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1 Introduction

According to Chen [1], one of the most important problems in submanifold theory is
to find simple relationships between the main extrinsic invariants and the main intrinsic
invariants of a submanifold. Related with famous Nash embedding theorem [2], Chen intro-
duced a new type of Riemannian invariants, known as d-invariants [3, 4, 5. The author’s
original motivation was to provide answers to a question raised by Chern concerning the
existence of minimal isometric immersions into Euclidean space [6]. Therefore, Chen ob-
tained a necessary condition for the existence of minimal isometric immersion from a given
Riemannian manifold into Euclidean space and established inequalities for submanifolds in
real space forms in terms of the sectional curvature, the scalar curvature and the squared
mean curvature [7]. Later, he established general inequalities relating §(nq,--- ,ny) and
the squared mean curvature for submanifolds in real space forms [8]. Similar inequalities
also hold for Lagrangian submanifolds of complex space forms. In [9], Chen proved that,
for any d(nq,--- ,ny), the equality case holds if and only if the Lagrangian submanifold is
minimal. This interesting phenomenon inspired people to look for a more sharp inequality.
In 2007, Oprea improved the inequality on §(2) for Lagrangian submanifolds in complex

space forms[10]. Recently, Chen and Dillen established general inequalities for Lagrangian
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submanifolds in complex space forms and provided some examples showing these new im-
proved inequalities are best possible [11]. Such invariants and inequalities have many nice
applications to several areas in mathematics [12].

Afterwards, many papers studied similar problems for different submanifolds in various
ambient spaces, like complex space forms [13], Sasakian space forms [14], (k, u)-contact
space forms [15], Lorentzian manifold [16], Euclidean space [17] and locally conformal almost
cosymplectic manifolds [18].

This paper is organized as follows. In Section 2, the basic elements of the theory
of d-invariants are briefly presented. In Section 3, we establish general inequalities of -
invariants for submanifolds of a Riemannian manifold of quasi-constant curvature [19], which
generalize a result of paper [20]. In Section 4, we obtain an inequality between the Ricci
curvature and the squared mean curvature for submanifolds of the ambient space by using a
algebraic lemma. Finally, in Section 5, we establish inequalities between the warping function
f (intrinsic structure) and the squared mean curvature (extrinsic structure) for warped
product submanifolds M; x; M, in a Riemannian manifold of quasi-constant curvature, as
another answer of the basic problem in submanifold theory which we have mentioned in the

introduction.

2 Preliminaries

In [19], Chen and Yano introduced the notion of a Riemannian manifold (N,g) of
quasi-constant curvature as a Riemannian manifold with the curvature tensor satisfying the

condition

R(X’ Y, Z, W) = a[g(Xv Z)g(Ya W) - g(Y, Z)Q(Xa W)} + b[g(X, Z)T(Y>T(W)

(2.1)
—g(X,WT(Y)T(Z) + (Y, W)T(X)T(Z) — g(Y, Z)T(X)T(W)],
where a, b are scalar functions and 7T is a 1-form defined by
9(X, P) =T(X) (2.2)

and P is a unit vector field. If b = 0, it can be easily seen that the manifold reduces to a
space of constant curvature.
Decomposing the vector field P on M uniquely into its tangent and normal components

PT and P+, respectively, we have
P =P+ Pt (2.3)

Let M be an n-dimensional submanifold of an (n+p)-dimensional Riemannian manifold

of quasi-constant curvature N"*t?. The Gauss equation is given by

R(X,Y,Z,W)=R(X,Y,Z, W)+ g(h(X,Z),h(Y,W)) — g(h(X, W), (Y, Z)) (2.4)

for all X,Y,Z, W € TM, where R and R are the curvature tensors of M and N™*P, respec-

tively, and h is the second fundamental form.
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In N"P we choose a local orthonormal frame ey, --,€,, €41, "+ ,€ntp, such that,

restricting to M™", ey, -+ , e, are tangent to M". We write h}; = g(h(e;, e;),e,). The mean
n+p n
curvature vector ¢ is given by ¢ = > (1 3" h))e,, then the mean curvature H is given by

r=n+1 =1
H=[ ]
Let K(e; Nej), 1 < i < j < n, denote the sectional curvature of the plane section
spanned by e; and e;. Then the scalar curvature of M" is given by

