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1 Introduction

In this paper, we consider the nonexistence of L? eigenforms of the Laplacian on a com-
plete noncompact manifold M under various conditions, such as having exhaustion functions
which satisfy some special conditions or having various pinching radial sectional curvature.
It is well known that the Hodge Laplacian AP = d§ + dd is self-adjoint on L2 AP (M), indeed,
essentially self-adjoint on the space C§°AP(M) of compactly supported smooth p-forms [1].
We denote the corresponding operator domain with the symbol dom(AP?).

Our main results are first based on some Rellich-type identities for differential forms,
analogous to those obtained by [2] and [3], but we find it natural and direct to express them
by stress energy tensors. Then we specialize the discussion to the case that the metric g is the
conformal deformation of the background metric go and obtain the corresponding integral
formula. By this integral formula, we can obtain conditions on the conformal function f and
on other geometric conditions under which AP has no positive point spectrum, i.e., there
are no nonzero square integrable p-form u in dom(AP?) satisfying the eigenvalue equation
APy = Au (A > 0). The main feature of these results is that in all cases we allow a
controlled conformal deformation of the metric. Our results improve and complement those
obtained by [2—4].

* Received date: 2013-10-30 Accepted date: 2013-11-26
Foundation item: Supported by National Natural Science Foundation of China (11201400;
10971029; 11026062; 11326045); Talent Youth Teacher Fund of Xinyang Normal University; Project
for youth teacher of Xinyang Normal University (17(2012)).
Biography: Han Yingbo (1978-), male, born at Heze, Shandong, PH.D., associate professor,

majoring in differential geometry.



520 Journal of Mathematics Vol. 36

We consider the nonexistence of eigenforms under the conditions of exhaustion function
whose Hessian satisfies some pinching conditions. When we choose the special exhaustion
function to be the square of the distance function r(x), where x € M, we can relate these
conditions to the radial sectional curvature of the complete manifold with a pole by Hessian
comparison theorem, and obtain nonexistence theorems under various pinching condition on

radial sectional curvature.

2 Stress Energy Tensors and Exhaustion Function

Let (M, g) be a Riemannian manifold and £ : F — M be a smooth Riemannian vector
bundle over M with a metric compatible connection VE. Set AP(§) = T'(APT*M ® E) the
space of smooth p-forms on M with values in the vector bundle £ : E — M. When £ is the
trivial bundle M x R, denote AP(M) = I'(APT*M). The exterior covariant differentiation
dV . AP(€) — APTL(E) relative to the connection V¥ is defined by

p+1
(de)(Xh U )Xp-i-l) = Z(_l)iJrl (VXM)(XM s, Xy )Xp-i-l)'

i=1
The codifferential operator §V : AP() — AP~1(€) characterized as the adjoint of dV is
defined by

(6vw)(X17 T 7Xp*1) - _Z(v€iw)(ei7 le e 7Xp*1)'
Given w and 6 in AP(), the induced inner product on APTM ® E, is defined as follows:

<w79> = Z <w(ei17"' 761';7)79(61'17"' 7eip)>Ez

i1 < <ip

1
= p Z <w(ei17 U 7eip>7 e(eiu U 7eip)>Ez
and denote by |- | the induced norm. The energy functional of w € AP(§) is defined to be

1
Bw) =5 [ lwPdu,
M

its stress-energy tensor is

Su(X,Y) = @Q(X,Y) — (WO w)(X,Y), (2.1)

where w ® w € T'(AP(§) @ AP(€)) is a symmetric tensor defined by
(wow)(X,Y) = (ixw,iyw),

here ixw € AP71(£) denotes the interior product by X € TM. Notice that, if p = 0, i.e.,
w € T(€), ixw =0 then (2.1) becomes

Su(X,Y) = @g(x, Y). (2.2)
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For a 2-tensor field T € T'(T*M ® T*M), its divergence divT € T'(T*M) is defined by

