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Abstract: In this paper, we introduce and investigate the concept of conformable nabla

fractional derivative on time scales. By using the theory of time scales, we obtain some basic

properties of the conformable nabla fractional derivative, which extend and improve both the

results in [9, 10] and the usual nabla derivative.
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1 Introduction

Fractional Calculus is a generalization of ordinary differentiation and integration to
arbitrary (non-integer) order. The subject is as old as the calculus of differentiation and goes
back to times when Leibniz, Gauss, and Newton invented this kind of calculation. During
three centuries, the theory of fractional calculus developed as a pure theoretical field, useful
only for mathematicians. Nowadays, the fractional calculus attracts many scientists and
engineers. There were several applications of this mathematical phenomenon in mechanics,
physics, chemistry, control theory and so on [1–8].

Recently, the authors in [9] defined a new well-behaved simple fractional derivative
called the conformable fractional derivative depending just on the basic limit definition of
the derivative. Especialy, in [10], Nadia Benkhettou, Salima Hassani and Delfim Torres in-
troduced a conformable time-scale fractional derivative, which providing a natural extension
of the conformable fractional derivative. In this paper, we define the conformable nabla frac-
tional derivative on time scales, which give another type of generalization of the conformable
fractional derivative and the usual nabla derivative [11–14].

2 Preliminaries

A time scale T is a nonempty closed subset of real numbers R with the subspace topology
inherited from the standard topology of R. For a, b ∈ T we define the closed interval [a, b]T
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by [a, b]T = {t ∈ T : a ≤ t ≤ b}. For t ∈ T we define the forward jump operator σ by
σ(t) = inf{s > t : s ∈ T}, where inf ∅ = supT, while the backward jump operator ρ is
defined by ρ(t) = sup{s < t : s ∈ T}, where sup ∅ = inf T.

If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is left-
scattered. If σ(t) = t, we say that t is right-dense, while if ρ(t) = t, we say that t is
left-dense. A point t ∈ T is dense if it is right and left dense; isolated if it is right and left
scattered. The forward graininess function µ(t) and the backward graininess function η(t)
are defined by µ(t) = σ(t) − t, η(t) = t − ρ(t) for all t ∈ T, respectively. If supT is finite
and left-scattered, then we define Tk := T\ supT, otherwise Tk := T; if inf T is finite and
right-scattered, then Tk := T\ inf T, otherwise Tk := T. We set Tk

k := Tk
⋂
Tk.

A function f : T → R is nabla (∇) differentiable at t ∈ Tk if there exists a number
f∇(t) such that, for each ε > 0, there exists a neighborhood U of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|

for all s ∈ U . We call f∇(t) the ∇-derivative of f at t. Throughout this paper, α ∈ (0, 1].

3 Conformable Nabla Fractional Derivative

Definition 3.1 Let T be a time scale and α ∈ (0, 1]. A function f : T → R is con-
formable ∇-fractional differentiable of order α at t ∈ Tk if there exists a number Tα(f∇)(t)
such that, for each ε > 0, there exists a neighborhood U of t such that

|(f(ρ(t))− f(s))ρ(t)1−α −Tα(f∇)(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|

for all s ∈ U . We call Tα(f∇)(t) the conformable ∇-fractional derivative of f of order α at t

and we say that f is conformable ∇-fractional differentiable if f is conformable ∇-fractional
differentiable for all t ∈ Tk.

Theorem 3.2 Let T be a time scale, t ∈ Tk and α ∈ (0, 1]. Then we have the following:
(i) If f is conformal ∇-fractional differentiable of order α at t, then f is continuous at

t.
(ii) If f is continuous at t and t is left-scattered, then f is conformable ∇-fractional

differentiable of order α at t with Tα(f∇)(t) = − f(ρ(t))−f(t)
η(t)

ρ(t)1−α.

(iii) If t is left-dense, then f is conformable ∇-fractional differentiable of order α at t if
and only if the limit lim

s→t

f(t)−f(s)
t−s

t1−α exists as a finite number. In this case,

Tα(f∇)(t) = lim
s→t

f(t)− f(s)
t− s

t1−α.