T = Z K(e; Nej). (2.5)

1<i<j<n

Let L be an [-dimensional subspace of T, M, x € M, > 2 and {e;,--- ,e;} an orthonor-
mal basis of L. We define the scalar curvature 7(L) of the I-plane L by

T(L)= > K(eahep). (2.6)

1<a<p<l
For simplicity we put
W)= Y 9P e +9(PT,e;)’) (27)
1<i<j<l

For an integer k£ > 0 we denote by S(n, k) the set of k-tuples (ny, - -- ,ny) of integers > 2
satisfying ny < n and nq + -+ + ngp < n. We denote by S(n) the set of unordered k-tuples
with k£ > 0 for a fixed n. For each k-tuples (ny,--- ,ny) € S(n), Chen defined a Riemannian

invariant §(nq,--- ,ny) as follows [§]
d(ny, -+ ,ng)(z) =7(z) — S(ny, -+ ,ng)(x), (2.8)

where S(nq,--- ,ng)(x) =inf{r(Ly1) +--- +7(Lg)}, and Lq,-- -, Ly run over all £k mutually
orthogonal subspaces of T, M such that dimL; = n;, j € {1,--- ,k}. For each (n1,--- ,ny) €

S(n), we put
n2(n+k—1—;nj) . A
c(ng, - ,ng) = kjf , d(n1,~--,nk):§[n(n—1)—an(nj—1)].
2(n+k— Zn]) j=1

For a differentiable function f on M, the Laplacian Af of f is defined by
Af =Y [(Vee)f —eeif].
=1

We shall use the following lemmas.
Lemma 2.1 [7] Let aj,az, -+ ,a,,b be (n+ 1)(n > 2) real numbers such that

n

<Zai>2 = (-1 _al+b),

i=1
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then 2a;,as > b, with the equality holding if and only if a1 +as = a3z =--- = a,.
Lemma 2.2 Let f(xy, 22, -+ ,x,) be a function in R™ defined by

n
f(.fﬂl,.fﬂg, e >xn) =T th
=2

If 2y + x5+ -+ - + 2, = 2, then we have f(xy, 72, -+ ,2,) < A2, with the equality holding if
andonly if 21 = a9+ 235+ -+, = A

Proof From z1 + x5 + - -+ + z, = 2\, we have Y x; = 2\ — x1. It follows that

1=2

floy, 20, ,2n) = 212X —21) = — (21 — A\)? + A%,
which represents Lemma 2.2 to prove.

3 Chen’s General Inequalities

Theorem 3.1 If M"™ (n > 3) is a submanifold of a Riemannian manifold of quasi-

constant curvature NP, then we have

S(na,-+- i) < e(ny, -+ ) H? 4 d(ny, -+ mg)a+b[(n = 1) | PP =Y W(Ly)] (3.1)

j=1

for any k-tuples (ni,---,nx) € S(n). The equality case of (3.1) holds at z € M™ if and
only if there exist an orthonormal basis {e1,---,e,} of T, M and an orthonormal basis
{€nt1, "+ senip} of T;-M such that the shape operators of M™ in N™™ at x have the
following forms

ag 0 - 0 Ay - 0 0
0 a -+ 0 A ;

Ae'n.+1: . .. . , Ao, = ) i ) , T=n+2,--- ,n+p,
S . 0o --- Ay O
0 0 Up 0 0 w1

where aq,-- -, a, satisfy

ap+ -t Gny = = Onyegng g +1 T T Qngng, = Onggmg+1 = 000 = Ap
and each A7 is a symmetric n; X n; submatrix satisfying trace(Aj) = - - = trace(4}) = p,,