(divT)(X) =D (Ve T)(es, X),

where {e;} is an orthonormal basis of T M. The divergence of S, is given by (see [5-7])
(divS,)(X) = (0Vw,ixw) + (ixd¥w,w). (2.3)
For a vector field X on M, its dual one form fx is given by
Ox(Y)=g(X,Y),VY € TM.
The covariant derivative of #x gives a 2-tensor field VOy:
(VOx)(Y,Z) = (Vz0x)(Y) =g(VzX,Y),VY,Z € TM. (2.4)

If X = V4 is the gradient of some smooth function ¥ on M, then 6x = di and VOx =
Hess(v)).
For any vector field X on M, a direct computation yields (see [6] or Lemma 2.4 of [3])

div(ixS.) = (S., VOx) + (divS.,)(X). (2.5)

Let D be any bounded domain of M with C' boundary. By (2.5) and using the diver-
gence theorem, we immediately have the following integral formula (see [6, 8])

/aD Su(X,v)dvgp = / [(Sw, VOx) + (divS,)(X)]dv,, (2.6)

D

where v is the unit outward normal vector field along 0D.

To apply the above integral formula, we introduce some special exhaustion functions.
Let (M, g) be a Riemannian manifold and let ® be a Lipschitz continuous function on M™
satisfying the following conditions (see [9]):

(i) ® 2 0 and @ is an exhaustion function of M, i.e., each sublevel set Bg(t) := {® < t}
is relatively compact in M for ¢ = 0.

(i) ¥ = ®? is of class C*° and V¥ has only discrete critical points.

(iii) The constant k; = sup |V®|? is finite.
zeM
The function ® with properties (i), (ii) and (iii) will be called a special exhaustion function

in the following sections.

3 The Results Under Exhaustion Functions

In this section, by using stress energy tensor, we derive some integral identities satisfied
by differential forms u € AP(M) which are solutions of Au — Au = 0, then we obtain a
nonexistence theorem of p-eigenforms on manifolds with exhaustion functions which satisfy

some pinching conditions.
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Lemma 3.1 Let M be a complete Riemannian manifold with a special exhaustion
function ®. Assume u € AP(M) satisfies APu = Au and du = 0. Let also k¥ € R and
X e T(TM) be a given vector field, then we have

k k
/ [<Sdu7 Vex> - Z|du|2]dv3 — )\/ [<Su, V9X> - Z|u|2]dvR
Bs (R) Bg (R)

1 k
= / [=(|dul® — MuP)(X,v) — (ixdu + ~u,i,du) + Mixu,i,u)]dog,
0Bs(R) 2 4

where dog denotes the surface measure induced by dvg on 0Bg(R), v denotes the outward
unit normal to 0Bs(R).
Proof By (2.3) and (2.6), we have

/ So(X,v)dog = / [(Sw, VOx) + (dw, ixw) + (ixdw,w)]|dvg.
dBs(R)

Ba(R)

Applying this relation first to w = du and then to w = u, we obtain
/ [(Sau, VOx) = MSu, VOx) + (6du, ixdu) — Nixdu, u)]dvr
Bs(R)
= / [Sau(X,v) — ASu (X, v)]dog.
9Bs(R)
By formula (2.1), taking into account that ddu = Au = Au, we obtain
| 1080 90x) = A(Sun VOl dun
Bs (R)
= / [Sau(X,v) — ASu (X, v)]dog
9Bs(R)
1
= / [=(|du|* — Mu*)(X,v) — (ixdu,i,du) + Mixu,iu)]dog,
0Ba(R) 2
and we have by Stokes’s theorem

/ [|[dul* — Mu|*]dvg = / (u,0du — Au)dvg + / (u,i,du)dog
Ba(R) Bs(R

0B (R)
= / (u,i,du)dog.
0Ba(R)

Thus

k k
/ [<Sdu7 Vex> - *|du|2]d1}3 — )\/ [<Su, Vex> - *|u|2]dUR
Ba(R) 4 4

Bs(R)

1 k
= / [=(Jdu|® = Mu*){X,v) — (ixdu + ~u,i,du) + Mixu,i,u)]dog.
0Bs(R) 2 4

This proves Lemma 3.1.
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Let {e;} be a local orthonormal frame field, and denote by Lx the Lie differentiation
in the direction of X. We now specialize the discussion to the case that the metric g is the
conformal deformation of the background metric g, as specified in the introduction, and
obtain the following lemma.

