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Abstract: In this paper, we investigate the stability and Hopf bifurcation for a new dif-

ferential algebraic predator-prey system which combined with nonlinear harvesting in prey and

gestational time delay of predator. Using bifurcation theorem and stability theorem, through con-

sidering gestational time delay of predator as bifurcation parameter, we obtain the interrelated

stability criterion and the related conditions of producing Hopf bifurcation at the positive equi-

librium point of the proposed system, which popularize the conclusions of the general differential

algebraic predator-prey system which combined with linear harvesting and time delay.
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1 Introduction

In biology dynamics, the interactions between species can be summed up in the power
system, power system can be divided into the predator-prey system, competition and mutu-
alism system, such as the predator-prey system has been highly valued in ecological research
at this years. In today’s economic and social life, it is necessary to consider thing’s economic
benefit, therefore on the basis of the biological population theory, considering the economic
benefit of ecological economics come into being. Thus, the research of ecological economics
which is based on the biological population theory makes meaningful for protecting the
balance of ecological and reflecting its economic.

Mathematical biology’s application has an immense impact towards the development
of commonly used biological resources like fishery. Recently, scientists and researchers gave
emphasis on the interaction between mathematics and biology which initiate a new research
area. Some fundamental issues in biology appear to require new thoughts quantitatively or
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analytically. Most of our biological theories evolve rapidly, therefore it is necessary to develop
some useful mathematical models to describe the consequences of these biological systems.
It is observed that these newly developed mathematical models are significantly influenced
through the biological theories in the past and the consequent expansion of those theories
in recent time. For this purpose, differential algebraic equations can be considered as an
important tool for the analysis of a biological model. In the early 1970s, Rosenbrock used
the differential algebraic system method which was used to research the complex electrical
network system at a first time to study the predator-prey system. Through on the basis of
the original differential system, increase a algebra system to describe its economic benefit,
it makes the system better realistic. Thus, differential algebraic predator-prey system has
gradually become the hot issue for the scientific research personnel.

In this years, researches made a lot of contributions in the research of predator-prey
system, and the research is greater. There was rapidly growing interest in the analysis and
modelling of predator-prey systems [1–11]. Many authors [3–7] studied the dynamics of
predator-prey models with harvesting, and obtained complex dynamic behaviors, such as
Hopf bifurcation, direction of periodic solutions bifurcating from Hopf bifurcation, flip bifur
cation, Bogdanov-Taken s bifurcation, limit cycle and so on. Some references [12–15] and
Liu et al. [16, 17] formulated a class of differential algebraic predator-prey system, which
investigated the interaction mechanism, the effect of the harvesting effort from an economic
perspective and the bifurcation of the system. [18] studied the dynamic behavior of the
proposed biological economic predator-prey mode, he discussed the Hopf bifurcation. Chen
[19] considered normal forms for differential algebraic system.

Orosz [20] presented a formal framework for the analysis of Hopf bifurcations in delay
differential equations with a single time delay. He determined closed-form linear algebraic
equations and calculated the criticality of bifurcations by normal forms. Cao and Freedman
[21] obtained the criterion of persistence and global attractivity for a predator-prey model
with time delay due to gestation. Yafia et al. [22] considered a model with one delay
and a unique non trivial equilibrium. They studied the dynamics of the model in terms of
the local stability and of the description of the Hopf bifurcation at non trivial equilibrium.
They proved that delay (taken as a parameter of bifurcation) crosses some critical values
and determined the direction of the Hopf bifurcation and the stability or instability of the
bifurcating branch of periodic solutions. Kar [23] studied a Gauss-type prey predator model
with selective harvesting and introduce a time delay in the harvesting term. He concluded, in
general, delay differential equations exhibit much more complicated dynamics than ordinary
differential equations since time delay could cause a stable equilibrium to become unstable
and cause the population to fluctuate.

However, to the best of our knowledge, this paper mainly studies the stability and bifur-
cations of a new biological economic system formulated by differential algebraic equations.
Different from those presented in Zhang [24] and Liu [25, 26] which their harvesting of the
system is linear, but the harvesting of our bioeconomic system is nonlinear in accordance
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with the actual situation of the real world. Besides, the continuous gestation delay of preda-
tion is also incorporated in our system. Our Hopf bifurcation analysis for the predator-prey
system is based on the delyed differential algebraic predator-prey system, which it appears
to be more complete for the real world to take account the delay of the system by using
this way in our model. Then, it has taken a comprehensive analysis for the predator-prey
system.

