ is given by ζ =
n+p∑

r=n+1

( 1
n

n∑
i=1

hr
ii)er, then the mean curvature H is given by

H =‖ ζ ‖ .

Let K(ei ∧ ej), 1 ≤ i < j ≤ n, denote the sectional curvature of the plane section
spanned by ei and ej . Then the scalar curvature of Mn is given by

τ =
∑

1≤i<j≤n

K(ei ∧ ej). (2.5)

Let L be an l-dimensional subspace of TxM , x ∈ M , l ≥ 2 and {e1, · · · , el} an orthonor-
mal basis of L. We define the scalar curvature τ(L) of the l-plane L by

τ(L) =
∑

1≤α<β≤l

K(eα ∧ eβ). (2.6)

For simplicity we put

Ψ(L) =
∑

1≤i<j≤l

[g(P T , ei)2 + g(P T , ej)2]. (2.7)

For an integer k ≥ 0 we denote by S(n, k) the set of k-tuples (n1, · · · , nk) of integers ≥ 2
satisfying n1 < n and n1 + · · · + nk ≤ n. We denote by S(n) the set of unordered k-tuples
with k ≥ 0 for a fixed n. For each k-tuples (n1, · · · , nk) ∈ S(n), Chen defined a Riemannian
invariant δ(n1, · · · , nk) as follows [8]

δ(n1, · · · , nk)(x) = τ(x)− S(n1, · · · , nk)(x), (2.8)

where S(n1, · · · , nk)(x) = inf{τ(L1) + · · ·+ τ(Lk)}, and L1, · · · , Lk run over all k mutually
orthogonal subspaces of TxM such that dimLj = nj , j ∈ {1, · · · , k}. For each (n1, · · · , nk) ∈
S(n), we put

c(n1, · · · , nk) =
n2

(
n + k − 1−

k∑
j=1

nj

)

2
(
n + k −

k∑
j=1

nj

) , d(n1, · · · , nk) =
1
2
[n(n− 1)−

k∑
j=1

nj(nj − 1)].

For a differentiable function f on M , the Laplacian 4f of f is defined by

4f =
n∑

i=1

[(∇ei
ei)f − eieif ].

We shall use the following lemmas.
Lemma 2.1 [7] Let a1, a2, · · · , an, b be (n + 1)(n ≥ 2) real numbers such that

(
n∑

i=1

ai)2 = (n− 1)(
n∑

i=1

a2
i + b),
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then 2a1a2 ≥ b, with the equality holding if and only if a1 + a2 = a3 = · · · = an.

Lemma 2.2 Let f(x1, x2, · · · , xn) be a function in Rn defined by

f(x1, x2, · · · , xn) = x1

n∑
i=2

xi.

If x1 + x2 + · · ·+ xn = 2λ, then we have f(x1, x2, · · · , xn) ≤ λ2, with the equality holding if
and only if x1 = x2 + x3 + · · ·+ xn = λ.

Proof From x1 + x2 + · · ·+ xn = 2λ, we have
n∑

i=2

xi = 2λ− x1. It follows that

f(x1, x2, · · · , xn) = x1(2λ− x1) = −(x1 − λ)2 + λ2,

which represents Lemma 2.2 to prove.

3 Chen’s General Inequalities

Theorem 3.1 If Mn (n ≥ 3) is a submanifold of a Riemannian manifold of quasi-
constant curvature Nn+p, then we have

δ(n1, · · · , nk) ≤ c(n1, · · · , nk)H2 + d(n1, · · · , nk)a + b[(n− 1) ‖ P T ‖2 −
k∑

j=1

Ψ(Lj)] (3.1)

for any k-tuples (n1, · · · , nk) ∈ S(n). The equality case of (3.1) holds at x ∈ Mn if and
only if there exist an orthonormal basis {e1, · · · , en} of TxM and an orthonormal basis
{en+1, · · · , en+p} of T⊥x M such that the shape operators of Mn in Nn+p at x have the
following forms

Aen+1 =




a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an




, Aer
=




Ar
1 · · · 0 0
...

. . .
...