Lemma 3.2 Assume that u satisfies the hypotheses of Lemma 3.1. Suppose further
that ¢ = fgo and M has a special exhaustion function ® satisfying

2€0Ba (1)

o0 1
(i) ltigljgf|vgolﬁ|§0(t)[ max |[f(z)|] >C >0 and (i) /1 mdr =+4o00. (3.1)

Vo ¥
Denote by X = —%9—

sequence R, — oo such that, denoting by Bg(R) the exhaustion ball of radius R centered

= &V, ®, where V is the connection of gyo. Then, there exists a

at a given xg,

1
lim {SlduP(trLxg — k) = > (ic,du, ic,du)y(Lxg)(es, e:)
n—oo B@(Rn) 2
s,t
Lo . ,
Al lul*(trLxg — k) = D (e, ic,u)g(Lxg)(es, e0)] ydvg = 0. (32)

s,t

Proof By (2.4) and the definition of Lie differentiation, we have

(Lxg)(es,er) = g(Ve, X,e) + gles, Ve, X)
1 1
= 5(Vlv, u)lenes) + 5(Vlv, u)(es, ),

where V is the connection of g, thus
1 : :
§|du|2(trLXg — k) — Z@esdu’zetdmg(LXg)(es: et)
s,t

1 k
— <§|du|2g,v9vgow>g — (du © du, Vv, v)g — 5|01u|2
k
= 2[<Sdu,V9X> - Z|du|2]

Considering that (Vg,V)|op, ) is an outward normal vector field along 0Bs(t) for a regular
value t > 0, (V,,¥), = |V, U|(z)r; for each point x € 0Bg(t), where vy denote the go-unit
outward normal vector field of 9Bg(t). Let v5 be the g-unit outward normal vector field of

0By (t), then the following identities are easily verified

vo= [P0, VU= YV, UL
Thus
1
g(V27X) = §f1/2|vgo\11|907
1

glixdu,i,,du) = §f1/2|VgO\Il|gog(iy2du,i,,zdu),
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and .
g(iXU7iuzu) = §f1/2|vgom|gog(iu2u7 iVQU/)'

Denoting by S(R) the boundary term of Lemma 3.1. Using the Cauchy-Schwarz inequality

and assumption (3.1)(i), we estimate

3 k
IV, / PR3l + M)+ —EJulldulydo
o 0B (R) 4 4f1/2|v90\1}|g0 !

IN

1S(R)]

IN

'V, 0, / F2(|duf? + ful)doy g,
9B (R)

where C’ depends only on C, || and k. Since u € dom(AP), |u|? and |du|? are integrable on

M (see [1, 2]). By the co-area formula, we have

+oo
/ IR / P2 (dul + [uf)doy
0 9B (R)

“+o0
1
- V3@l dR / (lduf? + |u)do, »
/0 wPlowlh | 9,30, ¢
Vin [ (duf + uP)ds, < 4.
M

By (3.1)(ii), we conclude that

IN

liminfS(R) =0

R—+oc0
as required. This proves Lemma 3.2.
Lemma 3.3 Maintaining the notation of Lemma 3.2. Denote by A(z) (resp. B(z)) the
smallest (resp. largest) eigenvalue of Hessy, (), that is, the Hessian of W

A(z)go < Hess,, (¥) < B(z)go

holds on M in the sense of quadratic forms. Then for every p-form u € A?(M)(p > 1), and

every k € R, we have

2
u _
P4 m = 20) £ 1(V,, ) (1)~ 20pB — (m — p) A+ K]}
1 S
S §|u‘2(trLX'g - k) - Z<Zesuv’56tu>g(LXg)(€S7 et)
s,t
2
U _
< I (m — 20) 1 (Vo 0)(f) — 2pA — (m— )B + K],
where X = VQQUW = oV, ®. If u is a 0-form, then we also have

Jul?