1 is an identity matrix.
Remark 3.2 For §(2), inequality (3.1) is due to Cihan Ozgiir [20, Theorem 3.1].
Proof Let z € M™ and {ej,es, -+ ,¢e,} and {e,41,€n42, - ,€nip} be orthonormal

basis of T, M™ and T;-M™, respectively, such that the mean curvature vector ¢ is in the
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direction of the normal vector to e, ;. For convenience, we set

a; =R, =12,

bi=a1, bo=as+---+an, bs=an+1+ -+ anytn,
brt1 = Gnygoogng_ 141 T+ Aoy gt 4

brt2 = Qny g1, 0 5 Dy = G,

Ay={1,- ,m},-,

Ap={(ni++np_1)+1, 0+ -+l

App1= (A1 X A)U---U (A x Ag).

Let Lq,---, Ly be mutually orthogonal subspaces of T, M with dimL; = n;, defined by
Lj = Span{6n1+'“+n]‘71+la e 7en1+'“+nj}7 J = 17 U 7k~
From (2.4), (2.6) and (2.7) we have

n+p
ni(n; —1
i) = B b+ 30 b~ 00 (32

r=n+1a;<8;
21 =n(n —1)a+2b(n—1) || PT || +n?H?*— || b |*. (3.3)

We can rewrite (3.3) as n?H? = (|| h ||*> +7n)7, or equivalently,

n n-+p n
S = 0 5 S 3
i=1 i#£] r=n+21,j=1
where
n =271 —2c(ny, - ,np)H?> —n(n —1)a —2(n—1)b || PT|?, (3.5)
k
y=n+k— an.
Jj=1
From (3.4) we deduce
y+1 y+1 ntp  n
Qb =nln+ 3 b2+ 3 () 3 D (W) =2 3 amam —=2 ) aaas],
=1 =1 i#£] r=n+21i,j=1 a1<f1 ak <P

where o, 3; € Aj, for all j =1,---, k. Applying Lemma 2.1, we derive

n+p n

k
SN aa,as > %[U+Z(h?jﬂ 2+ Y > (n

j=1 a;<B; i#j r=n+21i,j=1
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it follows that

k  ntp n 1 n+p n+p
Z Z Z [y 03,8, = (hgyﬂa'>2] = 9 + 92 Z (hgﬁ)z T Z Z (hgjaj)Q
j=1r=n+1a;<g; r=n+1 (a,8)¢Ak+1 r=n+2 a; EA;
>
-2
(3.6)
From (3.2) and (3.6) we have
k k
’I’L]‘ (TLJ' — 1) 1
ET(LJ) = z;[fa + 0¥ (Ly)| + 57 (3.7)
Jj= j=

Using (2.8), (3.5) and (3.7), we derive the desired inequality.

The equality case of (3.1) at a point z € M holds if and only if we have the equality
in all the previous inequalities and also in Lemma 2.1, thus, the shape operators take the
desired forms.

4 Chen-Ricci Inequalities

In [21], Chen established a sharp relationship between the Ricci curvature and the
squared mean curvature for any n-dimensional Riemannian submanifold of a real space form
R™(c) of constant sectional curvature ¢ as follows

Theorem 4.1 (see [21, Theorem 4]) Let M be an n-dimensional submanifold of a real
space form R™(c). Then the following statements are true.

(1) For each unit vector X € T,M, we have

€17 2 2 Rie(X) ~ (n— 1) (11)

(2) If ¢(p) = 0, then a unit vector X € T, M satisfies the equality case of (4.1) if and
only if X belongs to the relative null space N(p) given by

N(p) = {X € T,M | h(X,Y) =0, VY € T,M}.

(3) The equality case of (4.1) holds for all unit vectors X € T),M if and only if either p
is a geodesic point or n = 2 and p is an umbilical point.

Afterwards, many papers studied similar problems for different submanifolds in various
ambient manifolds [22-24]. Thus, after putting an extra condition on the ambient manifold,
like semi-symmetric metric connections in the case of real space forms [25] and curvature-like
tensors in the case of a Riemannian manifold [26], one proves the results similar to that of
Theorem 4.1.