...
0 · · · Ar

k 0
0 · · · 0 µrI




, r = n + 2, · · · , n + p,

where a1, · · · , an satisfy

a1 + · · ·+ an1 = · · · = an1+···+nk−1+1 + · · ·+ an1+···+nk
= an1+···+nk+1 = · · · = an

and each Ar
j is a symmetric nj × nj submatrix satisfying trace(Ar

1) = · · · = trace(Ar
k) = µr,

I is an identity matrix.

Remark 3.2 For δ(2), inequality (3.1) is due to Cihan Özgür [20, Theorem 3.1].

Proof Let x ∈ Mn and {e1, e2, · · · , en} and {en+1, en+2, · · · , en+p} be orthonormal
basis of TxMn and T⊥x Mn, respectively, such that the mean curvature vector ζ is in the
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direction of the normal vector to en+1. For convenience, we set

ai = hn+1
ii , i = 1, 2, · · · , n,

b1 = a1, b2 = a2 + · · ·+ an1 , b3 = an1+1 + · · ·+ an1+n2 , · · · ,

bk+1 = an1+···+nk−1+1 + · · ·+ an1+n2+···+nk−1+nk
,

bk+2 = an1+···+nk+1, · · · , bγ+1 = an,

∆1 = {1, · · · , n1}, · · · ,

∆k = {(n1 + · · ·+ nk−1) + 1, · · · , n1 + · · ·+ nk},
∆k+1 = (∆1 ×∆1) ∪ · · · ∪ (∆k ×∆k).

Let L1, · · · , Lk be mutually orthogonal subspaces of TxM with dimLj = nj , defined by

Lj = Span{en1+···+nj−1+1, · · · , en1+···+nj
}, j = 1, · · · , k.

From (2.4), (2.6) and (2.7) we have

τ(Lj) =
nj(nj − 1)

2
a + bΨ(Lj) +

n+p∑
r=n+1

∑
αj<βj

[hr
αjαj

hr
βjβj

− (hr
αjβj

)2], (3.2)

2τ = n(n− 1)a + 2b(n− 1) ‖ P T ‖2 +n2H2− ‖ h ‖2 . (3.3)

We can rewrite (3.3) as n2H2 = (‖ h ‖2 +η)γ, or equivalently,

(
n∑

i=1

hn+1
ii )2 = γ[

n∑
i=1

(hn+1
ii )2 +

∑
i 6=j

(hn+1
ij )2 +

n+p∑
r=n+2

n∑
i,j=1

(hr
ij)

2 + η], (3.4)

where

η = 2τ − 2c(n1, · · · , nk)H2 − n(n− 1)a− 2(n− 1)b ‖ P T ‖2, (3.5)

γ = n + k −
k∑

j=1

nj .

From (3.4) we deduce

(
γ+1∑
i=1

bi)2 = γ[η+
γ+1∑
i=1

b2
i +

∑
i 6=j

(hn+1
ij )2+

n+p∑
r=n+2

n∑
i,j=1

(hr
ij)

2−2
∑

α1<β1

aα1aβ1−· · ·−2
∑

αk<βk

aαk
aβk

],

where αj , βj ∈ ∆j , for all j = 1, · · · , k. Applying Lemma 2.1, we derive

k∑
j=1

∑
αj<βj

aαj
aβj

≥ 1
2
[η +

∑
i 6=j

(hn+1
ij )2 +

n+p∑
r=n+2

n∑
i,j=1

(hr
ij)

2],
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it follows that

k∑
j=1

n+p∑
r=n+1

∑
αj<βj

[hr
αjαj

hr
βjβj

− (hr
αjβj

)2] ≥ η

2
+

1
2

n+p∑
r=n+1

∑

(α,β)/∈∆k+1

(hr
αβ)2 +

n+p∑
r=n+2

∑
αj∈∆j

(hr
αjαj

)2

≥ η

2
.

(3.6)
From (3.2) and (3.6) we have

k∑
j=1

τ(Lj) ≥
k∑

j=1

[
nj(nj − 1)

2
a + bΨ(Lj)] +

1
2
η. (3.7)

Using (2.8), (3.5) and (3.7), we derive the desired inequality.
The equality case of (3.1) at a point x ∈ M holds if and only if we have the equality

in all the previous inequalities and also in Lemma 2.1, thus, the shape operators take the
desired forms.

