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Abstract: In this paper, we investigate the numerical stability of Euler-Maclaurin method

for differential equation with piecewise constant arguments x′(t) = ax(t) + bx(3[(t + 1)/3]). By the

method of characteristic analysis, the sufficient conditions of stability for the numerical solution

are obtained. Moreover, we show that the Euler-Maclaurin method preserves the stability of the

exact solution. Finally, some numerical examples are given.
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1 Introduction

We are interested in the numerical stability of the Euler-Maclaurin method for the
following differential equation with piecewise constant arguments (EPCA):





x′(t) = ax(t) + bx

(
3
[
t + 1

3

])
,

x(0) = x0,

(1.1)

where t > 0, a 6= 0, b and x0 are real constants and [·] denotes the greatest integer function.
EPCA belongs to one special kind of delay differential equations [1–3]. They described

hybrid dynamical systems and combine properties of both differential and difference equa-
tions. So EPCA had many applications in science and engineering. In the past twenty years,
many researchers investigated the properties of the exact solution of EPCA (see [4–6] and
the references therein). In particularly, stability of solutions of EPCA received much atten-
tion (see [7–9] and the extensive bibliography therein). For more information on this type
of equations, the interested readers can refer Wiener’s book [10]. Recently, special interest
was shown to the properties of numerical solution of EPCA, such as stability [11, 12], dissi-
pativity [13] and oscillation [14]. In this paper, we will study the stability of the numerical
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solution in the Euler-Maclaurin method for (1.1). Whether the numerical method preserves
stability of the exact solution is considered. Two numerical examples for demonstrating the
theoretical results are also provided.

The following results give the definition and stability of exact solution for (1.1).
Definition 1.1 (see [10]) A solution of (1.1) on [0,∞) is a function x(t) which satisfies

the conditions
(i) x(t) is continuous on [0,∞);
(ii) the derivative x′(t) exists at each point t ∈ [0,∞), with the possible exception of

the points t = 3n− 1 for n ∈ N , where one-sided derivatives exist;
(iii) (1.1) is satisfied on each interval [3n− 1, 3n + 2) for n ∈ N .
Theorem 1.2 (see [10]) Assume that a, b and x0 ∈ R, then (1.1) has on [0,∞) a unique

solution x(t) given by

x(t) = λ(Ω(t))
(

λ1

λ−1

)[ t+1
3 ]

x0,

where

λ(t) = eat +
b

a
(eat − 1), Ω(t) = t− 3

[
t + 1

3

]
, λ1 = λ(2), λ−1 = λ(−1).

Theorem 1.3 (see [10]) The solution x(t) = 0 of (1.1) is asymptotically stable (x(t) → 0
as t →∞) if and only if any one of the following conditions is satisfied

− a(e3a + 1)
φ(a)

< b < −a, a > ā,

b > −a(e3a + 1)
φ(a)

or b < −a, a < ā,

b < −a, a = ā,

(1.2)

where ā is the nonzero solution of equation φ(x) = e3x − 2ex + 1 = 0.

2 Stability of Numerical Solution

2.1 The Euler-Maclaurin Method

Let h be a given stepsize, m ≥ 1 be a given integer and satisfies h = 1/m. The gridpoints
ti be defined by ti = ih (i = 0, 1, 2, · · · ). Applying the Euler-Maclaurin formula to (1.1), we
have

xi+1 = xi +
ha

2
(xi+1 + xi)−

n∑
j=1

B2j(ha)2j

(2j)!
(xi+1 − xi) + hbx

(n)
i , (2.1)

where B2j denotes the 2j-th Bernoulli number, xi and xi+1 are approximations to x(t) at
tn and tn+1, respectively, x

(n)
i is an approximation to x(3[(t + 1)/3]) at tn. Let us denote

i = 3km+ l, l = −m,−m+1, · · · , 2m− 1 for k ≥ 1 and l = 0, 1, · · · , 2m− 1 for k = 0. Then
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x
(n)
i can be defined as x3km according to Definition 1.1. So we have

[
1− ha

2
+

n∑
j=1

B2j(ha)2j

(2j)!

]
xi+1 =

[
1 +

ha

2
+

n∑
j=1

B2j(ha)2j

(2j)!

]
xi + hbx3km, (2.2)

which is equivalent to

x3km+l+1 = R(z)x3km+l +
b

a
(R(z)− 1)x3km, (2.3)

where

z = ha, R(z) = 1 +
z

Φ(z)
, Φ(z) = 1− z

2
+

n∑
j=1

B2jz
2j

(2j)!
.

Thus

x3km+l =
[
R(z)l +

b

a
(R(z)l − 1)

]
x3km,

x3(k+1)m =
R(z)2m + b

a
(R(z)2m − 1)

R(z)−m + b
a
(R(z)−m − 1)

x3km.

(2.4)

Similar to Theorem 2.2 in [14], we have the following result for convergence.
Theorem 2.1 For any given n ∈ N , the Euler-Maclaurin method is of order 2n + 2.

2.2 Stability Analysis

Definition 2.2 The Euler-Maclaurin method is called asymptotically stable at (a, b)
if there exists a constant M0 such that xn defined by (2.3) tends to zero as n → ∞ for all
h = 1/m and any given x0.

Lemma 2.3 (see [15]) If |z| < 1, then Φ(z) ≥ 1/2 for z > 0 and Φ(z) ≥ 1 for z < 0.
Lemma 2.4 (see [15]) If |z| < 1, then

Φ(z) ≤ z

ez − 1

for n is even and
Φ(z) ≥ z

ez − 1
for n is odd.