Slul(ixLxg = k) 2 s~ (T, 0)(f) — 20k = B — (m — DAL}

Proof The proof is a modification of that of Lemma 1.3 in [3] (see also [10]), and we

outline it here for completeness.
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Since Lxg is symmetric, the local orthonormal frame {es;} may be chosen in such
a way that diagonalizes Lxg. Let us be the corresponding eigenvalues of Lxg, so that
(Lxg)(es,er) = 6s1p1s. We further assume that the indexing be chosen in such a way that
1 > ftg > -+ > . By definition of inner product, we may write

Z<iesu;ietu>g(LXg)(esvet) = Z(iesu,ieswgus

s,t s

1
= Lo X lulesens e )P

S i],“',ip71
1 p
= 7' Z |u(ei17"' aeip)‘zz,uij‘
P 1y sip j=1

Since the eigenvalues are arranged in decreasing order, we have

m p P
TR ST
j=m—p+1 j=1 j=1
and we conclude that
m p
[l Y2y <Y liewicu)yLigles e < [ul*) ;.
j=m—p+1 st =1

Denote by
1 , )
Q= lul*(trLxg — k) — D e usic,u)g(Lxg)(es ).

s,t
Then we have

m

%(Zm—;m—k)éQSh;'(;m— > k) (3.3)

i=p+1 i=m—p+1

By definition of Lie differentiation, we have

Lxg = 5(V, ®)(gn + fHess,, (V)

thus
[f (Vg ®)(f) 4+ 24]g < Ly, wg < [f1(V4,¥)(f) + 2B]g.
Therefore
U (Vo ) +24] < 1 = (Lo, w0)(en ) < [ (T )() +2B).

The required conclusion now follows, substituting these estimates into (3.3). This proves

Lemma 3.3.
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Lemma 3.4 Maintaining the notation and assumption of Lemma 3.2. Assume that
the functions A(z), B(x) satisfy A(z) > 2=2B(z) if p = 0 and A(z) > %B(m) if p> 1.
Suppose also that

3 m m— 2 . _
7 (Ve B) ()] < m—l[A_ = B, if p=0,

1 m+1 m—1 .
1f7 (Vg ®) ()] Sm[l‘l—mm’ if 2<2p<m-—2,
) 2 DMl g =m 20 =m,
FUTGI) 2~ A=, i p=m,

and the above strict inequalities hold at some point zy € M. If u € L?(AP(M)) is such that
du =0 and APu = Au (A > 0), then u = 0.
Proof We consider the case p > 1. If p = 0, the argument is similar. By Lemma 3.3,

we have
SlduP(ixLg — k) - 3l )y (L) s
< M —2p— 2) T, ) ()~ 2A(p+ 1A — (m—p— DB+ k)
(3.4)
and
Sl trLxg = )= 3 (it iy (L, 00) ense)
> P~ 2) (9, 9)(1) — 2B — (m — p)A + K], (35)

Assume first that 2 < 2p < m — 2. We determine the constant & in such a way that

(p+1)A—(m—p—1)B+kl =— [pB — (m — p)A + k.

m—2p—2 m—2p
Then a computation shows that the left hand side is equal to

m+1 [A_m—l
m—2p—1 m+1

B,

which is nonnegative by our assumption on A and B. Keeping into account the condition
satisfied by f, we deduce that the right hand side of (3.4) is nonpositive, and that of (3.5)
is nonnegative.

