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1 Introduction

Hsu and Robbins [1] introduced the concept of complete convergence of {Xn}. A se-
quence {Xn, n = 1, 2, · · · } is said to converge completely to a constant C if

∞∑
n=1

P (|Xn − C| > ε) < ∞ for all ε > 0.

Moreover, they proved that the sequence of arithmetic means of independent identically
distributed (i.i.d.) random variables converge completely to the expected value if the vari-
ance of the summands is finite. The converse theorem was proved by Erdös [2]. In view of
the Borel-Cantelli lemma, the complete convergence implies that almost sure convergence.
Therefore the complete convergence is very important tool in establishing almost sure con-
vergence. The result of Hsu-Robbins-Erdös is a fundamental theorem in probability theory
and was generalized and extended in several directions by many authors.
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We recall that the array {Xni, i ≥ 1, n ≥ 1} of random variables is said to be stochas-
tically dominated by a random variable X if there exists a positive constant C, such that
P{|Xni| > x} ≤ CP{|X| > x} for all x ≥ 0, i ≥ 1 and n ≥ 1.

Volodin et al. [3] and Chen et al. [4] (β > −1 and β = −1, respectively) obtained
complete convergence for weighted sums of arrays of rowwise independent Banach-space-
valued random elements.

Theorem 1.1 [3, 4] Suppose that β ≥ −1. Let {Xni, i ≥ 1, n ≥ 1} be an array of
rowwise independent random elements in a real separable Banach space which are stochas-
tically dominated by a random variable X. Let {ani, i ≥ 1, n ≥ 1} be an array of constants
satisfying

sup
i≥1

|ani| = O(n−r) for some r > 0 (1.1)

and ∞∑
i=1

|ani|θ = O(nµ) (1.2)

for some 0 < θ ≤ 2 and µ such that θ + µ/r < 2 and 1 + µ + β > 0. If E|X|θ+(1+µ+β)/r < ∞
and

∞∑
i=1

aniXni → 0 in probability, then

∞∑
n=1

nβP

{∥∥∥∥∥
∞∑

i=1

aniXni

∥∥∥∥∥ > ε

}
< ∞ for all ε > 0. (1.3)

If β < −1, then (1.3) is immediate. Hence Theorem 1.1 is of interest only for β ≥ −1.
Recently, Sung [5] extended Theorem 1.1 to negatively associated and negatively de-

pendent random variables when θ = 1. Moreover, similar results for sequences of ϕ-mixing
and ρ∗-mixing random variables are also established.

Theorem 1.2 [5] Suppose that β ≥ −1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise
negatively associated random variables which are stochastically dominated by a random
variable X. Let {ani, i ≥ 1, n ≥ 1} be an array of constants satisfying (1.1) and

∞∑
i=1

|ani| = O(nµ) for some µ < r. (1.4)

If EXni = 0 for all i ≥ 1, n ≥ 1 and

E|X| log |X| < ∞ for 1 + µ + β = 0, (1.5)

E|X|1+(1+µ+β)/r < ∞ for 1 + µ + β > 0, (1.6)

then
∞∑

n=1

nβP

{
sup
k≥1

∣∣∣∣∣
k∑

i=1

aniXni

∣∣∣∣∣ > ε

}
< ∞ for all ε > 0. (1.7)

Guo and Zhu [6] extended Theorem 1.2 to complete moment convergence of the supre-
mum of partial sums for arrays of negatively associated random variables when β > −1.
However, the proof of Guo and Zhu [6] does not work for the case of β = −1.
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Theorem 1.3 [6] Under the conditions of Theorem 1.2. If β > −1, then

∞∑
n=1

nβE

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

aniXni

∣∣∣∣∣− ε

)+

< ∞ for all ε > 0. (1.8)

Wu [7] extended Theorem 1.1 to negatively dependent random variables when β > −1.
Wu [7] also considered the case of 1+µ+β = 0(β > −1). However, the proof of Wu [7] does
not work for the case of β = −1.

