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Abstract: In this paper, the nonlinear singular perturbation problem for the evolution equa-
tions is studied. The outer solution and corrective terms of the pointed, boundary and initial layers
for the solution are constructed. By using the fixed point theorem, the uniformly validity of solu-
tion to the problem ia proved and the results of the study for the singular perturbation with two
parameters is extended.
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1 Introduction

The nonlinear singular perturbation evolution equations are an important target in
the mathematical, engineering mathematics and physical etc. circles. Many approximate
methods were improved. Recently, many scholars did a great of work, such as de Jager
et al. [1], Barbu et al. [2], Hovhannisyan et al. [3], Graef et al. [4], Barbu et al. [5],
Bonfoh et al. [6], Faye et al. [7], Samusenko [8], Liu [9] and so on. Using the singular
perturbation and other’s theorys and methods the authoes also studied a class of nonlinear
singular perturbation problems [10-24]. In this paper, using the special and simple method,
we consider a class of the evolution equation.

Now we studied the following singular perturbation evolution equations initial-boundary

value problem with two parameters

82
&5 — 1w Lu=f(tw,u), (t2) € (0,T5] x O, (1.1)
u=g(t,x), =€, (1.2)
ou
uli=o = h1 (), €g|t=o = ho(z), z€Q, (1.3)
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where
n n
0? 0
L= o Y
ijz—l " 83518% * z—zl IB’L 8331 ’
n n
il =AY €&, VG ER, A>0,
i,j=1 i=1
¢ and p are small positive parameters, x = (z1, 21, -+ ,2,) € 2, is a bounded region in

R", 9Q denotes boundary of 2 for class C'*, where o € (0,1) is Holder exponent, Ty is a
positive constant large enough, f(¢,x,u) is a disturbed term, L signifies a uniformly elliptic
operator.

Hypotheses that

[Hi] o =¢/pas p— 0;

[Hs) «;j, B; with regard to x are Holder continuous, g and h,; are sufficiently smooth
functions in correspondence ranges;

[H3] f is a sufficiently smooth functions in correspondence ranges except xy € €;

[Hy] f(t,z,u) < —c < 0,(z # x), where C' > 0 is a constant and for f(¢,z,u) = 0,
there exists a solution Uy, such as lim U(t, z) # U(t, xg).

z—z0

2 Construct Outer Solution

Now we construct the outer solution of problems (1.1)—(1.3).

The reduced problem for the original problem is
flt,z,u)=0. (2.1)

From hypotheses, there is a solution Uy (t,x) (x # o) to equation (2.1). And there is a
U()()(t, J}) which satisfies f(t, Zo, Uoo(t.l‘o)) =0.
Let the outer solution Uy (t, x) to problems (1.1)—(1.3), and

Ult,z) ~ Y Uyt v)e'p. (2.2)

4,=0

Substituting eq. (2.2) into eq. (1.1), developing the nonlinear term f in ¢, and u, and
equating coefficients of the same powers of €'y (i,j =0,1,--- i+ j # 0), respectively. We
can obtain U;;(t,z), i,j = 0,1,---,i+ j # 0. Substituting Uyo(¢,x) and U;;(t,z), i,j =
0,1,---,i+j # 0 into eq.(2.2), we obtain the outer solution U (¢, z) to the original problem.
But it does not continue at (¢, z) and it may not satisfy the boundary and initial conditions
(1.2)—(1.3), so that we need to construct the pointed layer, boundary layer and initial layer

corrective functions.
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3 Construct Pointed Layer Corrective Term

Set up a local coordinate system (p, ¢) near o € Q. Define the coordinate of every
point @ in the neighborhood of xzy with the following way: the coordinate p(< py) is the
distance from the point @ to xo, where pg is small enough. The ¢ = (¢1, Pa, -+, dn_1) is a
nonsingular coordinate.