Arguing in a similar way, it is easily verified that the same conclusions hold if 2p is equal
to m—2, m—1 or to m, provided we choose k = =2 A4+ 2B L =0,k = "2A- "R,

respectively.
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In all cases, the integrand in the left hand side of (3.2) is of constant (nonpositive) sign,
and the integrals over the ball Bg(R,,) tend to the integral over M as n tends to +oo. We
conclude that the left hand side of (3.5) vanishes identically, and all inequalities are in fact

equalities. In particular, when 2 < 2p < m — 2,

%ﬂm —2p) [ (Vg O)(f) = 2[pB — (m —p)A+k]} =0  on M,
thus ) o 1
m—zp 2 —1 m m — B
T|U| {f (VgO\IJ)(f)+m_2p_1[A_m+1B]}_0_

Now, by the continuity of f and the condition of the lemma, note that the quantity in
braces on the left hand side is strictly positive in a neighbourhood of xy. It follows that u
must vanish in a neighbourhood of xg. By unique continuation (see the proof of Lemma 1.4
of [3]), v must vanish identically on M, as required to finish the proof.

Theorem 3.1 Maintaining the notation and assumption of Lemma 3.3. Assume that
the functions A(z), B(xz) satisfy A(z) > 2=2B(xz) if p = 0 and A(z) > %B(w) ifp>1.
Suppose also that

m m— 2

7 (Ve Wl < A= ——B], if p=0,

_ m+1 m—1 .

I T £ A= T it 2.<2p <m,
= 2(m+1) m—1 . B

f (vgolp)(f) > = 3 [A_ m+ lB]v if 2p=m,

and the above strict inequalities hold at some point zqg € M. If u € L?(AP(M)) satisfies
APy = Au (A > 0), then v = 0.

Proof The case p = 0 can be deduced directly from Lemma 3.4. Thus, assume that
p > 1, and let u € L?(AP(M)) be such that APu = Au with A > 0. Then v = du belongs
to L?(AP~1(M)) and satisfies APy = v, v = 0. It is readily verified that f satisfies
the condition in Lemma 3.4 relative to p — 1, so that v = du = 0. But f also satisfies the
condition of Lemma 3.4 relative to p, and therefore v = 0, as required.

Remark 3.1 When f = 1, so that there is no conformal deformation of the metric,
the conditions of the theorem become to A — mT_ZB >0ifp=0and A— %B >0ifp > 1.

Remark 3.2 As in the case of harmonic p-forms, the conclusion for p > m/2 follows
by Hodge duality.

4 The Results on Concrete Models

When we choose the special exhaustion functions to be the square of the intrinsic dis-
tance function, we have to consider the eigenvalue with respect to the radial direction, thus
the discussion may be more complicate and finer.

Lemma 4.1 Let (M, go) be a complete Riemannian manifold with a pole o and let r

be the distance function relative to 0. Denote by X = Vg r = rOr. Assume that the radial
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sectional curvature of M satisfies — 1725 < K, < 1+ —= with a > 0, b € [0,1/4]. Let g = fgo
be a conformally related metric. Then for every u € AP(M) (p > 1), and for every k € R,

we have

m—2 k i
(=2 0 kb p)By - min(Ba — 1,1 - B}l

Sl <terg - k) = D fie,uieu)g(Lxg)(ess )

s,t

IN

m—2 k i
20 B )8y 4 pBy 4 min(By — 11— By} uf®

< r{ 5

where B; = =1 B, = Lvtde

If wis a 0- form, then we also have

af k

f|u\ (trLxg — k) > r{ ft 7“_1[5 — (m —1)B; — 1]} ul*.

Proof We consider the case p > 1. The statement relative to the case p = 0 can be
proved in a similar way.

For X =V, r =ror, we have

Lxgo = Hess,, (r*) = 2rHess,,r + 2dr ® dr.