In [20], Ozgiir obtained several Chen’s inequalities for submanifolds of a Riemannian
manifold of quasi-constant curvature. However, he didn’t establish an inequality between

the clssical Ricci-curvature and the squared mean curvature. Under these circumstances it
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becomes necessary to give a theorem, which could present an inequality between the Ricci-

curvature and the squared mean curvature for submanifolds in the ambient manifold.
Theorem 4.2 Let M™ be an n-dimensional submanifold of an (n + p)-dimensional

Riemannian manifold of quasi-constant curvature N™*P. For each unit vector X in T, M we

have

2
Ric(X) < (n — 1)a + (n — 2)bg(PT, X)? + b || PT ||? +%H2. (4.2)

The equality sign holds for any tangent vector X in T, M if and only if either x is a totally
geodesic point or n = 2 and x is an umbilical point.

Remark 4.3 For b = 0, inequality (4.2) is due to (4.1).

Remark 4.4 We should point out that our approach is different from Chen’s.

Proof Let z € M™ and {ej,es,- - ,e,} and {e,41,€n42, - ,€ntp} be orthonormal
basis of T, M™ and T:> M, respectively, such that X = e;. From equations (2.1), (2.2), (2.3)
and (2.4) it follows that

n+p

Riji; = a+blg(P",e)* + g(PT,e,)" 1+ Y [hihy; — (h)°]. (4.3)

AN
r=n+1

Using (4.3) one derives

Ric(X) = Z Ry = (n— Da+ (n— 1)bg(PT,e)?

n n—+p n
40> g(PT e+ Y ) [Byyh — (k1))
1=2 r=n+1 1=2
n—+p n
< (n-Da+(n—-2bg(P", X2 +b | P77+ > > hLhL (44
r=n+1 1=2

Let us consider the quadratic forms f, : R" — R, defined by
Fr(Biy Ry, B ) =D By
i=2

We consider the problem max f,, subject to I' : h{; + hi, + -+ R}, = k", where k" is

a real constant.

From Lemma 2.2, we see that the solution (h];, h, -, h ) of the problem in question
must satisfy
T - T kT
hi, = Zhjj =5 (4.5)
Jj=2
which implies
kT 2

fr < &) (4.6)
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From (4.4) and (4.6) we have

ntp (k,r)Q
Ric(X) < (n—1a+(n—2bg(P", X7 +0| P" 2+ Y

r=n+1

2
= (n—Da+(n—2hg(P", X2 +b | PT P+ H?,

Next, we shall study the equality case.
For each unit vector X at x, if the equality case of inequality (4.2) holds, from (4.4),
(4.5) and (4.6) we have

=0, i#1, Y7, (4.7)
hyy +hoy+---+h, —2hi;, =0, Vr. (4.8)

For any unit vector X at x, if the equality case of inequality (4.2) holds, noting that X is
arbitrary, by computing Ric(e;),j = 2,3,--- ,n and combining (4.7) and (4.8) we have

hi; =0, i#j, Vr; hiy+hyy+--+hy, —2hi; =0, Vi,r.

We can distinguish two cases:

(1) n#2,h;;=0,i,j=12,---,n, r=n+1,--- n+por

(2) n=2, hj; =hb,, hi,=0,r=3,---,2+p.

The converse is trivial.

We immediately have the following

Corollary 4.5 Let M"™ be an n-dimensional submanifold of an (n + p)-dimensional
Riemannian manifold of quasi-constant curvature N"*P. The equality case of inequality
(4.2) holds for any tangent vector X of M™ if and only if either M™ is a totally geodesic
submanifold in N™*? or n = 2 and M™" is a totally umbilical submanifold.

Corollary 4.6 If ((z) = 0, then a unit vector X € T, M satisfies the equality case of
(4.2) if and only if X belongs to the relative null space N(z) given by

Nz)={XeT,M|h(X,Y)=0, VY €T, M}.