(iv) If f is conformal ∇-fractional differentiable of order α at t, then

f(ρ(t)) = f(t)− η(t)Tα(f∇)(t)ρ(t)α−1.

Proof (i) The proof is easy and will be omitted.
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(ii) Assume that f is continuous at t and t is left-scattered. By continuity,

lim
s→t

f(ρ(t))− f(s)
ρ(t)− s

ρ(t)1−α =
f(ρ(t))− f(t)

ρ(t)− t
ρ(t)1−α =

f(ρ(t))− f(t)
−η(t)

ρ(t)1−α.

Hence given ε > 0, there exists a neighborhood U of t such that
∣∣∣∣
f(ρ(t))− f(s)

ρ(t)− s
ρ(t)1−α − f(ρ(t))− f(s)

−η(t)
ρ(t)1−α

∣∣∣∣ ≤ ε

for all s ∈ U . It follows that
∣∣∣∣(f(ρ(t))− f(s)) ρ(t)1−α − f(ρ(t))− f(s)

−η(t)
(ρ(t)− s) ρ(t)1−α

∣∣∣∣ ≤ ε|ρ(t)− s|

for all s ∈ U . Hence we get the desired result Tα(f∇)(t) = − f(ρ(t))−f(t)
η(t)

ρ(t)1−α.

(iii) Assume that f is conformable ∇-fractional differentiable of order α at t and t is
right-dense. Then for each ε > 0, there exists a neighborhood U of t such that

|(f(ρ(t))− f(s))ρ(t)1−α −Tα(f∇)(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|

for all s ∈ U . Since ρ(t) = t we have that |(f(t) − f(s))t1−α −Tα(f∇)(t)(t − s)| ≤ ε|t − s|
for all s ∈ U . It follows that

∣∣∣ f(t)−f(s)
t−s

t1−α −Tα(f∇)(t)
∣∣∣ ≤ ε for all s ∈ U , s 6= t. Hence we

get the desired result.
On the other hand, if the limit lim

s→t

f(t)−f(s)
t−s

t1−α exists as a finite number and is equal
to J , then for each ε > 0, there exists a neighborhood U of t such that

|(f(t)− f(s))t1−α − J(t− s)| ≤ ε|t− s|

for all s ∈ U . Since t is right-dense, we have that

|(f(ρ(t))− f(s))ρ(t)1−α − J(ρ(t)− s)| ≤ ε|ρ(t)− s|.

Hence f is conformable ∇-fractional differentiable at t and Tα(f∇)(t) = lim
s→t

f(t)−f(s)
t−s

t1−α.

(iv) If t is left-dense, then η(t) = 0 and we have that

f(ρ(t)) = f(t) = f(t) + η(t)Tα(f∇)(t)ρ(t)α−1.

If t is left-scattered, then ρ(t) < t, then by (ii)

f(ρ(t)) = f(t) + η(t)
f(ρ(t))− f(t)

η(t)
= f(t)− η(t)Tα(f∇)(t)ρ(t)α−1.

Corollary 3.3 Again we consider the two cases T = R and T = Z.
(i) If T = R, then f : R → R is conformable ∇-fractional differentiable of order α at

t ∈ R if and only if the limit lim
s→t

f(t)−f(s)
t−s

t1−α exists as a finite number. In this case,

Tα(f∇)(t) = lim
s→t

f(t)− f(s)
t− s

t1−α.
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If α = 1, then we have that Tα(f∇)(t) = f∇(t) = f ′(t).
(ii) if T = Z, then f : Z → R is conformable ∇-fractional differentiable of order α at

t ∈ Z with

Tα(f∇)(t) = −f(t− 1)− f(t)
1

(t− 1)1−α = (t− 1)1−α (f(t)− f(t− 1)) .

If α = 1, then we have that Tα(f∇)(t) = f(t) − f(t − 1) = ∇f(t), where ∇ is the usual
backward difference operator.

