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Abstract: In this paper, we introduce and investigate the concept of conformable nabla
fractional derivative on time scales. By using the theory of time scales, we obtain some basic
properties of the conformable nabla fractional derivative, which extend and improve both the
results in [9, 10] and the usual nabla derivative.
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1 Introduction

Fractional Calculus is a generalization of ordinary differentiation and integration to
arbitrary (non-integer) order. The subject is as old as the calculus of differentiation and goes
back to times when Leibniz, Gauss, and Newton invented this kind of calculation. During
three centuries, the theory of fractional calculus developed as a pure theoretical field, useful
only for mathematicians. Nowadays, the fractional calculus attracts many scientists and
engineers. There were several applications of this mathematical phenomenon in mechanics,
physics, chemistry, control theory and so on [1-8].

Recently, the authors in [9] defined a new well-behaved simple fractional derivative
called the conformable fractional derivative depending just on the basic limit definition of
the derivative. Especialy, in [10], Nadia Benkhettou, Salima Hassani and Delfim Torres in-
troduced a conformable time-scale fractional derivative, which providing a natural extension
of the conformable fractional derivative. In this paper, we define the conformable nabla frac-
tional derivative on time scales, which give another type of generalization of the conformable

fractional derivative and the usual nabla derivative [11-14].

2 Preliminaries

A time scale T is a nonempty closed subset of real numbers R with the subspace topology

inherited from the standard topology of R. For a,b € T we define the closed interval [a, b]t

* Received date: 2016-01-22 Accepted date: 2016-04-22
Foundation item: Supported by Educational Commission of Hubei Province of China
(Q20152505).

Biography: Zhao Dafang (1982-), male, born at Linyi, Shandong, master, major in Henstock
integral theory.



No. 6 On conformable nabla fractional derivative on time scales 1143

by [a,b]r = {t € T:a <t <b}. Fort € T we define the forward jump operator o by
o(t) = inf{s > t : s € T}, where inf() = supT, while the backward jump operator p is
defined by p(t) = sup{s < t: s € T}, where sup () = inf T.

If o(t) > t, we say that ¢ is right-scattered, while if p(¢) < t, we say that ¢ is left-
scattered. If o(t) = ¢, we say that ¢ is right-dense, while if p(t) = ¢, we say that ¢ is
left-dense. A point t € T is dense if it is right and left dense; isolated if it is right and left
scattered. The forward graininess function u(t) and the backward graininess function 7(¢)
are defined by u(t) = o(t) —t, n(t) =t — p(t) for all t € T, respectively. If sup T is finite
and left-scattered, then we define T* := T\ sup T, otherwise T* := T; if inf T is finite and
right-scattered, then Ty, := T\ inf T, otherwise T, := T. We set T’,j =Tk Ty

A function f : T — R is nabla (V) differentiable at ¢t € Ty if there exists a number
fY(t) such that, for each & > 0, there exists a neighborhood U of ¢ such that

[F(p(t)) = f(s) = FY (&) (p(t) — )| < elp(t) — s
for all s € U. We call fV(t) the V-derivative of f at t. Throughout this paper, a € (0, 1].

3 Conformable Nabla Fractional Derivative

Definition 3.1 Let T be a time scale and « € (0,1]. A function f : T — R is con-
formable V-fractional differentiable of order «v at ¢ € T}, if there exists a number T, (fV)(t)
such that, for each £ > 0, there exists a neighborhood U of ¢ such that

[(f(p(1)) = F(s))p(t)' =" = Ta(fV)(t)(p(t) = 5)| < elp(t) — s

for all s € U. We call T,(fV)(t) the conformable V-fractional derivative of f of order « at ¢
and we say that f is conformable V-fractional differentiable if f is conformable V-fractional
differentiable for all ¢t € T}.

Theorem 3.2 Let T be a time scale, t € Ty, and a € (0, 1]. Then we have the following:

(i) If f is conformal V-fractional differentiable of order «v at ¢, then f is continuous at

(ii) If f is continuous at ¢ and ¢ is left-scattered, then f is conformable V-fractional

differentiable of order a at ¢t with To(fV)(t) = —Wp(t)l_a.