Theorem 1.4 [7] Suppose that β > −1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise
negatively dependent random variables which are stochastically dominated by a random
variable X. Let {ani, i ≥ 1, n ≥ 1} be an array of constants satisfying (1.1) and (1.2) for
some θ and µ such that µ < 2r and 0 < θ < min{2, 2 − µ/r}. Furthermore, assume that
EXni = 0 for all i ≥ 1 and n ≥ 1 if θ + (1 + µ + β)/r ≥ 1. If

E|X|θ log |X| < ∞ for 1 + µ + β = 0,

E|X|θ+(1+µ+β)/r < ∞ for 1 + µ + β > 0,

then
∞∑

n=1

nβP

{∣∣∣∣∣
∞∑

i=1

aniXni

∣∣∣∣∣ > ε

}
< ∞ for all ε > 0. (1.9)

In this paper, We deal with more general weights and establish some weaker sufficient
conditions for complete moment convergence of weighted sums for arrays of negatively asso-
ciated and negatively dependent random variables. Similar results for sequences of ρ∗-mixing
random variables are also obtained. The results of Volodin et al. [3], Chen et al. [4], Sung
[5], Wu [7] and Guo and Zhu [6] are improved and generalized.

For the proofs of the main results, we need to restate a few lemmas for easy reference.
Throughout this paper, the symbol C denotes a positive constant which is not necessarily
the same one in each appearance, I(A) denotes the indicator function of A. For a finite set
B, the symbol ]B denotes the number of elements in the set B. Let an ¿ bn denote that
there exists a constant C > 0 such that an ≤ Cbn for sufficiently large n. Also, let log x

denote ln max(e, x).
Lemma 1.1 [5] Let the sequence {Xn, n ≥ 1} of random variables be stochastically

dominated by a random variable X. Then for any p > 0, x > 0,

E|Xn|pI(|Xn| ≤ x) ≤ C

[
E|X|pI(|X| ≤ x) + xpP{|X| > x}

]
, (1.10)

E|Xn|pI(|Xn| > x) ≤ CE|X|pI(|X| > x). (1.11)

The following lemma is well known, and its proof is standard.
Lemma 1.2 Let X be a random variable. For any α > 0, r > 0, the following statements

hold:
(i)

∞∑
n=1

nβE|X|αI(|X| > nr) ¿ E|X|α+ β+1
r for any β > −1,



No. 6 Complete moment convergence of weighted sums for arrays of dependent random variables 1123

(ii)
∞∑

n=1

nβE|X|αI(|X| ≤ nr) ¿ E|X|α+ β+1
r for any β < −1.

One of the most interesting inequalities to probability theory is the Rosenthal-type
inequality. The Rosenthal-type inequality plays an important role in establishing complete
convergence. The Rosenthal-type inequalities for sequences of dependent random variables
were established by many authors.

The concept of negatively associated random variables was introduced by Alam and
Saxena [8] and was carefully studied by Joag-Dev and Proschan [9]. A finite family of
random variables {Xi, 1 ≤ i ≤ n}is said to be negatively associated, if for every pair disjoint
subset A and B of {1, 2, · · · , n} and any real nondecreasing coordinate-wise functions f1 on
RA and f2 on RB,

Cov(f1(Xi, i ∈ A), f2(Xi, i ∈ B)) ≤ 0,

whenever the covariance exists. An infinite family of random variables {Xi,−∞ < i < ∞}
is negatively associated if every finite subfamily is negatively associated.

The following lemma is a Rosenthal-type inequality for negatively associated random
variables.

Lemma 1.3 [10] Let {Xn, n ≥ 1} be a sequence of negatively associated random
variables with EXn = 0 and E|Xn|p < ∞ for any n ≥ 1, p ≥ 1. Then there exist constants
Cp > 0 and Dp > 0 depending only on p such that,

E max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣

p

≤ Cp

n∑
i=1

E|Xi|p for 1 ≤ p ≤ 2

and

E max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣

p

≤ Dp




n∑
i=1

E|Xi|p +

(
n∑

i=1

EX2
i

)p/2

 for p > 2.

