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1 Introduction

In this paper, we consider the nonexistence of L2 eigenforms of the Laplacian on a com-
plete noncompact manifold M under various conditions, such as having exhaustion functions
which satisfy some special conditions or having various pinching radial sectional curvature.
It is well known that the Hodge Laplacian 4p = dδ + δd is self-adjoint on L2Ap(M), indeed,
essentially self-adjoint on the space C∞

0 Ap(M) of compactly supported smooth p-forms [1].
We denote the corresponding operator domain with the symbol dom(4p).

Our main results are first based on some Rellich-type identities for differential forms,
analogous to those obtained by [2] and [3], but we find it natural and direct to express them
by stress energy tensors. Then we specialize the discussion to the case that the metric g is the
conformal deformation of the background metric g0 and obtain the corresponding integral
formula. By this integral formula, we can obtain conditions on the conformal function f and
on other geometric conditions under which 4p

g has no positive point spectrum, i.e., there
are no nonzero square integrable p-form u in dom(4p) satisfying the eigenvalue equation
4pu = λu (λ > 0). The main feature of these results is that in all cases we allow a
controlled conformal deformation of the metric. Our results improve and complement those
obtained by [2–4].
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We consider the nonexistence of eigenforms under the conditions of exhaustion function
whose Hessian satisfies some pinching conditions. When we choose the special exhaustion
function to be the square of the distance function r(x), where x ∈ M , we can relate these
conditions to the radial sectional curvature of the complete manifold with a pole by Hessian
comparison theorem, and obtain nonexistence theorems under various pinching condition on
radial sectional curvature.

2 Stress Energy Tensors and Exhaustion Function

Let (M, g) be a Riemannian manifold and ξ : E → M be a smooth Riemannian vector
bundle over M with a metric compatible connection ∇E . Set Ap(ξ) = Γ(ΛpT ∗M ⊗ E) the
space of smooth p-forms on M with values in the vector bundle ξ : E → M . When ξ is the
trivial bundle M × R, denote Ap(M) = Γ(ΛpT ∗M). The exterior covariant differentiation
d∇ : Ap(ξ) → Ap+1(ξ) relative to the connection ∇E is defined by

(d∇ω)(X1, · · · , Xp+1) =
p+1∑
i=1

(−1)i+1(∇Xi
ω)(X1, · · · , X̂i, · · · , Xp+1).

The codifferential operator δ∇ : Ap(ξ) → Ap−1(ξ) characterized as the adjoint of d∇ is
defined by

(δ∇ω)(X1, · · · , Xp−1) = −
∑

i

(∇ei
ω)(ei, X1, · · · , Xp−1).

Given ω and θ in Ap(ξ), the induced inner product on ∧pT ∗x M ⊗ Ex is defined as follows:

〈ω, θ〉 =
∑

i1<···<ip

〈ω(ei1 , · · · , eip
), θ(ei1 , · · · , eip

)〉Ex

=
1
p!

∑
i1,··· ,ip

〈ω(ei1 , · · · , eip
), θ(ei1 , · · · , eip

)〉Ex

and denote by | · | the induced norm. The energy functional of ω ∈ Ap(ξ) is defined to be

E(ω) =
1
2

∫

M

|ω|2dvg,

its stress-energy tensor is

Sω(X, Y ) =
|ω|2
2

g(X, Y )− (ω ¯ ω)(X, Y ), (2.1)

where ω ¯ ω ∈ Γ(Ap(ξ)⊗Ap(ξ)) is a symmetric tensor defined by

(ω ¯ ω)(X, Y ) = 〈iXω, iY ω〉,

here iXω ∈ Ap−1(ξ) denotes the interior product by X ∈ TM . Notice that, if p = 0, i.e.,
ω ∈ Γ(ξ), iXω = 0 then (2.1) becomes

Sω(X, Y ) =
|ω|2
2

g(X, Y ). (2.2)
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For a 2-tensor field T ∈ Γ(T ∗M ⊗ T ∗M), its divergence divT ∈ Γ(T ∗M) is defined by

(divT )(X) =
∑

i

(∇ei
T )(ei, X),

where {ei} is an orthonormal basis of TM . The divergence of Sω is given by (see [5–7])

(divSω)(X) = 〈δ∇ω, iXω〉+ 〈iXd∇ω, ω〉. (2.3)

For a vector field X on M , its dual one form θX is given by

θX(Y ) = g(X, Y ),∀Y ∈ TM.