In the neighborhood of xy : (0 < p < py) € Q,

n—1

0? o2 o’ d =, 9
L= ann, ni i by, bim 3.1
’ 62+Z 5005 2 9 T505, g T Lty B
where
- dp Op - op 0o - a@ 09;
i Z Y Ox; O’ Z ajk@a:] oy’ @is Z M Oxy, Oz
i,j=1 7,k=1 k,l=
bn = i 8 . a. = Q;
Z s (9:018:8] Z J 6:E 8%
i,j=1 i,5=1
We lead into the variables of multiple scales™™ on (0 < p < pg) C Q:
~ h »¢ ~ -
=120 Gy s

where h(p, ¢) is a function to be determined. For convenience, we still substitute p, ¢ for

0, 5 below respectively. From eq.(3.1), we have

1 1
L= Ko+ -K + K, (3.2)
0 I
while o2
_ 2
KO - annhpaipz

and K, K5 are determined operators and their constructions are omitted.
Let h, = \/1/a,, and the solution u of original problems (1.1)—(1.3) be

U= U(tv gj) + ‘/l(tv Py d))? (33>

where V] is a pointed layer corrective term. And

oo

Vi~ Z v155(t, p, @) 1. (3.4)

4,5=0

Substituting egs.(3.1)—(3.4) into eq.(1.1), expanding nonlinear terms in ¢ and p, and

equating the coefficients of like powers of o’u?, respectively, for i, j = 0,1, ---, we obtain
Kiov100 =0, (p,¢) € (0 < p < po), (3.5)
v100]p=0 = —Uoo(t, z0), (3.6)
Kigviij = Gij, (p,8) € (0<p<po), 4,j=0,1,--+, i+j#0, (3.7)
Ullj|p:O:_Ulj(t7$0)’ Z,j:O,l, ) l+]7é07 (3 8)
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where G;; (4,7 = 0,1,---, i+ j # 0) are determined functions. From problems (3.5)-
(3.6), we can have vyg9, From vigp and eqs.(3.7)—(3.8), we can obtain solutions vy;; (4,5 =
0,1,---, i+4j #0), successively.

From the hypotheses, it is easy to see that vy;; (i,7 = 0,1, --) possesses boundary layer

behavior
Viij = O(exp(—&-jg)), i=0,1,---, (3.9)

where d;; >0 (i, =0,1,---) are constants.
Let v1;; = v¥(p)v1sj, where ¢(p) is a sufficiently smooth function in 0 < p < po, and

satisfies

YO=10 o2 @

For convenience, we still substitute vy;; for vy;; below. Then from eq. (3.4), we have the

{ 1, 0<p<(1/3)po,

pointed layer corrective term V; near (0 < p < pg) C .

4 Construct Boundary Layer Corrective Term

Now we set up a local coordinate system (p, ¢) in the neighborhood near 92 : 0 < p < p,

as Ref. [9], where ¢ = (¢, ¢, -+ ,¢,_;). In the neighborhood of 92 : 0 < p < p,,

n—1

0? 0? 0? - 0 - 0
L 7nn - + 77” — + 71 — +bni+ sz, 41
o z;a 9p0P, i;“]a@aag op =0, (1
where
_ = op 9p  _ = op 0p; - Db, D
Ann = aij%%a Api = 2 Z ajk%aixk, Qij = Zaklaxk%
i,j=1 ¢ jk=1 J k=1
T - ’p - - 50
" z'jz=1 o Ox;0x;’ "= ijzzl i Ox;0x;

where E(ﬁ, ¢) is a function to be determined. For convenience, we still substitute 5, ¢ for

0, <;~5 below respectively. From (4.1), we have

1 — 1— =
L= Ko+ -K, +Ks, (4.2)
I I
while 52
— =2
KO = a,mhpﬁ

and K1, K, are determined operators and their constructions are omitted too.
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Let hy = \/1/@p, and the solution u of original problems (1.1)—(1.3) be
u=U+ Vs, (4.3)

where V5 is a boundary layer corrective term. And
Vo~ Z vaij (t, B, @) (4.4)
4,5=0

Substituting eq.(4.4) into eqgs.(1.1) and (1.2), expanding nonlinear terms in ¢ and o,
and equating the coefficients of like powers of e'c? (i,5 = 0,1,---). And we obtain

Kovaoo =0, (p,6) € (0<7p<7), (4.5)
Va00lp=0 = g(t, x) — Uno(t, ), (4.6)
Ko’UQij:éij, (P, ) ( S S ) Z'vj:Ou]-»"" 7’+]7é07 ( )
Vaijlp=0 = —Uij(t, o), 4,5 =0,1,---, i+j#0, (4.8)
where éij (1,7 =0,1,---, i+ j # 0) are determined functions successively, their construc-

tions are omitted too.