The concept of negatively dependent random variables was given by Lehmann [11]. A
finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be negatively dependent (or
negatively orthant dependent) if for all real numbers x1, x2, · · · , xn,

P

{
n⋂

i=1

(Xi ≤ xi)

}
≤

n∏
i=1

P{Xi ≤ xi}, (1.12)

P

{
n⋂

i=1

(Xi > xi)

}
≤

n∏
i=1

P{Xi > xi}. (1.13)

An infinite family of random variables is negatively dependent if every finite subfamily is
negatively dependent.

Obviously, negatively associated implies negatively dependent from the definition of
negatively associated and negatively dependent. But negatively dependent does not imply
negatively associated, so negatively dependent is much weaker than negatively associated.
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The following lemma is a Rosenthal-type inequality for negatively dependent random vari-
ables.

Lemma 1.4 [12] Let {Xn, n ≥ 1} be a sequence of negatively dependent random
variables with EXn = 0 and E|Xn|p < ∞ for any n ≥ 1, p ≥ 1. Then there exist constants
Cp > 0 and Dp > 0 depending only on p such that,

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣

p

≤ Cp

n∑
i=1

E|Xi|p for 1 ≤ p ≤ 2

and

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣

p

≤ Dp




n∑
i=1

E|Xi|p +

(
n∑

i=1

EX2
i

)p/2

 for p > 2.

Let {Xn, n ≥ 1} be a sequence of random variables defined on probability space
(Ω,F , P ). For any S ⊂ N, let FS = σ(Xk, k ∈ S). Define the ρ∗-mixing coefficients
by

ρ∗(k) = sup
S,T

(
sup

X∈L2(FS), Y ∈L2(FT )

Cov(X, Y )√
Var(X) ·Var(Y )

)
,

where S, T are the finite subsets of positive integers such that dist(S, T ) ≥ k. We call
{Xn, n ≥ 1} a ρ∗-mixing sequence if there exists k ≥ 1 such that ρ∗(k) < 1.

Note that if {Xn, n ≥ 1} is a sequence of independent random variables, then ρ∗(n) = 0
for all n ≥ 1.

The following lemma is a Rosenthal-type inequality for ρ∗-mixing random variables.
Lemma 1.5 [13, 14] Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables,

Yn ∈ σ(Xn), EYn = 0, E|Yn|p < ∞, n ≥ 1, p ≥ 1. Then there exist constants Cp > 0 and
Dp > 0 depending only on p, k and ρ∗(k) where ρ∗(k) < 1 such that,

E max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Yi

∣∣∣∣∣

p

≤ Cp

n∑
i=1

E|Yi|p for 1 ≤ p ≤ 2

and

E max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Yi

∣∣∣∣∣

p

≤ Dp




n∑
i=1

E|Xi|p +

(
n∑

i=1

EY 2
i

)p/2

 for p > 2.

2 Main Results

Theorem 2.1 Suppose that β ≥ −1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise
negatively associated random variables which are stochastically dominated by a random
variable X satisfying E|X|p < ∞ for some p > 1. Let {ani, i ≥ 1, n ≥ 1} be an array of
constants satisfying (1.1) and

∞∑
i=1

|ani|q ¿ n−1−β+r(p−q) for some q < p. (2.1)
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Furthermore, assume that

∞∑
i=1

a2
ni ¿ n−α for some α > 0 (2.2)

if p ≥ 2. Let EXni = 0 for all i ≥ 1 and n ≥ 1. Then

∞∑
n=1

nβE

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

aniXni

∣∣∣∣∣− ε

)+

< ∞ for all ε > 0. (2.3)

Proof Without loss of generality, we can assume that ani > 0, 1 ≤ i ≤ n, n ≥ 1
(otherwise, we use a+

ni and a−ni instead of ani, resp., and note that ani = a+
ni − a−ni). From

(1.1) and (2.1), without loss of generality, we can assume that

sup
i≥1

ani ≤ n−r,

∞∑
i=1

|ani|q ≤ n−1−β+r(p−q). (2.4)

For any i ≥ 1, n ≥ 1, let

X ′
ni = −a−1

ni I(aniXni < −1) + XniI(ani|Xni| ≤ 1) + a−1
ni I(aniXni > 1), X ′′

ni = Xni −X ′
ni.