The covariant derivative of θX gives a 2-tensor field ∇θX :

(∇θX)(Y, Z) = (∇ZθX)(Y ) = g(∇ZX, Y ),∀Y, Z ∈ TM. (2.4)

If X = ∇ψ is the gradient of some smooth function ψ on M , then θX = dψ and ∇θX =
Hess(ψ).

For any vector field X on M , a direct computation yields (see [6] or Lemma 2.4 of [3])

div(iXSω) = 〈Sω,∇θX〉+ (divSω)(X). (2.5)

Let D be any bounded domain of M with C1 boundary. By (2.5) and using the diver-
gence theorem, we immediately have the following integral formula (see [6, 8])

∫

∂D

Sω(X, ν)dv∂D =
∫

D

[〈Sω,∇θX〉+ (divSω)(X)]dvg, (2.6)

where ν is the unit outward normal vector field along ∂D.
To apply the above integral formula, we introduce some special exhaustion functions.

Let (M, g) be a Riemannian manifold and let Φ be a Lipschitz continuous function on Mm

satisfying the following conditions (see [9]):
(i) Φ = 0 and Φ is an exhaustion function of M , i.e., each sublevel set BΦ(t) := {Φ < t}

is relatively compact in M for t = 0.
(ii) Ψ = Φ2 is of class C∞ and Ψ has only discrete critical points.
(iii) The constant k1 = sup

x∈M
|∇Φ|2 is finite.

The function Φ with properties (i), (ii) and (iii) will be called a special exhaustion function
in the following sections.

3 The Results Under Exhaustion Functions

In this section, by using stress energy tensor, we derive some integral identities satisfied
by differential forms u ∈ Ap(M) which are solutions of 4u − λu = 0, then we obtain a
nonexistence theorem of p-eigenforms on manifolds with exhaustion functions which satisfy
some pinching conditions.
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Lemma 3.1 Let M be a complete Riemannian manifold with a special exhaustion
function Φ. Assume u ∈ Ap(M) satisfies 4pu = λu and δu = 0. Let also k ∈ R and
X ∈ Γ(TM) be a given vector field, then we have

∫

BΦ(R)

[〈Sdu,∇θX〉 − k

4
|du|2]dvR − λ

∫

BΦ(R)

[〈Su,∇θX〉 − k

4
|u|2]dvR

=
∫

∂BΦ(R)

[
1
2
(|du|2 − λ|u|2)〈X, ν〉 − 〈iXdu +

k

4
u, iνdu〉+ λ〈iXu, iνu〉]dσR,

where dσR denotes the surface measure induced by dvR on ∂BΦ(R), ν denotes the outward
unit normal to ∂BΦ(R).

Proof By (2.3) and (2.6), we have
∫

∂BΦ(R)

Sω(X, ν)dσR =
∫

BΦ(R)

[〈Sω,∇θX〉+ 〈δω, iXω〉+ 〈iXdω, ω〉]dvR.

Applying this relation first to ω = du and then to ω = u, we obtain
∫

BΦ(R)

[〈Sdu,∇θX〉 − λ〈Su,∇θX〉+ 〈δdu, iXdu〉 − λ〈iXdu, u〉]dvR

=
∫

∂BΦ(R)

[Sdu(X, ν)− λSu(X, ν)]dσR.

By formula (2.1), taking into account that δdu = 4u = λu, we obtain
∫

BΦ(R)

[〈Sdu,∇θX〉 − λ〈Su,∇θX〉]dvR

=
∫

∂BΦ(R)

[Sdu(X, ν)− λSu(X, ν)]dσR

=
∫

∂BΦ(R)

[
1
2
(|du|2 − λ|u|2)〈X, ν〉 − 〈iXdu, iνdu〉+ λ〈iXu, iνu〉]dσR,

and we have by Stokes’s theorem
∫

BΦ(R)

[|du|2 − λ|u|2]dvR =
∫

BΦ(R)

〈u, δdu− λu〉dvR +
∫

∂BΦ(R)

〈u, iνdu〉dσR

=
∫

∂BΦ(R)

〈u, iνdu〉dσR.

Thus
∫

BΦ(R)

[〈Sdu,∇θX〉 − k

4
|du|2]dvR − λ

∫

BΦ(R)

[〈Su,∇θX〉 − k

4
|u|2]dvR

=
∫

∂BΦ(R)

[
1
2
(|du|2 − λ|u|2)〈X, ν〉 − 〈iXdu +

k

4
u, iνdu〉+ λ〈iXu, iνu〉]dσR.