Theorem 2.5 The Euler-Maclaurin method is asymptotically stable if any one of the
following conditions is satisfied

− a(R(z)3m + 1)
φ̄(z)

< b < −a, a > a0,

b > −a(R(z)3m + 1)
φ̄(z)

or b < −a, a < a0,

b < −a, a = a0,

(2.5)

where z = ha, φ̄(z) = R(z)3m− 2R(z)m + 1, a0 is the nonzero solution of equation φ̄(z) = 0.
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Proof Let
λ1 = R(z)2m +

b

a
(R(z)2m − 1)

and
λ−1 = R(z)−m +

b

a
(R(z)−m − 1),

so we need to verify ∣∣∣∣
λ1

λ−1

∣∣∣∣ < 1. (2.6)

Assume λ−1 > 0, i.e.,
b <

a

R(z)m − 1
.

Then (2.6) is equivalent to

− a(R(z)3m + 1)
φ̄(z)

< b < −a, a > a0,

b < −a, a < a0,

b < −a, a = a0.

Assume λ−1 < 0, i.e.,
b >

a

R(z)m − 1
.

Then (2.6) is equivalent to

b > −a(R(z)3m + 1)
φ̄(z)

, a < a0.

The proof is completed.
The following two lemmas are given naturally.
Lemma 2.6 Let f(r) = r3 − 2r + 1, r > 0, then
(a) the function f(r) has a minimum at r1 =

√
2/
√

3, and f(r) is decreasing in [0, r1)
and increasing in [r1,+∞);

(b) the function f(r) has a unique solution 1 > r0 6= 1;
(c) f(r) < 0 if r ∈ [r0, 1) and f(r) > 0 if r ∈ [0, r0) or r ∈ [1,+∞).
Lemma 2.7 Let

g(ω) =
ω3 + 1

ω3 − 2ω + 1
,

then
(a) the function g(ω) has extremum at ω1 = 1/ 3

√
2;

(b) g(ω) is increasing in (0, r0) and (r0, ω1);
(c) g(ω) is decreasing in (ω1, 1) and (1,+∞).
By Lemmas 2.6 and 2.7, we obtain
Corollary 2.8 Assume that r0 6= 1 is a unique solution of the function f(r) = r3−2r+1,

then r0 < ω1 < r1 < 1.
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So we have the following result.
Theorem 2.9 Assume that (1.1) is asymptotically stable, then the Euler-Maclaurin

method is asymptotically stable if one of the following conditions is satisfied
(a) R(z)m ≤ ea (a ≤ lnω1);
(b) R(z)m ≥ ea (lnω1 < a < 0);
(c) R(z)m ≤ ea (a ≥ 0).
Proof In view of Theorems 1.2 and 2.5, we will prove that condition (2.5) is satisfied

under condition (1.2).
If (a) holds, then we know from Lemmas 2.3 and 2.4 that f(r) is decreasing and g(ω)

is increasing. Hence ā < a0 and

−a(R(z)3m + 1)
φ̄(z)

≤ −a(e3a + 1)
φ(a)

. (2.7)

If a > ā, then the first inequality of (1.2) holds. Then by (2.7) we get the first inequality
of (2.5). If a < ā, then the second inequality of (1.2) holds. Then by (2.7) we obtain the
second inequality of (2.5). If a = ā, then the third inequality of (1.2) holds which implies
the first inequality of (2.5). The other cases can be proved in the same way. The proof is
completed.

From Lemmas 2.3, 2.4 and Theorem 2.9, we have the following main result in this paper.
Theorem 2.10 The Euler-Maclaurin method preserves the stability of (1.1) if one of

the following conditions is satisfied
(a) n is odd if ea > ω1,
(b) n is even if ea ≤ ω1.

3 Numerical Experiments

Consider the following two problems



x′(t) = x(t)− 1.2x

(
3
[
t + 1

3

])
,

x(0) = 1
(3.1)

and 



x′(t) = −x(t) + 4x

(
3
[
t + 1

3

])
,

x(0) = 1.

(3.2)

In Figures 1 and 2, we plot the exact solution and the numerical solution for (3.1),
respectively. Moreover, for (3.2), we also plot the exact solution and the numerical solution
in Figures 3 and 4, respectively. We can see from these figures that the Euler-Maclaurin
method preserves the stability of (3.1) and (3.2), which is coincide with Theorem 2.10.
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Figure 1: the exact solution of (3.1)
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Figure 2: the numerical solution of (3.1) with n = 3 and m = 50
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Figure 3: the exact solution of (3.2)
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Figure 4: the numerical solution of (3.2) with n = 2 and m = 40
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方程x′(t) = ax(t) + bx(3[(t + 1)/3])的数值稳定性分析

王 琦,汪小明,陈学松

(广东工业大学应用数学学院,广东广州 510006)

摘要: 本文研究了分段连续型微分方程x′(t) = ax(t) + bx(3[(t + 1)/3]) Euler-Maclaurin方法的数值

稳定性问题. 利用特征分析的方法, 获得了数值解稳定的充分条件, 进而证明了Euler-Maclaurin方法保持了

精确解的稳定性. 最后给出了一些数值例子.
关键词: Euler-Maclaurin方法; 分段连续项; 稳定性; 数值解
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