Noting that EXni = 0, |X ′′
ni| ≤ |Xni|I(ani|Xni| > 1) for any i ≥ 1, n ≥ 1, we have

E

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

aniXni

∣∣∣∣∣− ε

)+

≤ E

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

ani(X ′
ni − EX ′

ni)

∣∣∣∣∣− ε

)+

+ E sup
k≥1

∣∣∣∣∣
k∑

i=1

ani(X ′′
ni − EX ′′

ni)

∣∣∣∣∣

¿ E

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

ani(X ′
ni − EX ′

ni)

∣∣∣∣∣− ε

)+

+
∞∑

i=1

aniE|Xni|I(ani|Xni| > 1).

Therefore

∞∑
n=1

nβE

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

aniXni

∣∣∣∣∣− ε

)+

¿
∞∑

n=1

nβE

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

ani(X ′
ni − EX ′

ni)

∣∣∣∣∣− ε

)+

+
∞∑

n=1

nβ

∞∑
i=1

aniE|Xni|I(ani|Xni| > 1)

=: I1 + I2.

Hence, in order to prove (2.3), it suffices to prove that I1 < ∞ and I2 < ∞. Take δ > 0 such
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that p− δ > max(1, q). By Lemma 1.1, Lemma 1.2 and (2.4), we get that

I2 ≤
∞∑

n=1

nβ

∞∑
i=1

Eap−δ
ni |Xni|p−δI(ani|Xni| > 1)

≤
∞∑

n=1

nβ

∞∑
i=1

Eap−δ
ni |Xni|p−δI(|Xni| > nr)

¿
∞∑

n=1

nβn−r(p−δ−q)

∞∑
i=1

aq
niE|X|p−δI(|X| > nr)

≤
∞∑

n=1

n−1+rδE|X|p−δI(|X| > nr) ¿ E|X|p < ∞. (2.5)

Next, we will prove I1 < ∞. Noting that p > 1, for any M ≥ p, we obtain by Markov’s
inequality that

I1 =
∞∑

n=1

nβ

∫ ∞

ε

P

{
sup
k≥1

∣∣∣∣∣
k∑

i=1

ani(X ′
ni − EX ′

ni)

∣∣∣∣∣ > x

}
dx

≤
∞∑

n=1

nβ

∫ ∞

ε

x−ME

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

ani(X ′
ni − EX ′

ni)

∣∣∣∣∣

)M

dx

¿
∞∑

n=1

nβE

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

ani(X ′
ni − EX ′

ni)

∣∣∣∣∣

)M

. (2.6)

Obviously, X ′
ni is monotonic on Xni. Therefore {aniX

′
ni − EaniX

′
ni, i ≥ 1, n ≥ 1} is also an

array of rowwise negatively associated mean zero random variables.
Case 1 (1 < p < 2). Taking δ > 0 such that p + δ < 2, we get by Lemma 1.1, Lemma

1.3, Cr inequality, (2.5) and (2.6) that

I1 ¿
∞∑

n=1

nβE

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

ani(X ′
ni − EX ′

ni)

∣∣∣∣∣

)p+δ

.