This proves Lemma 3.1.
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Let {ei} be a local orthonormal frame field, and denote by LX the Lie differentiation
in the direction of X. We now specialize the discussion to the case that the metric g is the
conformal deformation of the background metric g0, as specified in the introduction, and
obtain the following lemma.

Lemma 3.2 Assume that u satisfies the hypotheses of Lemma 3.1. Suppose further
that g = fg0 and M has a special exhaustion function Φ satisfying

(i) lim inf
t→+∞

|∇g0Ψ|2g0
(t)[ max

x∈∂BΦ(t)
|f(x)|] ≥ C > 0 and (ii)

∫ +∞

1

1
|∇g0Ψ|g0

dr = +∞. (3.1)

Denote by X = ∇g0Ψ

2
= Φ∇g0Φ, where ∇g0 is the connection of g0. Then, there exists a

sequence Rn → +∞ such that, denoting by BΦ(R) the exhaustion ball of radius R centered
at a given x0,

lim
n→∞

∫

BΦ(Rn)

{1
2
|du|2(trLXg − k)−

∑
s,t

〈ies
du, iet

du〉g(LXg)(es, et)

−λ[
1
2
|u|2(trLXg − k)−

∑
s,t

〈ies
u, iet

u〉g(LXg)(es, et)]}dvg = 0. (3.2)

Proof By (2.4) and the definition of Lie differentiation, we have

(LXg)(es, et) = g(∇es
X, et) + g(es,∇et

X)

=
1
2
(∇θ∇g0Ψ)(et, es) +

1
2
(∇θ∇g0Ψ)(es, et),

where ∇ is the connection of g, thus

1
2
|du|2(trLXg − k)−

∑
s,t

〈ies
du, iet

du〉g(LXg)(es, et)

= 〈1
2
|du|2g,∇θ∇g0Ψ〉g − 〈du¯ du,∇θ∇g0Ψ〉g − k

2
|du|2

= 2[〈Sdu,∇θX〉 − k

4
|du|2].

Considering that (∇g0Ψ)|∂BΦ(t) is an outward normal vector field along ∂BΦ(t) for a regular
value t > 0, (∇g0Ψ)x = |∇g0Ψ|(x)ν1 for each point x ∈ ∂BΦ(t), where ν1 denote the g0-unit
outward normal vector field of ∂BΦ(t). Let ν2 be the g-unit outward normal vector field of
∂BΦ(t), then the following identities are easily verified

ν2 = f−1/2ν1, |∇Ψ|2g = f−1|∇g0Ψ|2g0
.

Thus

g(ν2, X) =
1
2
f1/2|∇g0Ψ|g0 ,

g(iXdu, iν2du) =
1
2
f1/2|∇g0Ψ|g0g(iν2du, iν2du),
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and
g(iXu, iν2u) =

1
2
f1/2|∇g0Ψ|g0g(iν2u, iν2u).

Denoting by S(R) the boundary term of Lemma 3.1. Using the Cauchy-Schwarz inequality
and assumption (3.1)(i), we estimate

|S(R)| ≤ |∇g0Ψ|g0

∫

∂BΦ(R)

f1/2{3
4
(|du|2 + λ|u|2) +

k

4f1/2|∇g0Ψ|g0

|u||du|}dσg,R

≤ C ′|∇g0Ψ|g0

∫

∂BΦ(R)

f1/2(|du|2 + |u|2)dσg,R,

where C ′ depends only on C, |λ| and k. Since u ∈ dom(4p), |u|2 and |du|2 are integrable on
M (see [1, 2]). By the co-area formula, we have

∫ +∞

0

dR

∫

∂BΦ(R)

f1/2(|du|2 + |u|2)dσg,R

=
∫ +∞

0

|∇g0Φ|g0dR

∫

∂BΦ(R)

1
|∇gΦ|g (|du|2 + |u|2)dσg,R

≤
√

k1

∫

M

(|du|2 + |u|2)dvg < +∞.

By (3.1)(ii), we conclude that
lim inf
R→+∞

S(R) = 0

as required. This proves Lemma 3.2.
Lemma 3.3 Maintaining the notation of Lemma 3.2. Denote by A(x) (resp. B(x)) the

smallest (resp. largest) eigenvalue of Hessg0(Ψ), that is, the Hessian of Ψ

A(x)g0 ≤ Hessg0(Ψ) ≤ B(x)g0

holds on M in the sense of quadratic forms. Then for every p-form u ∈ Ap(M)(p ≥ 1), and
every k ∈ R, we have

|u|2
4
{(m− 2p)f−1(∇g0Ψ)(f)− 2[pB − (m− p)A + k]}

≤ 1
2
|u|2(trLXg − k)−

∑
s,t

〈ies
u, iet

u〉g(LXg)(es, et)

≤ |u|2
4
{(m− 2p)f−1(∇g0Ψ)(f)− 2[pA− (m− p)B + k]},

where X = ∇g0Ψ

2
= Φ∇g0Φ. If u is a 0-form, then we also have

1
2
|u|2(trLXg − k) ≥ |u|2

4
{mf−1(∇g0Ψ)(f)− 2[k −B − (m− 1)A]}.