Proof Assume ((z) = 0. For each unit vector X € T, M, equality holds in (4.2) if and
only if (4.5) and (4.7) hold. Then A%, =0, Vi,r, i.e., X € N(z).

5 Warped Product Submanifolds

Related with famous Nash embedding theorem[2], Chen established a general sharp
inequality for wraped products in real space form [27]. Later, he studied warped products in
complex hyperbolic spaces [28] and complex projective spaces [29], respectively. Afterwards,
many papers studied similar prolems for different submanifolds in various ambient spaces
[30-32]. In the present paper, we establish an inequality for warped product submanifolds

of a Riemannian manifold of quasi-constant curvature.
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The study of warped product manifolds was initiated by Bishop and O’Neill [33]. Fol-
lowing [33], we have

Let (M1, g1) and (M>, g2) be two Riemannian manifolds and f a positive differentiable
function on M;, where dimM; = n; (i = 1,2), ny + ny = n. The warped product of M
and M is the Riemannian manifold My x ; My = (M) X My, g), where g = g1 + f2gs. More
explicitly, if vector fields X and Y tangent to M; x; M, at (x,y), then

g<X7 Y) =01 (Wl*Xa 7T1*Y) + f2($)92 (772*X7 7T2*Y),

where 7;(7 = 1,2) are the canonical projections of My x s M, onto M; and My, respectively,
and * stands for derivative map.

For a warped product M; x; M,, we denote by D; and D, the distributions given by
the vectors tangent to leaves and fibres, respectively, where D, is obtained from the tangent
vectors of M via the horizontal lift and D, by tangent vectors of M, via the vertical lift.

Let ¢ : M™ = My xy My — N™P be an isometric immersion of a warped product
M, x y M, into a Riemannian manifold of quasi-constant curvature. Denote by h the second
fundamental form of ¢. Denote by trh; and trh, the trace of h restricted to M; and Ms,
respectively. The immersion ¢ is called mixed totally geodesic if h(X,Z) = 0 for any X in
D, and Z in D,.

Since My x ¢ M, is a warped product, we have VxZ = VX = %(Xf)Z for any unit
vector fields X, Z tangent to My, My, respectively. It follows that

K(XNZ)=g(VzVxX —-VxVzX,Z) = <[(VxX)f - X*f]. (5.1)

-

ni n
We set || P* ||3,,= Zlg(PT,ej)g, I P 3= 22 1g(PT,es)?
Jj= s=ni1+
Theorem 5.1 Let ¢ : My x5 My — N™P be an isometric immersion of a warped

product into a Riemannian manifold of quasi-constant curvature, then we have
A 2H?

af _n
f dng

where H? is the squared mean curvature of ¢, and A is the Laplacian operator of M;.

b
+ma+ —[ng | PT |3y, +na || PT134,); (5-2)
2

The equality case of (5.2) holds if and only if ¢ is a mixed totally geodesic immersion with
trhy, =trhs.

Proof In N™*? we choose a local orthonormal frame {e1, -, €, €p41,** ,€nipt, such
that ey, -, e,, are tangent to My, €,, 41, , €, are tangent to Ma, e, is parallel to the
mean curvature vector (.

Using (5.1) and the definition of Af, we get

Aff - ji_l;K(ej Aes) (5.3)

for each s € {ny +1,--- ,n}.
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Using (2.1), (2.3) and (2.4) we have

274 || b |)? - =2b(n—1) | P" ||* +(n* — n)a. (5.4)
We set ,
§ =27 — (n® —n)a— 2b(n—1) || P |2 —%HQ. (5.5)
Then (5.4) can be written as
n?H? =2(6+ || h ||?). (5.6)
If we put a; = b}, a0 = Z Rt az = > R from (5.6) we have
1=2 t=ni+1
3
St - Y as S0
i=1 1<i#j<n
n+p n
DD DI CHED DD DI e |
r=n+21i,j=1 2<j#k<ny ni1+1<s#t<n
From Lemma 2.1 we get
5 1 n+p n
2. ML ) MM zoe ) (g 3 > () (67)
1<j<k<ni n1+1<s<t<n 1<i<j<n r=n+21i,j=1
with the equality holding if and only if
S ohptt= 3"yt (5.8)
i=1 t=n1+1