The organization of this paper is as follows. In Section 2, we introduce the building
of our system. In Section 3, we discuss Hopf bifurcation of the positive equilibrium point
depending on the parametermfor system (2.5) through considering delay as a bifurcation
parameter. Numerical simulations inspect the effectiveness of mathematical conclusions in
Section 4. Finally, this paper put across by a concise discussion and summary.

2 Mathematical Model

Our model is based on the following classical prey-dependent predator-prey system [27]:
{

dx
dt

= rx(1− x
k
)− exy

a+x
,

dy
dt

= y
(−d + hx

a+x

)
,

(2.1)

where x and y are interpreted as the densities of prey and predator population at time t, and
r, d are the intrinsic growth rate of prey and the death rate of predator in the absence of
food, k is the carrying capacity of prey, separately, a, h are the capture saturation constant
and the maximal predator.

Biological resources in the prey-predator system are most likely to be harvested and
sold with the purpose of achieving the economic interest which motivates the introduction of
harvesting in the prey-predator model. Let H represent the harvesting, then H = qEx where
E denotes the effort applied to harvest the prey species and q is the catchability coefficient.
This function embodies unrealistic features, unbounded linear increase of H with E for a
fixed x, and unbounded linear increase of H with x for a fixed E. These restrictive feature
are removed in the functional form which was proposed first by Clark [28] as follows

H(t) =
qE(t)x(t)

m1E(t) + m2x(t)
.

Amongst the several types of harvesting Michaelis-Menten type harvesting is more realistic.
This kinds of nonlinear harvesting is more realistic from biological and points of view.

Substituting these following dimensionless variables in system (2.1)

e = a1, a = n, h = a2s, d = s.

Then combined with nonlinear harvesting, the classical prey-dependent predator-prey model
is given by {

dx
dt

= rx(1− x
k
)− a1xy

n+x
− qEx

m1E+m2x
,

dy
dt

= sy
(−1 + a2x

n+x

)
,

(2.2)
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where q is the catchability coefficient, E is the effort applied to harvest the prey species,
and m1, and m2 are suitable constants. All the parameters are assumed to be positive due
to biological considerations.

In 1954, Gordon studied the effect of the harvest effort on ecosystem from an economic
perspective and proposed the following economic principle, which the affect of the harvesting
effort on the economic system was researched from an point of economic. The equation
proposed in [29] to investigate the economic interest of the yield of the harvesting effort
takes the following form

Net Economic Revenue(NER) = Total Revenue(TR)− Total Cost(TC).

Referring to the predator-prey system (2.2), we get

NER = m, TR =
pqEx

m1E + m2x
, TC =

cqE

m1E + m2x
.

Substituting them into the economic theory equation mentioned above, then we can obtain
the following algebraic equation

qE

m1E + m2x
(px− c) = m,

respectively, p, c represent harvesting reward per unit harvesting effort for unit weight and
harvesting cost per unit harvest effort.

And then, combined with the following biological economic algebraic equation, system
(2.2) can be expressed by differential algebraic equation





dx
dt

= rx(1− x
k
)− a1xy

n+x
− qEx

m1E+m2x
,

dy
dt

= sy(−1 + a2x
n+x

),
0 = qE

m1E+m2x
(px− c)−m.

(2.3)

Let us now consider this harvested predator-prey system with continuous time delay
due to gestation of predator. Consider the new variable z, called information variable which
summarizes information about the current state of the prey biomass in predator’s equation,
i.e., depends on current values of state variables and also summarizes information about past
values of state variables. We take up the formula

z(t) =
∫ t

−∞
g(x(t), y(t))k(t− τ0)dτ0,

where k(t− τ0) is the entire past history of prey biomass, τ0 < t is considered as a particular
time in the past and t represents the present time. Here the predator population consumes
the prey population at a constant a2, but the reproduction of predators after predating the
prey population is not instantaneous thus it will be incorporated by some time lag required
for gestation of predators. Let the time interval between the moments when an individual
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prey is killed and the corresponding biomass is added to the predator population is considered
as the time delay τ . Then we considerd g(x(t), y(t)) = x(t) and

k(t− τ0) =
1
τ

exp(−1
τ
(t− τ0)),

then the prey biomass in predator’s equation is replaced as follows

z(t) =
∫ t

−∞
x(t)

1
τ

exp(−1
τ
(t− τ0))dτ0.