Proof The proof is a modification of that of Lemma 1.3 in [3] (see also [10]), and we
outline it here for completeness.



No. 3 The L2 eigenforms of the Laplacian on complete manifolds 525

Since LXg is symmetric, the local orthonormal frame {es} may be chosen in such
a way that diagonalizes LXg. Let µs be the corresponding eigenvalues of LXg, so that
(LXg)(es, et) = δs,tµs. We further assume that the indexing be chosen in such a way that
µ1 ≥ µ2 ≥ · · · ≥ µm. By definition of inner product, we may write

∑
s,t

〈ies
u, iet

u〉g(LXg)(es, et) =
∑

s

〈ies
u, ies

u〉gµs

=
1

(p− 1)!

∑
s

∑
i1,··· ,ip−1

|u(es, ei1 , · · · , eip−1)|2µs

=
1
p!

∑
i1,··· ,ip

|u(ei1 , · · · , eip
)|2

p∑
j=1

µij
.

Since the eigenvalues are arranged in decreasing order, we have

m∑
j=m−p+1

µj ≤
p∑

j=1

µij
≤

p∑
j=1

µj

and we conclude that

|u|2
m∑

j=m−p+1

µj ≤
∑
s,t

〈ies
u, iet

u〉gLXg(es, et) ≤ |u|2
p∑

j=1

µj .

Denote by

Q =
1
2
|u|2(trLXg − k)−

∑
s,t

〈ies
u, iet

u〉g(LXg)(es, et).

Then we have

|u|2
2

(
m∑

i=p+1

µi −
p∑

i=1

µi − k) ≤ Q ≤ |u|2
2

(
m−p∑
i=1

µi −
m∑

i=m−p+1

µi − k). (3.3)

By definition of Lie differentiation, we have

LXg =
1
2
(∇g0Ψ)(f)g0 + fHessg0(Ψ),

thus

[f−1(∇g0Ψ)(f) + 2A]g ≤ L∇g0Ψg ≤ [f−1(∇g0Ψ)(f) + 2B]g.

Therefore

1
2
[f−1(∇g0Ψ)(f) + 2A] ≤ µi =

1
2
(L∇g0Ψg)(ei, ei) ≤ 1

2
[f−1(∇g0Ψ)(f) + 2B].

The required conclusion now follows, substituting these estimates into (3.3). This proves
Lemma 3.3.
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Lemma 3.4 Maintaining the notation and assumption of Lemma 3.2. Assume that
the functions A(x), B(x) satisfy A(x) ≥ m−2

m
B(x) if p = 0 and A(x) ≥ m−1

m+1
B(x) if p ≥ 1.

Suppose also that

|f−1(∇g0Ψ)(f)| ≤ m

m− 1
[A− m− 2

m
B], if p = 0,

|f−1(∇g0Ψ)(f)| ≤ m + 1
m− 2p− 1

[A− m− 1
m + 1

B], if 2 ≤ 2p < m− 2,

f−1(∇g0Ψ)(f) ≥ −2(m + 1)
3

[A− m− 1
m + 1

B], if 2p = m− 2 or 2p = m,

f−1(∇g0Ψ)(f) ≥ −(m + 1)[A− m− 1
m + 1

B], if 2p = m− 1,

and the above strict inequalities hold at some point x0 ∈ M . If u ∈ L2(Ap(M)) is such that
δu = 0 and 4pu = λu (λ > 0), then u = 0.

Proof We consider the case p ≥ 1. If p = 0, the argument is similar. By Lemma 3.3,
we have

1
2
|du|2(trLXg − k)−

∑
s,t

〈ies
du, iet

du〉g(LXg)(es, et)

≤ |du|2
4
{(m− 2p− 2)f−1(∇g0Ψ)(f)− 2[(p + 1)A− (m− p− 1)B + k]}

(3.4)

and

1
2
|u|2(trLXg − k)−

∑
s,t

〈ies
u, iet

u〉g(L∇g0Ψg)(es, et)

≥ |u|2
4
{(m− 2p)f−1(∇g0Ψ)(f)− 2[pB − (m− p)A + k]}. (3.5)

Assume first that 2 ≤ 2p < m− 2. We determine the constant k in such a way that

2
m− 2p− 2

[(p + 1)A− (m− p− 1)B + k] = − 2
m− 2p

[pB − (m− p)A + k].