(iii) If ¢ is left-dense, then f is conformable V-fractional differentiable of order «v at ¢ if

and only if the limit lim th_a exists as a finite number. In this case,
s—t s

To(fV)(t) = lim wtlﬂ.

s—t

(iv) If f is conformal V-fractional differentiable of order « at ¢, then

Flp()) = f(t) =) Ta(f¥)()p(t)* "

Proof (i) The proof is easy and will be omitted.
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(ii) Assume that f is continuous at ¢ and ¢ is left-scattered. By continuity,

flp(t)) = f(s) (1)1 = flp(t) — f() _ fle(®) — f(t)

lim

st p(t) —s p(t) —t —n(t)
Hence given ¢ > 0, there exists a neighborhood U of ¢ such that
‘f(ppfii; : f(s) p(t)l_a _ f(p(t_)")/]é)f(S) p(t)l—a <e

for all s € U. It follows that

f(p(t) = f(s)
—n(t)

for all s € U. Hence we get the desired result T, (fV)(t) = —Wp(t)l’a.

(p(t) = 5) p(t)' | < €lp(t) — ]

]<f<p<t>> () plt) e —

p(t)! " = = —Lp(t)

(iii) Assume that f is conformable V-fractional differentiable of order o at ¢ and ¢ is

right-dense. Then for each ¢ > 0, there exists a neighborhood U of ¢ such that

[(f(p(8)) = F(s))p(t)' =" = Ta(fV)(t)(p(t) — 5)| < elp(t) — 5]

for all s € U. Since p(t) = t we have that |(f(t) — f(s))t?™® — To(fV)(#)(t — 5)| < €|t — s
for all s € U. It follows that ‘th_“ — Ta(fv)(t)‘ <eforall s e U, s #t. Hence we

get the desired result.

On the other hand, if the limit lim th_a exists as a finite number and is equal

to J, then for each € > 0, there exists a neighborhood U of t such that

(f() = F(NE = T(t = 5)| < et — 5]

for all s € U. Since t is right-dense, we have that

[(f(p(£) = f()p(t)' =" = J(p(t) — 5)| < €|p(t) — s].

Hence f is conformable V-fractional differentiable at ¢ and T, (fV)(t) = lim th‘a.

s—t

(iv) If ¢ is left-dense, then n(t) = 0 and we have that

Flp()) = f(t) = F(t) + n(O)Ta(fV)(t)p()".
If t is left-scattered, then p(t) < t, then by (ii)

flp(t) = f(t)
n(t)

Corollary 3.3 Again we consider the two cases T =R and T = Z.

Fp(t)) = f(t) +n(t) = f(t) = nO)Ta(fV)()p(t)" .

(i) If T = R, then f: R — R is conformable V-fractional differentiable of order « at

f®=

t € R if and only if the limit lim FO=J$)p1-a oxists as a finite number. In this case,
s—t

t—s
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If a = 1, then we have that T, (fV)(t) = fV(t) = f'(t).

(ii) if T = Z, then f : Z — R is conformable V-fractional differentiable of order « at
t € Z with
T (o)) = LTI e 1y ) - - 1)),
If o = 1, then we have that T,(fV)(t) = f(t) — f(t — 1) = Vf(t), where V is the usual
backward difference operator.

Example 3.4 If f: T — R is defined by f(t) = C for all t € T, where C' € R is
constant, then T, (fV)(t) = 0.

(ii) if f : T — R is defined by f(t) =t for all ¢ € T, then To(fV)(t) = p(t)!=. Ifa =1,
then T, (fV)(t) = 1.

Example 3.5 If f: T — R is defined by f(t) =¢* for all t € T := {% : n € Ny}, then

from Theorem 3.2 (ii) we have that f is conformable V-fractional differentiable of order «

at t € T with -
T.(fV)(t) = <2t— ;) <t— ;) .

Theorem 3.6 Assume f,g: T — R are conformable V-fractional differentiable of order
a at t € Ty, then

(i) for any constant Aj, A2, the sum A\;f + A\og : T — R is conformable V-fractional
differentiable of order a at t with To((A1f + X2g)V)(t) = M To(fV) () + XTo(gV)(t);

(ii) if f and g are continuous, then the product fg: T — R is conformable V-fractional

differentiable of order « at ¢ with
Ta(f9) (1) = Ta(f¥)()g(t) + f(p(t))Talg™)(t) = F(t)Talg™)(t) + Ta(f¥)()g(p(t));
(i) if f(¢)f(p(t)) # 0, then % is conformable V-fractional differentiable of order « at ¢

with
1\, T
T (f) O == r0m)

(iv) if g(t)g(p(t)) # 0, then g is conformable V-fractional differentiable of order « at ¢
with

A o TalfT)B9®) — FOTalg¥)(E)
. (5) 0 o (p(0) '
Proof (i) The proof is easy and will be omitted.