From the above assumptions we consider the following system




dx
dt

= rx(1− x
k
)− a1xy

n+x
− qEx

m1E+m2x
,

dy
dt

= sy(−1 + a2z
n+z

),

z(t) =
∫ t

−∞
x(t)

1
τ
exp(−1

τ
(t− τ0))dτ0,

0 = qE
m1E+m2x

(px− c)−m.

(2.4)

Then the nonlinear integro-differential algebraic system can be transformed into the follow-
ing set of nonlinear ordinary differential algebraic system, we obtain a delayed differential
algebraic predator-prey system with nonlinear harvesting in prey





dx
dt

= rx(1− x
k
)− a1xy

n+x
− qEx

m1E+m2x
,

dy
dt

= sy(−1 + a2z
n+z

),
dz
dt

= 1
τ
(x− z),

0 = qE
m1E+m2x

(px− c)−m.

(2.5)

In this paper, we mainly discuss the effects of the economic profit on the dynamic of
system (2.5) in the region R4

+ = {(x, y, z, E)|x ≥ 0, y ≥ 0, z ≥ 0, E ≥ 0}. For convenience,
let

f(m,X1, E) =




f1(m,X1, E)
f2(m,X1, E)
f3(m,X1, E)


 =




x(r − r
k
x− a1y

n+x
− qE

m1E+m2x
)

sy(−1 + a2z
n+z

)
1
τ
(x− z)


 ,

g(m,X1, E) =
qE

m1E + m2x
(px− c)−m,

where X1 = (x, y, z)T .

3 Hopf Bifurcation and Stability for Positive Equilibrium Point

From system (2.5), we know that P := (x̂, ŷ, ẑ, Ê) is a positive equilibrium of system
(2.5) if and if only this point P is a solution of the following equations





rx(1− x
k
)− a1xy

n+x
− qEx

m1E+m2x
= 0,

sy(−1 + a2z
n+z

) = 0,
1
τ
(x− z) = 0,

qE
m1E+m2x

(px− c)−m = 0.

(3.1)
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Through a simple calculation, we obtain

P := (x̂, ŷ, ẑ, Ê) = (
n

a2 − 1
,
n + x0

a1

(r − r

k
x0 − qE0

m1E0 + m2x0

),
n

a2 − 1
,

mm2x0

qpx0 − qc−mm1

).

In this paper, we concentrate on the interior equilibrium P (x̂, ŷ, ẑ, Ê) of system (2.5),
since the biological meaning of the interior equilibrium implies that the prey, the predator
and the harvest effort on prey all exist, which are relevant to our study. Thus throughout
the paper, we assume that

a2 − 1 > 0, r − r

k
x0 − qE0

m1E0 + m2x0

> 0, qpx0 − qc−mm1 > 0, px0 − 1 > 0.

Then we study the Hopf bifurcation stability of positive point P (x̂, ŷ, ẑ, Ê), which is the
interior equilibrium of system (2.5). Combined with the above analysis of the model of
system (2.5), we have the following matrix from system (2.5)

M = DX1f −DEf(DEg)−1DX1g

=




r − 2rx
k
− a1ny

(n+x)2
+ qcE

(px−c)(m1E+m2x)
− a1x

n+x
0

0 −s + a1sz
n+z

a2sny
(n+z)2

1
τ

0 − 1
τ


 .

As P (x̂, ŷ, ẑ, Ê) is the interior equilibrium points of system (2.5), and it is satisfied with
equation (3.1), then we get the following matrix

M =




a1x̂ŷ
(n+x̂)2

− r
k
x̂ + pmx̂

(px̂−c)2
− a1x̂

n+x̂
0

0 0 a2snŷ
(n+ẑ)2

1
τ

0 − 1
τ


 .

Thus the characteristic polynomial of the matrix M is given by

v3 + l1v
2 + l2v + l3 = 0,

where

l1 =
r

k
x̂− a1x̂ŷ

(n + x̂)2
− pmx̂

(px̂− c)2
+

1
τ
,

l2 =
1
τ
(
r

k
x̂− a1x̂ŷ

(n + x̂)2
− pmx̂

(px̂− c)2
),

l3 =
sa1a2nx̂ŷ

τ(n + x̂)(n + ẑ)2
.