By — i3 < K, < 1355 and [8], we have
¢ v
E[Qo —dr ® dr] < Hessy,r < E[go —dr @ dr].
Thus
1 ¢ L
27"{ 90 + [* - g]dr ®dr} < Lxgo < 27"{ 90 + [* - E]dr ®dr},

where ¢, 1 are the solutions of the following problems, respectlvely

{1/}// _ 1J‘rlr2¢ =0 on [0, +OO),
¥(0) =0, ¢'(0) =

and

$(0) =0, ¢'(0) =

Standard comparison arguments show that

{d)” + 1Jfrz¢ =0 on [0, 4+00),

2r 10} E 2r
Since Ly is a derivation, Lxg = (X f)go + fLxgo, thus
LXQ>7“{(f_1 f gZ) +2(1Z/)fdr®dr} (4.1)
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and ’ 1 l
191 +21i) +2(1/;)fdr®dr}. (4.2)

Choosing a local orthonormal frame {es} which diagonalizes Lxg and the corresponding

Lxg <r{(f~

eigenvalues satisfying p; > ps > -+ > py,. Further, if Y is g-orthogonal to Jr, then
(Lxg)(Y,0r) =0, and we may therefore arrange that one of the vectors, say gs, be propor-
tional to dr, that is e,, = f~/20r. By (4.1) and (4.2), we obtain

=r[f” 18f ] it s=s,,
while & v
40 _1 :
rlf o 2 ¢] <rlfT = ms 2 1/)] otherwise.

By a discussion similar to Lemma 3.3, we have

1 . ;
Slul(trLxg — k) = D (e uic,u)g(Lxg)(es er)

> P72 el - oS - 6L -
SRS laf —1[§+p32—(m—p)Bl—<Bz—1>]}|u|2, (43)
if s, < p, and
;umrLXg k) ZM ie,u)g(Lxg)(es, 1)
> 22 o s S - - S
> (B2 f U pBy— (m- B - (1= BOJRE. (44)

if s, > p. Thus

1 ) .
§|u|2(trLXg — k) — Z(zesu,zetwg(LXg)(es, er)

s,t

2 k
2 B~ (n - p)By— min(B, 1,1 B P

> [2

By the same discussion as above, we can also obtain

1 ) .
Slul’(trLxg — k) = D (e, wic,u)g(Lxg)(es e)

s,t

2 k
n- pf ' f— r 7[5 = (m = p)By + pBy + min(B, — 1,1 — By }|ul*.

< r{ 5

This proves Lemma 4.1.
Lemma 4.2 Let (M, go) be a complete Riemannian manifold with a pole o and let

r be the distance function relative to 0. Assume that the radial sectional curvature of M
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satisfies — %7 < K, §1+2w1tha>0 belo, 1/4}and\/1+4a+\/1—4b>2 V1—4b—
\/1+4a+m2001"\/1+4a+\/174b§2, v1i—4 :Z+‘;’\/1+4a201fp21and
Vi+da+ V/1—14b < 2, \/1—4b—%\/1+4a+%201fp20. Let ¢ = fgo be a

conformally related metric. Suppose also that

o < VT B v

— 1]1"*1, if p=0,

I= 1af| 2(m”z2pl_1)[\/1—4b—\/1+4a+m4_1}7“‘17 if 2<2p<m-2,

f*lffz_mT_l[\/l—ZLb—\/l m—l]ril’ if 2p=m—2or2p=m,

flaf _mT—l[\/1_4b_¢1+4a+m4_1]fl, if 2p=m—1,
When\/l+4a+\/1f4bz2 or

f~ 19 |_2( )(Jﬁ——@+ 2yt p—o,

I R e e e (m_ffﬁm L RS em e

flgiz_mi—l(\/ﬁ—(m_ﬂi)rﬁ)rl, if 2p=m — 2 or 2p = m,

flgz_w(m_(m_;>rﬁ)rl, if 2p=m—1,

when /1 + 4a++/1 —4b < 2. If u € L?(AP(M)) is such that du = 0 and APu = Au (X > 0),
then v = 0.
Proof If /1+4a++/1—4b> 2, thatis, B, —1>1— By, then for du € APTY(M), by