4 Chen-Ricci Inequalities

In [21], Chen established a sharp relationship between the Ricci curvature and the
squared mean curvature for any n-dimensional Riemannian submanifold of a real space form
Rm(c) of constant sectional curvature c as follows

Theorem 4.1 (see [21, Theorem 4]) Let M be an n-dimensional submanifold of a real
space form Rm(c). Then the following statements are true.

(1) For each unit vector X ∈ TpM , we have

‖ζ‖2 ≥ 4
n2

[Ric(X)− (n− 1)c]. (4.1)

(2) If ζ(p) = 0, then a unit vector X ∈ TpM satisfies the equality case of (4.1) if and
only if X belongs to the relative null space N(p) given by

N(p) = {X ∈ TpM | h(X, Y ) = 0, ∀Y ∈ TpM}.

(3) The equality case of (4.1) holds for all unit vectors X ∈ TpM if and only if either p

is a geodesic point or n = 2 and p is an umbilical point.
Afterwards, many papers studied similar problems for different submanifolds in various

ambient manifolds [22–24]. Thus, after putting an extra condition on the ambient manifold,
like semi-symmetric metric connections in the case of real space forms [25] and curvature-like
tensors in the case of a Riemannian manifold [26], one proves the results similar to that of
Theorem 4.1.

In [20], Özgür obtained several Chen’s inequalities for submanifolds of a Riemannian
manifold of quasi-constant curvature. However, he didn’t establish an inequality between
the clssical Ricci-curvature and the squared mean curvature. Under these circumstances it
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becomes necessary to give a theorem, which could present an inequality between the Ricci-
curvature and the squared mean curvature for submanifolds in the ambient manifold.

Theorem 4.2 Let Mn be an n-dimensional submanifold of an (n + p)-dimensional
Riemannian manifold of quasi-constant curvature Nn+p. For each unit vector X in TxM we
have

Ric(X) ≤ (n− 1)a + (n− 2)bg(P T , X)2 + b ‖ P T ‖2 +
n2

4
H2. (4.2)

The equality sign holds for any tangent vector X in TxM if and only if either x is a totally
geodesic point or n = 2 and x is an umbilical point.

Remark 4.3 For b = 0, inequality (4.2) is due to (4.1).
Remark 4.4 We should point out that our approach is different from Chen’s.
Proof Let x ∈ Mn and {e1, e2, · · · , en} and {en+1, en+2, · · · , en+p} be orthonormal

basis of TxMn and T⊥x Mn, respectively, such that X = e1. From equations (2.1), (2.2), (2.3)
and (2.4) it follows that

Rijij = a + b[g(P T , ei)2 + g(P T , ej)2] +
n+p∑

r=n+1

[hr
iih

r
jj − (hr

ij)
2]. (4.3)

Using (4.3) one derives

Ric(X) =
n∑

i=2

R1i1i = (n− 1)a + (n− 1)bg(P T , e1)2

+b

n∑
i=2

g(P T , ei)2 +
n+p∑

r=n+1

n∑
i=2

[hr
11h

r
ii − (hr

1i)
2]

≤ (n− 1)a + (n− 2)bg(P T , X)2 + b ‖ P T ‖2 +
n+p∑

r=n+1

n∑
i=2

hr
11h

r
ii. (4.4)

Let us consider the quadratic forms fr : Rn → R, defined by

fr(hr
11, h

r
22, · · · , hr

nn) =
n∑

i=2

hr
11h

r
ii.