We obtain l1 > 0, l2 > 0 if r
k
x̂− a1x̂ŷ

(n+x̂)2
− pmx̂

(px̂−c)2>0
. And assuming B(τ) = l1l2 − l3, then

B(τ) =
1
τ2

(t1 + t1τ),
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where

t1 =
r

k
x̂− a1x̂ŷ

(n + x̂)2
− pmx̂

(px̂− c)2
,

t1 = (
r

k
x̂− a1x̂ŷ

(n + x̂)2
− pmx̂

(px̂− c)2
)2 − sa1a2nx̂ŷ

(n + x̂)(n + ẑ)2
.

Now we have the following theorem which ensures the local stability of the intreior
equilibrium point, P (x̂, ŷ, ẑ, Ê) of the model system (2.5).

Theorem 3.1 If P (x̂, ŷ, ẑ, Ê) exists with r
k

> a1ŷ
(n+x̂)2

+ pm
(px̂−c)2

and t2τ + t1 > 0, then

P (x̂, ŷ, ẑ, Ê) is locally asymptotically stable.
Proof With

r

k
>

a1ŷ

(n + x̂)2
+

pm

(px̂− c)2

and

t2τ + t2 > 0,

we can get that l1 > 0, l3 > 0. Then t2τ + t1 > 0 implies that B(τ) = l1l2 − l3 > 0. Hence
by Hurwitz criterion, the theorem follows.

Delayed differential algebraic predator-prey system with nonlinear harvesting in prey
with constant parameters are often found to approach a steady state in which the species
coexist in equilibrium. But if parameters used in the model are changed, other types of
dynamical behavior may occur and the critical parameter values at which such transitions
happen are called bifurcations.

According to this, we have the following theorem which uses to analyze the Hopf bifur-
cation of system (2.5) assuming τ as the bifurcation parameter.

Theorem 3.2 If P (x̂, ŷ, ẑ, Ê) exists with r
k

> a1ŷ
(n+x̂)2

+ pm
(px̂−c)2

and τ < 2f
2a2

1nx̂ŷ

(n+x̂)(n+ẑ)2
−f2

,

then a simple Hopf bifurcation occurs at the positive unique value τ = τ∗, where τ∗ =
2f

2a2
1nx̂ŷ

(n+x̂)(n+ẑ)2
−f2

.

Proof We know that the characteristic equation of system (2.5) at P (x̂, ŷ, ẑ, Ê) is
given by

v3 + l1(τ)v2 + l2(τ)v + l3(τ) = 0. (3.2)

Equation (3.2) has two purely roots if and if l1l2 = l3 for a unique value of τ∗ at which we
have a Hopf bifurcation. And characteristic (2.5) can’t have real roots in the neighborhood
of τ∗.

Then we can get

(v2 + l2)(v + l1) = 0.

This equation has two purely imaginary roots and a real root

v1 = i
√

l2, v2 = −i
√

l2, v1 = −l1.
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Then the roots are of the following form

v1(τ) = p(τ) + iq(τ), v2(τ) = p(τ)− iq(τ), v3(τ) = −l1(τ).

Applying Hopf bifurcation theorem, we need substitute v1(τ) = p(τ)+ iq(τ) in eq. (3.2)
and setting p(τ) = 0 and q(τ) =

√
l2, we obtain the transversality condition at τ = τ∗ as

(
dp(τ)
dτ

)τ=τ∗ = (− l2(l1l′2 − l′3 + l′1l2)
2(l22 + l21l2)

)τ=τ∗ .

According to the expressions of l1, l2 and l3 we find

(
dp(τ)
dτ

)τ=τ∗ =
2f + f2τ − 2a2

1nx̂ŷ

(n+x̂)(n+ẑ)2
τ

2τ3( 1
τ2 + 3f

τ
+ f2)

> 0,

if τ < 2f
2a2

1nx̂ŷ

(n+x̂)(n+ẑ)2
−f2

, where f = r
k
− a1ŷ

(n+x̂)2
− pm

(px̂−c)2
.

Thus form the investigation ,we can get that the equilibrium point P (x̂, ŷ, ẑ, Ê) is locally
asympotically stable for τ < τ∗. Furthermore, according to the Liu’s [30] criterion simple
Hopf bifurcation occurs at τ = τ∗ and for τ > τ∗.