Then a computation shows that the left hand side is equal to

m + 1
m− 2p− 1

[A− m− 1
m + 1

B],

which is nonnegative by our assumption on A and B. Keeping into account the condition
satisfied by f , we deduce that the right hand side of (3.4) is nonpositive, and that of (3.5)
is nonnegative.

Arguing in a similar way, it is easily verified that the same conclusions hold if 2p is equal
to m−2, m−1 or to m, provided we choose k = −m−2

6
A+ m+2

6
B, k = 0, k = m−2

6
A− m+2

6
B,

respectively.



No. 3 The L2 eigenforms of the Laplacian on complete manifolds 527

In all cases, the integrand in the left hand side of (3.2) is of constant (nonpositive) sign,
and the integrals over the ball BΦ(Rn) tend to the integral over M as n tends to +∞. We
conclude that the left hand side of (3.5) vanishes identically, and all inequalities are in fact
equalities. In particular, when 2 ≤ 2p < m− 2,

|u|2
4
{(m− 2p)f−1(∇g0Ψ)(f)− 2[pB − (m− p)A + k]} = 0 on M,

thus
m− 2p

4
|u|2{f−1(∇g0Ψ)(f) +

m + 1
m− 2p− 1

[A− m− 1
m + 1

B]} = 0.

Now, by the continuity of f and the condition of the lemma, note that the quantity in
braces on the left hand side is strictly positive in a neighbourhood of x0. It follows that u

must vanish in a neighbourhood of x0. By unique continuation (see the proof of Lemma 1.4
of [3]), u must vanish identically on M , as required to finish the proof.

Theorem 3.1 Maintaining the notation and assumption of Lemma 3.3. Assume that
the functions A(x), B(x) satisfy A(x) ≥ m−2

m
B(x) if p = 0 and A(x) ≥ m−1

m+1
B(x) if p ≥ 1.

Suppose also that

|f−1(∇g0Ψ)(f)| ≤ m

m− 1
[A− m− 2

m
B], if p = 0,

|f−1(∇g0Ψ)(f)| ≤ m + 1
m− 2p + 1

[A− m− 1
m + 1

B], if 2 ≤ 2p < m,

f−1(∇g0Ψ)(f) ≥ −2(m + 1)
3

[A− m− 1
m + 1

B], if 2p = m,

and the above strict inequalities hold at some point x0 ∈ M . If u ∈ L2(Ap(M)) satisfies
4pu = λu (λ > 0), then u = 0.

Proof The case p = 0 can be deduced directly from Lemma 3.4. Thus, assume that
p ≥ 1, and let u ∈ L2(Ap(M)) be such that 4pu = λu with λ > 0. Then v = δu belongs
to L2(Ap−1(M)) and satisfies 4p−1v = λv, δv = 0. It is readily verified that f satisfies
the condition in Lemma 3.4 relative to p − 1, so that v = δu = 0. But f also satisfies the
condition of Lemma 3.4 relative to p, and therefore u = 0, as required.

Remark 3.1 When f = 1, so that there is no conformal deformation of the metric,
the conditions of the theorem become to A− m−2

m
B > 0 if p = 0 and A− m−1

m+1
B > 0 if p ≥ 1.

Remark 3.2 As in the case of harmonic p-forms, the conclusion for p > m/2 follows
by Hodge duality.

4 The Results on Concrete Models

When we choose the special exhaustion functions to be the square of the intrinsic dis-
tance function, we have to consider the eigenvalue with respect to the radial direction, thus
the discussion may be more complicate and finer.

Lemma 4.1 Let (M, g0) be a complete Riemannian manifold with a pole o and let r

be the distance function relative to o. Denote by X = r∇g0r = r∂r. Assume that the radial



528 Journal of Mathematics Vol. 36

sectional curvature of M satisfies − a
1+r2 ≤ Kr ≤ b

1+r2 with a ≥ 0, b ∈ [0, 1/4]. Let g = fg0

be a conformally related metric. Then for every u ∈ Ap(M) (p ≥ 1), and for every k ∈ R,
we have

r{m− 2p

2
f−1 ∂f

∂r
− r−1[

k

2
+ pB2 − (m− p)B1 −min(B2 − 1, 1−B1]}|u|2

≤ 1
2
|u|2(trLXg − k)−

∑
s,t

〈ies
u, iet

u〉g(LXg)(es, et)

≤ r{m− 2p

2
f−1 ∂f

∂r
− r−1[

k

2
− (m− p)B2 + pB1 + min(B2 − 1, 1−B1]}|u|2,

where B1 = 1+
√

1−4b
2

, B2 = 1+
√

1+4a
2

.
If u is a 0-form, then we also have

1
2
|u|2(trLXg − k) ≥ r{m

2
f−1 ∂f

∂r
− r−1[

k

2
− (m− 1)B1 − 1]}|u|2.