We consider the problem max fr, subject to Γ : hr
11 + hr

22 + · · ·+ hr
nn = kr, where kr is

a real constant.
From Lemma 2.2, we see that the solution (hr

11, h
r
22, · · · , hr

nn) of the problem in question
must satisfy

hr
11 =

n∑
j=2

hr
jj =

kr

2
, (4.5)

which implies

fr ≤ (kr)2

4
. (4.6)
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From (4.4) and (4.6) we have

Ric(X) ≤ (n− 1)a + (n− 2)bg(P T , X)2 + b ‖ P T ‖2 +
n+p∑

r=n+1

(kr)2

4

= (n− 1)a + (n− 2)bg(P T , X)2 + b ‖ P T ‖2 +
n2

4
H2.

Next, we shall study the equality case.
For each unit vector X at x, if the equality case of inequality (4.2) holds, from (4.4),

(4.5) and (4.6) we have

hr
1i = 0, i 6= 1, ∀ r, (4.7)

hr
11 + hr

22 + · · ·+ hr
nn − 2hr

11 = 0, ∀r. (4.8)

For any unit vector X at x, if the equality case of inequality (4.2) holds, noting that X is
arbitrary, by computing Ric(ej), j = 2, 3, · · · , n and combining (4.7) and (4.8) we have

hr
ij = 0, i 6= j, ∀r; hr

11 + hr
22 + · · ·+ hr

nn − 2hr
ii = 0, ∀i, r.

We can distinguish two cases:
(1) n 6= 2, hr

ij = 0, i, j = 1, 2, · · · , n, r = n + 1, · · · , n + p or
(2) n = 2, hr

11 = hr
22, hr

12 = 0, r = 3, · · · , 2 + p.
The converse is trivial.
We immediately have the following
Corollary 4.5 Let Mn be an n-dimensional submanifold of an (n + p)-dimensional

Riemannian manifold of quasi-constant curvature Nn+p. The equality case of inequality
(4.2) holds for any tangent vector X of Mn if and only if either Mn is a totally geodesic
submanifold in Nn+p or n = 2 and Mn is a totally umbilical submanifold.

Corollary 4.6 If ζ(x) = 0, then a unit vector X ∈ TxM satisfies the equality case of
(4.2) if and only if X belongs to the relative null space N(x) given by

N(x) = {X ∈ TxM | h(X, Y ) = 0, ∀Y ∈ TxM}.

Proof Assume ζ(x) = 0. For each unit vector X ∈ TxM , equality holds in (4.2) if and
only if (4.5) and (4.7) hold. Then hr

1i = 0, ∀i, r, i.e., X ∈ N(x).

5 Warped Product Submanifolds

Related with famous Nash embedding theorem[2], Chen established a general sharp
inequality for wraped products in real space form [27]. Later, he studied warped products in
complex hyperbolic spaces [28] and complex projective spaces [29], respectively. Afterwards,
many papers studied similar prolems for different submanifolds in various ambient spaces
[30–32]. In the present paper, we establish an inequality for warped product submanifolds
of a Riemannian manifold of quasi-constant curvature.
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The study of warped product manifolds was initiated by Bishop and O’Neill [33]. Fol-
lowing [33], we have

Let (M1, g1) and (M2, g2) be two Riemannian manifolds and f a positive differentiable
function on M1, where dimMi = ni (i = 1, 2), n1 + n2 = n. The warped product of M1

and M2 is the Riemannian manifold M1 ×f M2 = (M1 ×M2, g), where g = g1 + f2g2. More
explicitly, if vector fields X and Y tangent to M1 ×f M2 at (x, y), then

g(X, Y ) = g1(π1∗X, π1∗Y ) + f2(x)g2(π2∗X, π2∗Y ),

where πi(i = 1, 2) are the canonical projections of M1 ×f M2 onto M1 and M2, respectively,
and ∗ stands for derivative map.

For a warped product M1 ×f M2, we denote by D1 and D2 the distributions given by
the vectors tangent to leaves and fibres, respectively, where D1 is obtained from the tangent
vectors of M1 via the horizontal lift and D2 by tangent vectors of M2 via the vertical lift.

Let φ : Mn = M1 ×f M2 → Nn+p be an isometric immersion of a warped product
M1×f M2 into a Riemannian manifold of quasi-constant curvature. Denote by h the second
fundamental form of φ. Denote by trh1 and trh2 the trace of h restricted to M1 and M2,
respectively. The immersion φ is called mixed totally geodesic if h(X, Z) = 0 for any X in
D1 and Z in D2.