¿
∞∑

n=1

nβ

∞∑
i=1

ap+δ
ni E|X ′

ni|p+δ (by Lemma 1.3 and Cr inequality)

≤
∞∑

n=1

nβ

∞∑
i=1

ap+δ
ni E|Xni|p+δI(ani|Xni| ≤ 1) +

∞∑
n=1

nβ

∞∑
i=1

P {ani|Xni| > 1}

≤
∞∑

n=1

nβ

∞∑
i=1

ap+δ
ni E|Xni|p+δI(ani|Xni| ≤ 1) +

∞∑
n=1

nβ

∞∑
i=1

aniE|Xni|I(ani|Xni| > 1)

¿
∞∑

n=1

nβ

∞∑
i=1

ap+δ
ni E|X|p+δI(ani|X| ≤ 1) +

∞∑
n=1

nβ

∞∑
i=1

P {ani|X| > 1}+ C

≤
∞∑

n=1

nβ

∞∑
i=1

ap+δ
ni E|X|p+δI(ani|X| ≤ 1) + C. (2.7)



No. 6 Complete moment convergence of weighted sums for arrays of dependent random variables 1127

Set Inj = {i, (n(j + 1))−r < ani ≤ (nj)−r}, j = 1, 2, · · · . Then ∪j≥1Inj = {1, 2, · · · , }. Note
also that for all k ≥ 1, n ≥ 1,M ≥ q,

n−1−β+r(p−q) ≥
∞∑

i=1

aq
ni =

∞∑
j=1

∑
i∈Inj

aq
ni ≥

∞∑
j=1

(]Inj)(n(j + 1))−rq

≥ n−rq

∞∑
j=k

(]Inj)(j + 1)−rM (k + 1)rM−rq.

Hence we have
∞∑

j=k

(]Inj)j−rM ¿ n−1−β+rpk−r(M−q). (2.8)

Note that for any p > 1, δ > 0,
∞∑

n=1

nβ

∞∑
i=1

Eap+δ
ni |X|p+δI(ani|X| ≤ 1) =

∞∑
n=1

nβ

∞∑
j=1

∑
i∈Inj

Eap+δ
ni |X|p+δI(ani|X| ≤ 1)

≤
∞∑

n=1

nβ

∞∑
j=1

]Inj(nj)−r(p+δ)E|X|p+δI(|X| ≤ (n(j + 1))r)

=
∞∑

n=1

nβ

∞∑
j=1

]Inj(nj)−r(p+δ)E|X|p+δI(|X| ≤ (2n)r)

+
∞∑

n=1

nβ

∞∑
j=1

]Inj(nj)−r(p+δ)

n(j+1)∑
k=2n+1

E|X|p+δI((k − 1)r < |X| ≤ kr) =: J1 + J2. (2.9)

By Lemma 1.2 and (2.8), we obtain that

J1 =
∞∑

n=1

nβ

∞∑
j=1

]Inj(nj)−r(p+δ)E|X|p+δI(|X| ≤ (2n)r)

¿
∞∑

n=1

n−1−rδE|X|p+δI(|X| ≤ (2n)r) ¿ E|X|p < ∞. (2.10)

By (2.8),

J2 =
∞∑

n=1

nβ

∞∑
j=1

]Inj(nj)−r(p+δ)

n(j+1)∑
k=2n+1

E|X|p+δI((k − 1)r < |X| ≤ kr)

≤
∞∑

n=1

nβ−r(p+δ)

∞∑
k=2n+1

E|X|p+δI((k − 1)r < |X| ≤ kr)
∞∑

j=[ k
n−1]

]Injj
−r(p+δ)

¿
∞∑

n=1

nβ−r(p+δ)

∞∑
k=2n+1

n−1−β+rp(
k

n
)−r(p+δ−q)E|X|p+δI((k − 1)r < |X| ≤ kr)

¿
∞∑

k=2

k−r(p+δ−q)E|X|p+δI((k − 1)r < |X| ≤ kr)
[k/2]∑
n=1

n−1+r(p−q)
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¿
∞∑

k=2

k−rδE|X|p+δI((k − 1)r < |X| ≤ kr) ¿ E|X|p < ∞. (2.11)

By (2.9), (2.10) and (2.11), for any p > 1, δ > 0, we have

∞∑
n=1

nβ

∞∑
i=1

Eap+δ
ni |X|p+δI(ani|X| ≤ 1) ¿ E|X|p < ∞. (2.12)

Combining with (2.7), we get that I1 < ∞.