Proof We consider the case p ≥ 1. The statement relative to the case p = 0 can be
proved in a similar way.

For X = r∇g0r = r∂r, we have

LXg0 = Hessg0(r
2) = 2rHessg0r + 2dr ⊗ dr.

By − a
1+r2 ≤ Kr ≤ b

1+r2 and [8], we have

φ′

φ
[g0 − dr ⊗ dr] ≤ Hessg0r ≤

ψ′

ψ
[g0 − dr ⊗ dr].

Thus
2r{φ′

φ
g0 + [

1
r
− φ′

φ
]dr ⊗ dr} ≤ LXg0 ≤ 2r{ψ′

ψ
g0 + [

1
r
− ψ′

ψ
]dr ⊗ dr},

where φ, ψ are the solutions of the following problems, respectively
{

ψ′′ − a
1+r2 ψ = 0 on [0,+∞),

ψ(0) = 0, ψ′(0) = 1,

and {
φ′′ + b

1+r2 φ = 0 on [0,+∞),

φ(0) = 0, φ′(0) = 1.

Standard comparison arguments show that

1 +
√

1− 4b

2r
≤ φ′

φ
≤ 1

r
≤ ψ′

ψ
≤ 1 +

√
1 + 4a

2r
.

Since LX is a derivation, LXg = (Xf)g0 + fLXg0, thus

LXg ≥ r{(f−1 ∂f

∂r
+ 2

φ′

φ
)g + 2(

1
r
− φ′

φ
)fdr ⊗ dr} (4.1)
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and
LXg ≤ r{(f−1 ∂f

∂r
+ 2

ψ′

ψ
)g + 2(

1
r
− ψ′

ψ
)fdr ⊗ dr}. (4.2)

Choosing a local orthonormal frame {es} which diagonalizes LXg and the corresponding
eigenvalues satisfying µ1 ≥ µ2 ≥ · · · ≥ µm. Further, if Y is g-orthogonal to ∂r, then
(LXg)(Y, ∂r) = 0, and we may therefore arrange that one of the vectors, say gsr

be propor-
tional to ∂r, that is esr

= f−1/2∂r. By (4.1) and (4.2), we obtain

µs = r[f−1 ∂f

∂r
+

2
r
], if s = sr,

while
r[f−1 ∂f

∂r
+ 2

φ′

φ
] ≤ µs ≤ r[f−1 ∂f

∂r
+ 2

ψ′

ψ
], otherwise.

By a discussion similar to Lemma 3.3, we have

1
2
|u|2(trLXg − k)−

∑
s,t

〈ies
u, iet

u〉g(LXg)(es, et)

≥ r{m− 2p

2
f−1 ∂f

∂r
− r−1[

k

2
+ pr

ψ′

ψ
− (m− p)r

φ′

φ
− (r

ψ′

ψ
− 1)]}|u|2

≥ r{m− 2p

2
f−1 ∂f

∂r
− r−1[

k

2
+ pB2 − (m− p)B1 − (B2 − 1)]}|u|2, (4.3)

if sr ≤ p, and

1
2
|u|2(trLXg − k)−

∑
s,t

〈ies
u, iet

u〉g(LXg)(es, et)

≥ r{m− 2p

2
f−1 ∂f

∂r
− r−1[

k

2
+ pr

ψ′

ψ
− (m− p)r

φ′

φ
− (1− r

φ′

φ
)]}|u|2

≥ r{m− 2p

2
f−1 ∂f

∂r
− r−1[

k

2
+ pB2 − (m− p)B1 − (1−B1)]}|u|2, (4.4)

if sr > p. Thus

1
2
|u|2(trLXg − k)−

∑
s,t

〈ies
u, iet

u〉g(LXg)(es, et)

≥ r{m− 2p

2
f−1 ∂f

∂r
− r−1[

k

2
+ pB2 − (m− p)B1 −min(B2 − 1, 1−B1]}|u|2.