Since M1 ×f M2 is a warped product, we have ∇XZ = ∇ZX = 1
f
(Xf)Z for any unit

vector fields X, Z tangent to M1,M2, respectively. It follows that

K(X ∧ Z) = g(∇Z∇XX −∇X∇ZX, Z) =
1
f

[(∇XX)f −X2f ]. (5.1)

We set ‖ P T ‖2
M1

=
n1∑

j=1

g(P T , ej)2, ‖ P T ‖2
M2

=
n∑

s=n1+1

g(P T , es)2.

Theorem 5.1 Let φ : M1 ×f M2 → Nn+p be an isometric immersion of a warped
product into a Riemannian manifold of quasi-constant curvature, then we have

4f

f
≤ n2H2

4n2

+ n1a +
b

n2

[n2 ‖ P T ‖2
M1

+n1 ‖ P T ‖2
M2

], (5.2)

where H2 is the squared mean curvature of φ, and 4 is the Laplacian operator of M1.
The equality case of (5.2) holds if and only if φ is a mixed totally geodesic immersion with
trh1 =trh2.

Proof In Nn+p we choose a local orthonormal frame {e1, · · · , en, en+1, · · · , en+p}, such
that e1, · · · , en1 are tangent to M1, en1+1, · · · , en are tangent to M2, en+1 is parallel to the
mean curvature vector ζ.

Using (5.1) and the definition of 4f , we get

4f

f
=

n1∑
j=1

K(ej ∧ es) (5.3)

for each s ∈ {n1 + 1, · · · , n}.



454 Journal of Mathematics Vol. 36

Using (2.1), (2.3) and (2.4) we have

2τ+ ‖ h ‖2 −n2H2 = 2b(n− 1) ‖ P T ‖2 +(n2 − n)a. (5.4)

We set

δ = 2τ − (n2 − n)a− 2b(n− 1) ‖ P T ‖2 −n2

2
H2. (5.5)

Then (5.4) can be written as

n2H2 = 2(δ+ ‖ h ‖2). (5.6)

If we put a1 = hn+1
11 , a2 =

n1∑
i=2

hn+1
ii , a3 =

n∑
t=n1+1

hn+1
tt , from (5.6) we have

(
3∑

i=1

ai)2 = 2[δ +
3∑

i=1

a2
i +

∑
1≤i 6=j≤n

(hn+1
ij )2

+
n+p∑

r=n+2

n∑
i,j=1

(hr
ij)

2 −
∑

2≤j 6=k≤n1

hn+1
jj hn+1

kk −
∑

n1+1≤s 6=t≤n

hn+1
ss hn+1

tt ].

From Lemma 2.1 we get

∑
1≤j<k≤n1

hn+1
jj hn+1

kk +
∑

n1+1≤s<t≤n

hn+1
ss hn+1

tt ≥ δ

2
+

∑
1≤i<j≤n

(hn+1
ij )2 +

1
2

n+p∑
r=n+2

n∑
i,j=1

(hr
ij)

2 (5.7)

with the equality holding if and only if

n1∑
i=1

hn+1
ii =

n∑
t=n1+1

hn+1
tt . (5.8)

From (5.3) we have

n24f

f
= τ −

∑
1≤j<k≤n1

K(ej ∧ ek)−
∑

n1+1≤s<t≤n

K(es ∧ et)

= τ − n1(n1 − 1)a
2

− (n1 − 1)b
n1∑

j=1

g(P T , ej)2 −
n+p∑

r=n+1

∑
1≤j<k≤n1

[hr
jjh

r
kk − (hr

jk)
2]

− n2(n2 − 1)a
2

− (n2 − 1)b
n∑

s=n1+1

g(P T , es)2 −
n+p∑

r=n+1

∑
n1+1≤s<t≤n

[hr
ssh

r
tt − (hr

st)
2]

= τ − n(n− 1)a
2

+ n1n2a− b[(n1 − 1)
n1∑

j=1

g(P T , ej)2 + (n2 − 1)
n∑

s=n1+1

g(P T , es)2]

−
n+p∑

r=n+1

∑
1≤j<k≤n1

[hr
jjh

r
kk − (hr

jk)
2]−

n+p∑
r=n+1

∑
n1+1≤s<t≤n

[hr
ssh

r
tt − (hr

st)
2].