Case 2 (p ≥ 2). Taking sufficient large δ > 0 such that β − α(p + δ)/2 < −1, we get
by Lemma 1.3, (2.6) and Cr inequality that

I1 ¿
∞∑

n=1

nβE

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

aniX
′
ni − EaniX

′
ni

∣∣∣∣∣

)p+δ

¿
∞∑

n=1

nβ

∞∑
i=1

E|aniX
′
ni|p+δ +

∞∑
n=1

nβ

( ∞∑
i=1

E(aniX
′
ni)

2

)(p+δ)/2

(by Lemma 1.3)

=: I11 + I12.

From the proof of (2.7) and (2.12), we see that I11 < ∞. Since E|X|p < ∞, p ≥ 2 implies
EX2 < ∞, by (2.2), we obtain that

I12 ¿
∞∑

n=1

nβ

( ∞∑
i=1

a2
ni

)(p+δ)/2

¿
∞∑

n=1

nβ−α(p+δ)/2 < ∞.

Thus I1 < ∞.
Remark 2.1 As in Remark 2.3 of Guo and Zhu [6], (2.3) implies (1.7). Hence, when

θ+(1+µ+β)/r > 1, Theorem 1.1 follows from Theorem 2.1 by taking p = θ+(1+µ+β)/r, q =
θ, since

∞∑
i=1

a2
ni ≤ sup

i≥1
|ani|2−θ

∞∑
i=1

|ani|θ ¿ n−(r(2−θ)−µ).

Hence conditions (1.1) and (2.1) are weaker than conditions (1.1) and (1.2). Theorem 2.1
not only extends the result of Volodin et al. [3] and Chen et al. [4] for independent random
variables to negatively associated case, but also obtains the weaker sufficient condition of
complete moment convergence of the supremum of partial sums for arrays of negatively
associated random variables.

Remark 2.2 If 1 + µ + β > 0, Theorem 1.2, Theorem 1.3 follow from Theorem 2.1
by taking p = 1 + (1 + µ + β)/r, q = 1. Theorem 2.1 extends the result of Sung [5] and
Guo and Zhu [6]. Moreover, the method used for proving our main results is different from
that of Sung [5]. Our method can be used efficiently to the field of the complete moment
convergence for sequences of dependent random variables.
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Note that conditions (1.1) and (2.1) together imply
∞∑

i=1

|ani|p ¿ n−1−β. (2.13)

The following theorem shows that if the moment condition of Theorem 2.1 is replaced by a
stronger condition E|X|p log |X| < ∞, then condition (2.1) can be replaced by the weaker
condition (2.13).

Theorem 2.2 Suppose that β ≥ −1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise
negatively associated random variables which are stochastically dominated by a random
variable X satisfying E|X|p log |X| < ∞ for some p ≥ 1. Let {ani, i ≥ 1, n ≥ 1} be an array
of constants satisfying (1.1) and (2.13). Furthermore, assume that (2.2) holds for some α > 0
if p ≥ 2. Let EXni = 0 for all i ≥ 1 and n ≥ 1. Then (2.3) holds.

Proof Applying the same notation and method of Theorem 2.1, we need only to give

the different parts. Noting that
k∑

n=1

n−1 ¿ log k and p ≥ 1, we have

I2 ≤
∞∑

n=1

nβ

∞∑
i=1

Eap
ni|Xni|pI(ani|Xni| > 1) ≤

∞∑
n=1

nβ

∞∑
i=1

ap
niE|X|pI(|X| > nr)

¿
∞∑

n=1

nβn−1−βE|X|pI(|X| > nr) =
∞∑

n=1

n−1

∞∑
k=n

E|X|pI(kr < |X| ≤ (k + 1)r)