4 Numerical Simulations

In this section, we assign numerical values to illustrate the effectiveness of our analytical
results. The category consists of the results where system (2.5) undergoes a Hopf bifurcation
with respect to bifurcation parameter τ∗ around the equilibrium point P (x̂, ŷ, ẑ, Ê).

According to the part of Section 3, let us consider the parameters of system (2.5) as

r = 3, k = 1, a1 = 1, a1 = 2, s = 1, n = 0.5, p = 4, c = 1,m1 = 1,m1 = 2, q = 5,m = 0.4,

then system (12) becomes




dx
dt

= 3x(1− x)− xy
0.5+x

− 5Ex
E+2x

,
dy
dt

= y(−1 + 2x
0.5+x

),
dz
dt

= 1
τ
(x− z),

0 = 5E
E+2x

(4x− 1)− 0.4.

(4.1)

According system (2.5) and Theorem 2, we can obtain that system (4.1) exists equilibrium
point P (0.5, 1, 0.5, 1

9
), and the bifurcation value τ∗ = 0.263.

If we consider the value of τ = 0.239 < τ∗, then it is observed from Figure 1 that
P (x̂, ŷ, ẑ, Ê) is locally asymptotically stable and the population of prey and predator converge
to their steady states in finite time. Now if we gradually increase value of τ , from Theorem
2 we have got that the P (x̂, ŷ, ẑ, Ê) loses its stability as τ = 0.263 = τ∗ by Figure 2. Also we
can note that the positive equilibrium point P (x̂, ŷ, ẑ, Ê) is unstable while τ = 0.26316 > τ∗

from Figure 3.
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Figure 1: When τ = 0.239 < τ∗ and with the initial condition
x̂ = 0.499, ŷ = 0.999, ẑ = 0.499, Ê = 0.111 , that show the positive equilibrium point

P (x̂, ŷ, ẑ, Ê) of system (4.1) is locally asymptotically stable.
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Figure 2: When τ = 0.26315 = τ∗ and with the initial condition
x̂ = 0.499, ŷ = 0.999, ẑ = 0.499, Ê = 0.111 , that show system (4.1) taking Hopf

bifurcation at the positive equilibrium point P (x̂, ŷ, ẑ, Ê).
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Figure 3: When τ = 0.26316 > τ∗ and with the initial condition
x̂ = 0.499, ŷ = 0.999, ẑ = 0.499, Ê = 0.111 , that show the positive equilibrium point

P (x̂, ŷ, ẑ, Ê) of system (4.1) is unstable stable.

5 Discussion

It is mainly concerned with the bifurcation analysis of a nonlinear harvested differential
algebraic predator-prey system with time delay in this paper. As harvesting has a strong
impact on the dynamical behavior of a predator-prey system, our predator-prey system is
combined with nonlinear harvesting. It shows that nonlinear harvesting is more realistic
from biological and points of view through our analysis. Also in general, delay differential
algebraic equations exhibit much more complicated dynamics than ordinary differential alge-
braic equations, them the continuous gestation delay of predator population is incorporated
in our system. We study the impact of delay, as a bifurcation parameter, and here proved
that the time delay can cause a stable equilibrium to become unstable. According to The-
orem 1, Theorem 2 and figures, we can know that the stability of the interior equilibrium
point P changes from stable to unstable while bifurcation parameter τ ≥ τ∗. With the
above discuss, in order to keep the population of predator, the population of prey and the
economic profit at an ideal level, it needs to let τ satisfy 0 < τ < τ∗.

For this paper, we only study the stability and bifurcation of system (2.5), in order
to control the system, the state feedback control method should be incorporated into our
model, it is good for us to control the bifurcation of the system. So we can improve our
research on this aspect in the future.
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带有非线性收获和妊娠时滞的微分代数捕食者-食饵系统的稳定性

及Hopf分支

李 蒙, 陈伯山, 李必文

(湖北师范大学数学统计学院, 湖北黄石 435002)

摘要: 本文研究了一类同时带有非线性食饵收获和捕食者妊娠时滞的微分代数捕食者-食饵系统的稳

定性及Hopf分支问题. 利用了分支理论和稳定性理论, 以捕食者妊娠时滞作为系统的分支参数, 获得了所提

出的新系统在正平衡点处系统稳定性的相关判据条件和Hopf分支的产生条件. 推广了一般带有线性收获和

时滞的微分代数捕食者-食饵系统的结论.
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