Example 3.4 If f : T → R is defined by f(t) = C for all t ∈ T, where C ∈ R is
constant, then Tα(f∇)(t) ≡ 0.

(ii) if f : T→ R is defined by f(t) = t for all t ∈ T, then Tα(f∇)(t) = ρ(t)1−α. If α = 1,
then Tα(f∇)(t) ≡ 1.

Example 3.5 If f : T→ R is defined by f(t) = t2 for all t ∈ T := {n
2

: n ∈ N0}, then
from Theorem 3.2 (ii) we have that f is conformable ∇-fractional differentiable of order α

at t ∈ T with

Tα(f∇)(t) =
(

2t− 1
2

)(
t− 1

2

)1−α

.

Theorem 3.6 Assume f, g : T→ R are conformable ∇-fractional differentiable of order
α at t ∈ Tk, then

(i) for any constant λ1, λ2, the sum λ1f + λ2g : T → R is conformable ∇-fractional
differentiable of order α at t with Tα((λ1f + λ2g)∇)(t) = λ1Tα(f∇)(t) + λ2Tα(g∇)(t);

(ii) if f and g are continuous, then the product fg : T→ R is conformable ∇-fractional
differentiable of order α at t with

Tα(fg)∇(t) = Tα(f∇)(t)g(t) + f(ρ(t))Tα(g∇)(t) = f(t)Tα(g∇)(t) + Tα(f∇)(t)g(ρ(t));

(iii) if f(t)f(ρ(t)) 6= 0, then 1
f

is conformable ∇-fractional differentiable of order α at t

with

Tα

(
1
f

)∇
(t) = −Tα(f∇)(t)

f(t)f(ρ(t))
;

(iv) if g(t)g(ρ(t)) 6= 0, then f
g

is conformable ∇-fractional differentiable of order α at t

with

Tα

(
f

g

)∇
(t) =

Tα(f∇)(t)g(t)− f(t)Tα(g∇)(t)
g(t)g(ρ(t))

.

Proof (i) The proof is easy and will be omitted.
(ii) Let 0 < ε < 1. Define

ε∗ =
ε

1 + |g(ρ(t))|+ |f(t)|+ |Tα(g∇)(t)| ,

then 0 < ε∗ < 1. f, g : T → R are conformable ∇-fractional differentiable of order α at t.
Then there exists neighborhoods U1 and U2 of t with

|(f(ρ(t))− f(s))ρ(t)1−α −Tα(f∇)(t)(ρ(t)− s)| ≤ ε∗|ρ(t)− s|
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for all s ∈ U1 and

|g(ρ(t))− g(s))ρ(t)1−α −Tα(g∇)(t)(ρ(t)− s)| ≤ ε∗|ρ(t)− s|

for all s ∈ U2.
From Theorem 3.2 (i), there exists neighborhoods U3 of t with |f(t)− f(s)| ≤ ε∗ for all

s ∈ U3.
Let U = U1 ∩ U2 ∩ U3. Then we have for all s ∈ U

|[f(ρ(t))g(ρ(t))− f(s)g(s)]ρ(t)1−α − [Tα(f∇)(t)g(ρ(t)) + f(t)Tα(g∇)(t)](ρ(t)− s)|
≤ |[(f(ρ(t))− f(s))ρ(t)1−α −Tα(f∇)(t)(ρ(t)− s)]g(ρ(t))|

+|[(g(ρ(t))− g(s))ρ(t)1−α −Tα(g∇)(t)(ρ(t)− s)]f(t)|
+|[(g(ρ(t))− g(s))ρ(t)1−α −Tα(g∇)(t)(ρ(t)− s)](f(s)− f(t))|
+|Tα(g∇)(t)(ρ(t)− s)](f(s)− f(t))|

≤ ε∗|ρ(t)− s| · (|g(ρ(t))|+ |f(t)|+ ε∗ + |Tα(g∇)(t)|)

≤ ε|ρ(t)− s|.