By the same discussion as above, we can also obtain

1
2
|u|2(trLXg − k)−

∑
s,t

〈ies
u, iet

u〉g(LXg)(es, et)

≤ r{m− 2p

2
f−1 ∂f

∂r
− r−1[

k

2
− (m− p)B2 + pB1 + min(B2 − 1, 1−B1]}|u|2.

This proves Lemma 4.1.
Lemma 4.2 Let (M, g0) be a complete Riemannian manifold with a pole o and let

r be the distance function relative to o. Assume that the radial sectional curvature of M
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satisfies − a
1+r2 ≤ Kr ≤ b

1+r2 with a ≥ 0, b ∈ [0, 1/4] and
√

1 + 4a +
√

1− 4b ≥ 2,
√

1− 4b−√
1 + 4a + 4

m−1
≥ 0 or

√
1 + 4a +

√
1− 4b ≤ 2,

√
1− 4b − m−3

m+1

√
1 + 4a ≥ 0 if p ≥ 1 and√

1 + 4a +
√

1− 4b ≤ 2,
√

1− 4b − m−2
m

√
1 + 4a + 2

m
≥ 0 if p = 0. Let g = fg0 be a

conformally related metric. Suppose also that

|f−1 ∂f

∂r
| ≤ 1

2
[
√

1− 4b−√1 + 4a +
4

m− 1
]r−1, if p = 0,

|f−1 ∂f

∂r
| ≤ m− 1

2(m− 2p− 1)
[
√

1− 4b−√1 + 4a +
4

m− 1
]r−1, if 2 ≤ 2p < m− 2,

f−1 ∂f

∂r
≥ −m− 1

4
[
√

1− 4b−√1 + 4a +
4

m− 1
]r−1, if 2p = m− 2 or 2p = m,

f−1 ∂f

∂r
≥ −m− 1

2
[
√

1− 4b−√1 + 4a +
4

m− 1
]r−1, if 2p = m− 1,

when
√

1 + 4a +
√

1− 4b ≥ 2, or

|f−1 ∂f

∂r
| ≤ m

2(m− 1)
(
√

1− 4b− m− 2
m

√
1 + 4a +

2
m

)r−1, if p = 0,

|f−1 ∂f

∂r
| ≤ m + 1

2(m− 2p− 1)
(
√

1− 4b− (m− 3)
√

1 + 4a

m + 1
)r−1, if 2 ≤ 2p < m− 2,

f−1 ∂f

∂r
≥ −m + 1

4
(
√

1− 4b− (m− 3)
√

1 + 4a

m + 1
)r−1, if 2p = m− 2 or 2p = m,

f−1 ∂f

∂r
≥ −m + 1

2
(
√

1− 4b− (m− 3)
√

1 + 4a

m + 1
)r−1, if 2p = m− 1,

when
√

1 + 4a +
√

1− 4b ≤ 2. If u ∈ L2(Ap(M)) is such that δu = 0 and 4pu = λu (λ > 0),
then u = 0.

Proof If
√

1 + 4a +
√

1− 4b ≥ 2, that is, B2− 1 ≥ 1−B1, then for du ∈ Ap+1(M), by
Lemma 4.1, we have

1
2
|du|2(trLXg − k)−

∑
s,t

〈ies
du, iet

du〉g(LXg)(es, et)

≤ r{m− 2p− 2
2

f−1 ∂f

∂r
− r−1[

k

2
− (m− p− 1)B2 + pB1 + 1]}|du|2 (4.5)

and
1
2
|u|2(trLXg − k)−

∑
s,t

〈ies
u, iet

u〉g(LXg)(es, et)

≥ r{m− 2p

2
f−1 ∂f

∂r
− r−1[

k

2
+ pB2 − (m− p− 1)B1 − 1]}|u|2. (4.6)

Assume first that 2 ≤ 2p < m− 2. We determine the constant k in such a way that

2
m− 2p− 2

[
k

2
− (m− p− 1)B2 + pB1 + 1] = − 2

m− 2p
[
k

2
+ pB2 − (m− p− 1)B1 − 1].