(ii) Let 0 < e < 1. Define

S e e EN GOS0k

then 0 < ¢* < 1. f,g: T — R are conformable V-fractional differentiable of order a at t.
Then there exists neighborhoods U; and U, of ¢ with

(f(p(1)) = F(s))p(t)' = = Ta(fV)(t)(p(t) — )| < € |p(t) — 3|
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for all s € U; and

l9(p(t)) = 9()p(t)' =" = Talg™)(t)(p(t) — 5)| < €*[p(t) — 3|

for all s € Us.

From Theorem 3.2 (i), there exists neighborhoods Us of t with |f(t) — f(s)| < €* for all
s € Us.

Let U = U; N Uy N Us. Then we have for all s € U

£ (p()g(p(t)) = f(s)g ( Ne()' ™ = [Ta(fY)(g(p(t) + F(£)Talg™) (D) (p(t) — 5)]
< [[(f () = f())p(t) =" = Ta(FV)(E)(p(t) — 5)lg(p(t)]
H(g(p(t)) — g(s))p(t)' == = Talg™) () (p(t) — 5)f(1)]
+[(g(p(t)) = g(s))p(t)' = = Talg") () (p(t) — $)I(f(s) — (1))l
HTalg") (O (p(t) = $)(f(s) = f(1))]
< €lpt) = sl (lgle@)] + [FO)] + € + TalgV) (1))
< elp(t) —s|.

Thus To(fg)V(t) = f(O)TalgV)(#) + Ta(fV)(#)g(p(t)). The other product rule formula

follows by interchanging the role of functions f and g.

v
(iii) From Example 3.4, we have that T, (f : l) (t) = To(1)V(t) = 0. Therefore

f
AN L _
T (3) 050600 + a0 =0
and consequently TQ(%)V(t) = —;f(‘;)(}c;)(gg
(iv) We use (ii) and (iii) to calculate
AN 1" V) ()
() © = HOm (L) O+ 00 o
e TalgV)() v 1
= O%e6m) T O 5m)
_ Ta(fY)®)9) — f(H)Talg")(?)
9(t)g(p(t)) '

Theorem 3.7 Let ¢ be constant and m € N.
(i) For f defined by f(t) = (¢ — ¢)™, we have that

m—1

Ta(fY)(8) = p(1)' =" D (p(t) — €)' (t — )"

1=0

ii) For g defined by ¢(t) = -—, we have that
(t=0)

m—1

Ta(gv)(t) = _P(t)lia Z (p(t) — C)ml—i(t — ¢)itl

=0
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provided (p(t) — c¢)(t — ¢) # 0.
Proof (i) We prove the first formula by induction. If m = 1, then f(¢t) =t — ¢, and
clearly Ty (fV)(t) = p(t)'~° holds by Example 3.4 and Theorem 3.6(i). Now we assume that

TG0 = ) Y (o) — ) (-

holds for f(t) = (t — ¢)™ and let F(t) = (t — ¢)™™ = (t — ¢) f(t). We use Theorem 3.6 (ii)
to obtain

To(F)V(t) = p(t)'f(p(t)) + (t = ) Tal(fY)(2)

= p(&)'"(p(t) — )™ + (t—c)p(t)' . (p(t) — c)i(t — )™=

Hence part (i) holds.
(ii) For g(t) = W’ we use Theorem 3.6 (iii) to obtain

T.(9)%(t) = —JT“

0 S0 (plt) — )it — )

_ P

- ((t) - )t — o

B tl_am—l 1

= T L m =g

provided (p(t) —¢)(t — ¢) # 0.
Example 3.8 If f : T — R is defined by f(t) = & for allt € T := {{/n: n € Ny}, then
we have that f is conformable V-fractional differentiable of order « at ¢ € T with

1-a L I o 1 1
.0 = o0 (s + o) =~V (= ).
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