Thus Tα(fg)∇(t) = f(t)Tα(g∇)(t) + Tα(f∇)(t)g(ρ(t)). The other product rule formula
follows by interchanging the role of functions f and g.

(iii) From Example 3.4, we have that Tα

(
f · 1

f

)∇
(t) = Tα(1)∇(t) = 0. Therefore

Tα

(
1
f

)∇
(t)f(ρ(t)) + Tα(f∇)(t)

1
f(t)

= 0

and consequently Tα( 1
f
)∇(t) = −Tα(f∇)(t)

f(t)f(ρ(t))
.

(iv) We use (ii) and (iii) to calculate

Tα

(
f

g

)∇
(t) = f(t)Tα

(
1
g

)∇
(t) + Tα(f∇)(t)

1
g(ρ(t))

= −f(t)
Tα(g∇)(t)
g(t)g(ρ(t))

+ Tα(f∇)(t)
1

g(ρ(t))

=
Tα(f∇)(t)g(t)− f(t)Tα(g∇)(t)

g(t)g(ρ(t))
.

Theorem 3.7 Let c be constant and m ∈ N.
(i) For f defined by f(t) = (t− c)m, we have that

Tα(f∇)(t) = ρ(t)1−α

m−1∑
i=0

(ρ(t)− c)i(t− c)m−1−i.

(ii) For g defined by g(t) = 1
(t−c)m , we have that

Tα(g∇)(t) = −ρ(t)1−α

m−1∑
i=0

1
(ρ(t)− c)m−i(t− c)i+1
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provided (ρ(t)− c)(t− c) 6= 0.
Proof (i) We prove the first formula by induction. If m = 1, then f(t) = t − c, and

clearly Tα(f∇)(t) = ρ(t)1−α holds by Example 3.4 and Theorem 3.6(i). Now we assume that

Tα(f∇)(t) = ρ(t)1−α

m−1∑
i=0

(ρ(t)− c)i(t− c)m−1−i

holds for f(t) = (t − c)m and let F (t) = (t − c)m+1 = (t − c)f(t). We use Theorem 3.6 (ii)
to obtain

Tα(F )∇(t) = ρ(t)1−αf(ρ(t)) + (t− c)Tα(f∇)(t)

= ρ(t)1−α(ρ(t)− c)m + (t− c)ρ(t)1−α

m−1∑
i=0

(ρ(t)− c)i(t− c)m−1−i

= ρ(t)1−α

m∑
i=0

(ρ(t)− c)i(t− c)m−i.

Hence part (i) holds.
(ii) For g(t) = 1

(t−c)m , we use Theorem 3.6 (iii) to obtain

Tα(g)∇(t) = −Tα(f∇)(t)
f(t)f(ρ(t))

= −ρ(t)1−α
∑m−1

i=0 (ρ(t)− c)i(t− c)m−1−i

(ρ(t)− c)m(t− c)m

= −ρ(t)1−α

m−1∑
i=0

1
(ρ(t)− c)m−i(t− c)i+1

provided (ρ(t)− c)(t− c) 6= 0.
Example 3.8 If f : T→ R is defined by f(t) = 1

t2
for all t ∈ T := {√n : n ∈ N0}, then

we have that f is conformable ∇-fractional differentiable of order α at t ∈ T with

Tα(f∇)(t) = −ρ(t)1−α

(
1

(ρ(t))2t
+

1
ρ(t)t2

)
= −(

√
t2 − 1)−α

(
1

t
√

t2 − 1
+

1
t2

)
.
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关于时标上的适应Nabla 分数阶导数

赵大方,游雪肖,胡长松

(湖北师范大学数学与统计学院, 湖北黄石 435002)

摘要: 本文研究了时标上的适应Nabla 分数阶导数的问题. 利用时标理论, 获得了关于适应Nabla 分

数阶导数的若干重要性质. 这些结果推广并改进了文献 [9, 10] 中的有关结论以及一般Nabla 导数的性质.
关键词: 适应Nabla 分数阶导数; Nabla 导数; 时标
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