Then a computation shows that the left hand side is equal to

1
m− 2p− 1

[(m− 1)B1 − (m− 1)B2 + 2] =
m− 1

2(m− 2p + 1)
[
√

1− 4b−√1 + 4a +
4

m− 1
],
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which is nonnegative by our assumption. Keeping into account the condition satisfies by f ,
we deduce that the right hand side of (4.5) is nonpositive, and that of (4.6) is nonnegative.
Therefore the integral in the left hand side of (3.2) is nonnegative. We conclude that the left
hand side of (4.6) vanishes identically, and all inequalities are in fact equalities. In particular,
when 2 ≤ 2p < m− 2, by (4.3), we have

r{m− 2p

2
f−1 ∂f

∂r
− r−1[

k

2
+ pr

ψ′

ψ
− (m− p)r

φ′

φ
− (1− r

φ′

φ
)]}|u|2 ≡ 0 on M.

Now, note that the quantity in braces on the left hand side is strictly positive in a neigh-
bourhood of o. Indeed, we may rewrite it in the form

{m− 2p

2
f−1 ∂f

∂r
− r−1[

k

2
+pB2− (m−p−1)B1−1)]}+p(B2− r

ψ′

ψ
)+(m−p−1)(r

φ′

φ
−B1).

If B1 < 1 or B2 > 1, then the claim follows from the fact that r φ′

φ
→ 1 and r ψ′

ψ
→ 1 as

r → 0. If B1 = B2 = 1, then a = b = 0 and φ = ψ = r, so the last two term are identically
zero. But then

−[
k

2
+ pB2 − (m− p− 1)B1 − 1)] =

m− 2p

m− 2p− 1
,

and since f−1∂f/∂r is bounded in a neighbourhood of o (f being smooth and positive on
M), the first term is strictly positive near o. By unique continuation (see [3]), u must vanish
identically on M .

The other cases can be proved by the same way. This proves Lemma 4.2.
By the same discussion as Theorem 3.1, we have
Theorem 4.1 Let (M, g0) be a complete Riemannian manifold with a pole o and

let r be the distance function relative to o. Assume that the radial sectional curvature
of M satisfies − a

1+r2 ≤ Kr ≤ b
1+r2 with a ≥ 0, b ∈ [0, 1/4] and

√
1 + 4a +

√
1− 4b ≥

2,
√

1− 4b−√1 + 4a + 4
m−1

≥ 0 or
√

1 + 4a +
√

1− 4b ≤ 2,
√

1− 4b− m−3
m+1

√
1 + 4a ≥ 0 if

p ≥ 1 and
√

1 + 4a +
√

1− 4b ≤ 2,
√

1− 4b− m−2
m

√
1 + 4a + 2

m
≥ 0 if p = 0. Let g = fg0 be

a conformally related metric. Suppose also that

|f−1 ∂f

∂r
| ≤ 1

2
[
√

1− 4b−√1 + 4a +
4

m− 1
]r−1, if p = 0,

|f−1 ∂f

∂r
| ≤ m− 1

2(m− 2p + 1)
[
√

1− 4b−√1 + 4a +
4

m− 1
]r−1, if 2 ≤ 2p < m,

f−1 ∂f

∂r
≥ −m− 1

4
[
√

1− 4b−√1 + 4a +
4

m− 1
]r−1, if 2p = m,

when
√

1 + 4a +
√

1− 4b ≥ 2, or

|f−1 ∂f

∂r
| ≤ m

2(m− 1)
(
√

1− 4b− m− 2
m

√
1 + 4a +

2
m

)r−1, if p = 0,

|f−1 ∂f

∂r
| ≤ m + 1

2(m− 2p + 1)
(
√

1− 4b− (m− 3)
√

1 + 4a

m + 1
)r−1, if 2 ≤ 2p < m,

f−1 ∂f

∂r
≥ −m + 1

4
(
√

1− 4b− (m− 3)
√

1 + 4a

m + 1
)r−1, if 2p = m,
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when
√

1 + 4a +
√

1− 4b ≤ 2. If u ∈ L2(Ap(M)) satisfies 4pu = λu (λ > 0), then u = 0.
Remark 4.1 Using the above method, we can also obtain nonexistence theorems for

those manifolds whose radial sectional curvature satisfies − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with
ε > 0, A ≥ 0, 0 ≤ B < 2ε, or −α2 ≤ Kr ≤ −β2 with α ≥ 0, β ≥ 0.
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完备流形上拉普拉斯算子的L2特征形式

韩英波1,林和子2

(1.信阳师范学院数学与信息科学学院, 河南信阳 464000)

(2.福建师范大学数学与计算机科学学院, 福建福州 350108)

摘要: 本文研究了完备非紧流行上拉普拉斯算子的L2特征形式. 利用应力能量张量的方法, 得到在此

类流形上拉普拉斯算子的L2特征形式的一些不存在性定理。
关键词: 应力能量张量; 微分形式; Hodge 拉普拉斯算子
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