Lemma, 4.1, we have

1 . .
§|du|2(trLXg —k)— Z(zesdu,zetdwg(l}){g)(es, et)

s,t

9 k
< r{mif ! f —r7 5= (m—p— DBy +pBi+ }ldul?  (45)
and
1 . .
Slul*(rLxg — k) = z;@esu, le,u)g(Lxg)(es; er)
~2p, 0 k
> {7 pf*16—£ — 175 +pBs — (m—p — 1By — [} ul*. (4.6)

Assume first that 2 < 2p < m — 2. We determine the constant k& in such a way that

2 k
Y (m-p-1)Bo+pBi+1] = —
m_2p_2[2 (m —p—1)Bs +pBy + 1]

k
By — -1)B; -1
—2p[2+p2 (m—p—-1)B; —1].

Then a computation shows that the left hand side is equal to

: [(m_l)Bl_(m_l)B2+Q]:2(TnTi2pl_’_l)

4
B 1—4b—vVI+4a+ ——
A V1—4b—+1+ a+m_1],
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which is nonnegative by our assumption. Keeping into account the condition satisfies by f,
we deduce that the right hand side of (4.5) is nonpositive, and that of (4.6) is nonnegative.
Therefore the integral in the left hand side of (3.2) is nonnegative. We conclude that the left
hand side of (4.6) vanishes identically, and all inequalities are in fact equalities. In particular,
when 2 < 2p < m — 2, by (4.3), we have

!/ / /
f [];errzf;(m p)ri(lri)]}|u|2:00n M.

Now, note that the quantity in braces on the left hand side is strictly positive in a neigh-

bourhood of 0. Indeed, we may rewrite it in the form

{ 2pf 16f ! k+p32—(m—p—1)31—1)]}+p(32—r2/:)+(m—p—1)(r(i—Bl).

[2
If Bi < 1 or By > 1, then the claim follows from the fact that r% — 1 and r% — 1 as
r— 0. If By =By =1,then a =b=0 and ¢ = ¢ = r, so the last two term are identically
zero. But then

m —2p
—|= By — -p—-1)B—-1)|=——"7-—
[2—|-p 2= (m—p—1)B; —1)] m—2p—1

and since f~19f/0r is bounded in a neighbourhood of o (f being smooth and positive on
M), the first term is strictly positive near o. By unique continuation (see [3]), u must vanish
identically on M.

The other cases can be proved by the same way. This proves Lemma 4.2.

By the same discussion as Theorem 3.1, we have

Theorem 4.1 Let (M, gp) be a complete Riemannian manifold with a pole o and
let r be the distance function relative to o. Assume that the radial sectional curvature
of M satisfies —%5 < K, < 125 with a > 0, b € [0,1/4] and T +4a + V1 —4b >
2, V1—4b— 1+ 4da+ — 1200r\/1+4a+\/1—4b<2 V1—4b— 231+ 4a > 0 if
p > 1 and \/1+4a+\/1—4b§2, V1—4b— - M+i >0if p=0. Let g = fgo be
a conformally related metric. Suppose also that

of

1 4
\f*1—|§7[\/1—4b—\/1+4a+m_1}r*1, if p=0,
0f m—1
! — = W1- -1 if 2<2
o S s Y e ifzs2pam,
1 f 1 4 . :
f EZ 7[\/174b7\/1+4a+m71]r , if 2p=m,

when /1 +4a + /1 —4b > 2, or

e A P 2t =,
or — 2(m—1) m m

191 m+ 1 (m—3)VI+da _ ,
19/, o m+1 — ) B

|f ar|72(m72p+1)(m o Yr, if 2 <2p<m,
10 m+1 m—3)I+4a. '

f 18%”sz(@*( m)ﬁ)r 3 P
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when /1 +4a + /1 —4b < 2. If u € L*(AP(M)) satisfies APu = \u (A > 0), then u = 0.
Remark 4.1 Using the above method, we can also obtain nonexistence theorems for
those manifolds whose radial sectional curvature satisfies *W <K, < ﬁ with
e>0,A>0,0<B<2,0r —a?<K,<-3 witha>0,3>0.
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