From (5.3) we have

n2Af:T— Z K(ej Neg) — Z K(es Ney)

f 1<j<k<ni n1+1<s<t<n

n+p

L n1(n12— 1a (-1 ng Z Z (A7, hE ,k)z]

r=n+11<j<k<n;

n n+p
77,2(77,2 B 1)0, rorr r
- (2= 1)b ST og(PTe)? = > > Bk — (W)Y
s=ni+1 r=n+1n;+1<s<t<n
n(n—1)a - -
=7 % + nynga — b[(ny — 1) Zg(PT, ) +(ma—1) Y g(P" e.)’]
j=1 s=ni+1
n+p n+p
D D I A (AR D S A (g
r=n+11<j<k<ni r=n+1n;+1<s<t<n

(5.9)
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Combing (5.7) and (5.9) we have

ny\ n(n —1)a o "
2 fgr——LE—L+nmﬂ—wwh—QEZMPiqf+@Q—n > 9P el
j=1 s=ni+1
(5 1 n+p n
n+1\2 r\2
D DD DR G B S S U
1<j<ni; n1+1<t<n r=n+21i,j=1
n+p n+p
D D I T (S E D D S (W R U
r=n+21<j<k<n, r=n+2n1+1<s<t<n
n(n—1)a = "
=7 % +ninga —bl(n1 = 1) g(P" e + (na—1) > g(P",e.)’]
j=1 s=ni+1
(5 n-+p 1 n-+p ni n
2D VD WIS S0 WRSND o TAe
r=n+11<j<n; n1+1<t<n r=n+2 j=1 t=n1+1
n(n —1)a L “ )
<7- % + ninga — b[(ny — 1) Zg(PT, ej)? + (ny — 1) Z g(PT es)*] — B
j=1 s=ni+1
n2H? L
=~ trunea- b[(ny — 1) Z:g(PT,ej)2
j=1
+(na—1) Y g(P", e’ +b(n—1) || P" |
s=ni+1
T s b | P73 g(PT e - Y g(PTel)
4 1762 1 : s Cg 2 ) Cs )
j=1 s=ni+1
(5.10)

which proves inequality.
Next, we shall study the equality case.
From (5.7) and (5.10) we know that the equality case of (5.2) holds if and only if

hy,=0, 1<j<ni, m+1<t<n, n+1<r<n+p, (5.11)
ny n

Zh%: Z hyy =0, n+2<r<n-+p. (5.12)
=1 t=ni+1

Obviously (5.11) is equivalent to h(D1, D3) = 0, thus, the immersion ¢ is mixed totally
geodesic. Further on, from (5.8) and (5.12), we have

ihzrz: zn: h’gsv V’F,
i=1

s=ni+1

it follows that trh; = trh..
Remark 5.2 If b = 0, inequality (5.2) is due to Chen [28, Theorem 1.4].

As applications of Theorem 5.1, we have
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Corollary 5.3 Under the same assumption as in Theorem 5.1, if f is a harmonic
function, there are no isometric minimal immersion of M; x ¢ M, into N"*? with a < 0,b < 0.

Corollary 5.4 Under the same assumption as in Theorem 5.1, if f is an eigenfunction
of the Laplacian on M; with eigenvalue A > 0, there are no isometric minimal immersion of
M, x ¢ M into NP with a < 0,b < 0.

Remark 5.5 In [34, Theorem 4.1], Ganchev and Mihova proved that a Riemannian
manifold of quasi-constant curvature N"*P(n 4+ p > 4) with a < 0,b # 0, can be locally
&-isometric to a canal space-like hypersurface in the Minkowski space Rfﬂj H, £ is a unit

vector field on N"*P.
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