=
∞∑

k=1

E|X|pI(kr < |X| ≤ (k + 1)r)
k∑

n=1

n−1

¿
∞∑

k=1

log kE|X|pI(kr < |X| ≤ (k + 1)r) ¿ E|X|p log |X| < ∞. (2.14)

Set Inj = {i, (n(j +1))−r < ani ≤ (nj)−r}, j = 1, 2, · · · . Note that for all k ≥ 1, n ≥ 1,M ≥
p,

n−1−β ≥
∞∑

i=1

ap
ni =

∞∑
j=1

∑
i∈Inj

ap
ni ≥ n−rp

∞∑
j=k

(]Inj)(j + 1)−rM (k + 1)rM−rp.

Hence we have
∞∑

j=k

(]Inj)j−rM ¿ n−1−β+rpk−r(M−p). Similar to the corresponding part of

the proof of (2.12), for any p ≥ 1, δ > 0, we can obtain that
∞∑

n=1

nβ

∞∑
i=1

Eap+δ
ni |X|p+δI(ani|X| ≤ 1)

¿
∞∑

n=1

n−1−rδE|X|p+δI(|X| ≤ (2n)r)

+
∞∑

n=1

nβ−r(p+δ)

∞∑
k=2n+1

n−1−β+rp(
k

n
)−rδE|X|p+δI((k − 1)r < |X| ≤ kr)

¿ E|X|p + E|X|p log |X| < ∞. (2.15)
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The rest of the proof is the same as that of Theorem 2.1 and is omitted.
Corollary 2.1 Suppose that β ≥ −1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise

negatively associated random variables which are stochastically dominated by a random
variable X. Let {ani, i ≥ 1, n ≥ 1} be an array of constants satisfying (1.1) and (1.2) for
some θ and µ such that µ < 2r and 1 ≤ θ < min{2, 2 − µ/r}. Furthermore, assume that
EXni = 0 for all i ≥ 1 and n ≥ 1. If

E|X|θ log |X| < ∞ for 1 + µ + β = 0,

E|X|θ+(1+µ+β)/r < ∞ for 1 + µ + β > 0,

then (2.3) holds.
Proof If 1 + µ + β = 0, we take p = θ in Theorem 2.2. If 1 + µ + β > 0, we take

p = θ+(1+µ+β)/r, q = θ in Theorem 2.1. Hence (2.3) holds by Theorem 2.1 and Theorem
2.2.

Remark 2.3 Corollary 2.1 extends the result of Sung [5] and Guo and Zhu [6] for θ = 1
to 1 ≤ θ < 2.

The following theorems extend Theorem 1.1 to negatively dependent random variables.
The proof is the same as that of Theorem 2.1 and Theorem 2.2 except that we use Lemma
1.4 instead of Lemma 1.3.

Theorem 2.3 Suppose that β ≥ −1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise
negatively dependent random variables which are stochastically dominated by a random
variable X satisfying E|X|p < ∞ for some p > 1. Let {ani, i ≥ 1, n ≥ 1} be an array of
constants satisfying (1.1) and (2.1). Furthermore, assume that (2.2) holds for some α > 0 if
p ≥ 2. Let EXni = 0 for all i ≥ 1 and n ≥ 1. Then

∞∑
n=1

nβE

(∣∣∣∣∣
∞∑

i=1

aniXni

∣∣∣∣∣− ε

)+

< ∞ for all ε > 0. (2.16)

Theorem 2.4 Suppose that β ≥ −1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise
negatively dependent random variables which are stochastically dominated by a random
variable X satisfying E|X|p log |X| < ∞ for some p ≥ 1. Let {ani, i ≥ 1, n ≥ 1} be an array
of constants satisfying (1.1) and (2.13). Furthermore, assume that (2.2) holds for some α > 0
if p ≥ 2. Let EXni = 0 for all i ≥ 1 and n ≥ 1. Then (2.16) holds.