(5.9)
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Combing (5.7) and (5.9) we have

n24f

f
≤ τ − n(n− 1)a

2
+ n1n2a− b[(n1 − 1)

n1∑
j=1

g(P T , ej)2 + (n2 − 1)
n∑

s=n1+1

g(P T , es)2]

− δ

2
−

∑
1≤j≤n1

∑
n1+1≤t≤n

(hn+1
jt )2 − 1

2

n+p∑
r=n+2

n∑
i,j=1

(hr
ij)

2

−
n+p∑

r=n+2

∑
1≤j<k≤n1

[hr
jjh

r
kk − (hr

jk)
2]−

n+p∑
r=n+2

∑
n1+1≤s<t≤n

[hr
ssh

r
tt − (hr

st)
2].

= τ − n(n− 1)a
2

+ n1n2a− b[(n1 − 1)
n1∑

j=1

g(P T , ej)2 + (n2 − 1)
n∑

s=n1+1

g(P T , es)2]

− δ

2
−

n+p∑
r=n+1

∑
1≤j≤n1

∑
n1+1≤t≤n

(hr
jt)

2 − 1
2

n+p∑
r=n+2

[(
n1∑

j=1

hr
jj)

2 + (
n∑

t=n1+1

hr
tt)

2]

≤ τ − n(n− 1)a
2

+ n1n2a− b[(n1 − 1)
n1∑

j=1

g(P T , ej)2 + (n2 − 1)
n∑

s=n1+1

g(P T , es)2]− δ

2

=
n2H2

4
+ n1n2a− b[(n1 − 1)

n1∑
j=1

g(P T , ej)2

+ (n2 − 1)
n∑

s=n1+1

g(P T , es)2] + b(n− 1) ‖ P T ‖2

=
n2H2

4
+ n1n2a + b[n ‖ P T ‖2 −n1

n1∑
j=1

g(P T , ej)2 − n2

n∑
s=n1+1

g(P T , es)2],

(5.10)
which proves inequality.

Next, we shall study the equality case.
From (5.7) and (5.10) we know that the equality case of (5.2) holds if and only if

hr
jt = 0, 1 ≤ j ≤ n1, n1 + 1 ≤ t ≤ n, n + 1 ≤ r ≤ n + p, (5.11)

n1∑
i=1

hr
ii =

n∑
t=n1+1

hr
tt = 0, n + 2 ≤ r ≤ n + p. (5.12)

Obviously (5.11) is equivalent to h(D1, D2) = 0, thus, the immersion φ is mixed totally
geodesic. Further on, from (5.8) and (5.12), we have

n1∑
i=1

hr
ii =

n∑
s=n1+1

hr
ss, ∀r,

it follows that trh1 = trh2.

Remark 5.2 If b = 0, inequality (5.2) is due to Chen [28, Theorem 1.4].
As applications of Theorem 5.1, we have
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Corollary 5.3 Under the same assumption as in Theorem 5.1, if f is a harmonic
function, there are no isometric minimal immersion of M1×f M2 into Nn+p with a < 0, b ≤ 0.

Corollary 5.4 Under the same assumption as in Theorem 5.1, if f is an eigenfunction
of the Laplacian on M1 with eigenvalue λ > 0, there are no isometric minimal immersion of
M1 ×f M2 into Nn+p with a < 0, b ≤ 0.

Remark 5.5 In [34, Theorem 4.1], Ganchev and Mihova proved that a Riemannian
manifold of quasi-constant curvature Nn+p(n + p ≥ 4) with a < 0, b 6= 0, can be locally
ξ-isometric to a canal space-like hypersurface in the Minkowski space Rn+p+1

1 , ξ is a unit
vector field on Nn+p.
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拟常曲率黎曼流形中子流形的几何不等式的一些注记

张 攀, 张 量, 宋卫东

(安徽师范大学数学计算机科学学院,安徽芜湖 241000)

摘要: 本文研究了拟常曲率黎曼流形中子流形的Chen不等式. 利用代数技巧, 建立了Chen 广义不等

式、Chen-Ricci不等式和关于卷积函数和平均曲率平方的不等式, 推广了Özgür和Chen的一些结果.
关键词: Chen不等式; Chen-Ricci不等式; 卷积; 拟常曲率
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