Remark 2.4 If 1 + µ + β = 0, we take p = θ in Theorem 2.4. If 1 + µ + β > 0, we take
p = θ + (1 + µ + β)/r, q = θ in Theorem 2.3. Therefore Theorem 1.4 follows from Theorem
2.3 and Theorem 2.4. However, Theorem 1.4 does not deal with the case of β = −1. Our
result covers the case of β = −1.

If the array {Xni, i ≥ 1, n ≥ 1} in Theorem 2.1 and Theorem 2.2 is replaced by the
sequence {Xn, n ≥ 1} then we can extend Theorem 1.1 to ρ∗-mixing random variables.

Theorem 2.5 Suppose that β ≥ −1. Let {Xi, i ≥ 1} be a sequence of rowwise
ρ∗-mixing random variables which are stochastically dominated by a random variable X
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satisfying E|X|p < ∞ for some p > 1. Let {ani, i ≥ 1, n ≥ 1} be an array of constants
satisfying (1.1) and (2.1). Furthermore, assume that (2.2) holds for some α > 0 if p ≥ 2.
Let EXi = 0 for all i ≥ 1. Then

∞∑
n=1

nβE

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣− ε

)+

< ∞ for all ε > 0. (2.17)

Proof For any i ≥ 1, n ≥ 1, let Xni = XiI(|aniXi| ≤ 1). Note that

∞∑
n=1

nβE

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣− ε

)+

≤
∞∑

n=1

nβE

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

ani(Xni − EXni)

∣∣∣∣∣− ε

)+

+
∞∑

n=1

nβ

∞∑
i=1

E|aniXi|I(|aniXi| > 1).

The rest of the proof is the same as that of Theorem 2.1 except that we use Lemma 1.5
instead of Lemma 1.3 and it is omitted.

Theorem 2.6 Suppose that β ≥ −1. Let {Xi, i ≥ 1} be a sequence of rowwise
ρ∗-mixing random variables which are stochastically dominated by a random variable X

satisfying E|X|p log |X| < ∞ for some p ≥ 1. Let {ani, i ≥ 1, n ≥ 1} be an array of
constants satisfying (1.1) and (2.13). Furthermore, assume that (2.2) holds for some α > 0
if p ≥ 2. Let EXi = 0 for all i ≥ 1. Then (2.17) holds.

Proof For any i ≥ 1, n ≥ 1, let Xni = XiI(|aniXi| ≤ 1). Note that

∞∑
n=1

nβE

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣− ε

)+

≤
∞∑

n=1

nβE

(
sup
k≥1

∣∣∣∣∣
k∑

i=1

ani(Xni − EXni)

∣∣∣∣∣− ε

)+

+
∞∑

n=1

nβ

∞∑
i=1

E|aniXi|I(|aniXi| > 1).

The rest of the proof is the same as that of Theorem 2.2 except that we use Lemma 1.5
instead of Lemma 1.3 and it is omitted.

Remark 2.5 As in Remark 3.7 of Sung [5], Theorem 2.5 and Theorem 2.6 can not be
extended to the array {Xni, i ≥ 1, n ≥ 1} of rowwise ρ∗-mixing random variables by using
the method of the proof of Theorem 2.1 and Theorem 2.2.
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相依随机变量阵列加权和的矩完全收敛性

郭明乐,戴 钰,张立君

(安徽师范大学数学计算机科学学院, 安徽芜湖 241003)

摘要: 本文研究了相依随机变量阵列加权和的矩完全收敛性. 利用矩不等式和截尾法, 建立了相依随

机变量阵列加权和的矩完全收敛性的充分条件. 将Volodin等(2004)及陈平炎等(2006) 的关于独立随机变量

阵列的结果推广到了负相协和负相依随机变量阵列的情形, 推广并完善了Sung(2011), 吴群英(2012) 及郭明

乐和祝东进(2012)的结果.
关键词: 负相协; 负相依; ρ∗混合; 矩完全收敛性; 完全收敛性
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