From problems (4.5)-(4.6), we can have vy00. And from eqgs. (4.7), (4.8), we can obtain
solutions vg;; (i = 0,1,---, i+J # 0) successively. Substituting into eq. (4.4), we obtain the
boundary layer corrective function V5 for the original boundary value problems (1.1)—(1.3).

From the hypotheses, it is easy to see that vy;; (i,7 = 0,1, --) possesses boundary layer
behavior

’Ugij = O(exp(—dij

Ql =l

D, i = 0,1, (4.9)

where 8;; > 0 (i,5 =0,1,---) are constants.

Let Da;; = 1(p)vasj, where 1(p) is a sufficiently smooth function in 0 < p < p,, and
satisfies
, 0<75<(1/3)py,

o <p
= {0, 7> (2/3)70.

For convenience, we still substitute vy;; for Ts;; below. Then from eq. (4.4) we have the
boundary layer corrective term V5 near (0 < p < 7).

5 Construct Initial Layer Corrective Term

The solution u of original problems (1.1)—(1.3) be
u=U+Vi+Vo+W, (5.1)

where W is an initial layer corrective term. Substituting eq. (5.1) into egs. (1.1)—(1.3), we
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have

Wy — LW = f(t,z, U + Vi + Vo + W)

—f(t,z, U+ Vi + Vo) = LU + Vi + Va), (5.2)
Wlecoa = (9(t,z) = U(t,z) — Va(t, 7)) zcon, (5.3)
Wli—o = hi(x) = U(0,2) — V1(0,2) — V5(0,2), =€ Q, (5.4)

ow oUu(0,z)  9Vi(0,z) 9Va(0,z) )

5E|t:0 = ha(x) — &( T 5 5 ), x €. (5.5

We lead into a stretched variable [1, 2]: 7 =t/e and let

o0

W~ Z wij (T, x)e 1. (5.6)

1,j=0

Substituting egs. (2.2), (3.4), (4.4) and (5.6) into egs. (5.2)—(5.5), expanding nonlinear terms
in € and p, and equating the coefficients of like powers of €7, respectively, for i, j = 0,1, - -,

we obtain
(woo)rr = (0,7, Ugo + v100 + v200 + woo) — (0,2, Ugo + v100 + va00), (5.7)
Woolzcan = 0, (5.8)
woo|r=0 = h1(x) — Uoo(0, ) — v100(0, ) — v200(0, ), x € Q, (5.9)
a;;:() lilo=0, z€Q. (5.10)
(Wij)rr = Gijy 0,5 =0,1,-+, i+7#0, (5.11)
Wis|acon = ha(x), i,j=0,1,-, i+j#0, (5.12)
Wijlr=0 = —U3(0,2) — v135(0, 2) — v24;(0, @),
2€Q, i,j=01,--,i+j#0, (5.13)
owi, OUG1);(0,2)  Ovi-1);(0,2)  Ovzi-1);(0,7)
gr =0 =~ ot - ot a ot ’
2€Q, i,j=01,---, i+j#0, (5.14)
where G;; (i,j = 0,1,-++, i+ j # 0) are determined functions. From problems (5.7)—
(5.10), we can have wgg, From wpy and eqgs. (5.11)—(5.14), we can obtain solutions w;;(i,j =
0,1,---, i+ j # 0) successively.
From the hypotheses, it is easy to see that w;; (7,7 = 0,1,---) possesses initial layer
behavior
w;j = O(exp(—gijé)), 1=0,1,---, (5.15)

where gz-j >0 (i,7=0,1,---) are constants.
Then from eq. (5.15) we have the initial corrective term W.
From eq. (5.1), thus we obtain the formal asymptotic expansion of solution u for the

nonlinear singular perturbation evolution equations initial-boundary value problems (1.1)—
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(1.3) with two parameters

oo oo
u o~ Ut D Uge'sd + ) (vt @) + vyt 7)o’ i?
1,§=0,1,i+5#0 i,j=0
+ Z wij(T,2)e' W, 0<e o<1 (5.16)

i,7=0

6 The Main Result

Now we prove that this expansion (5.16) is a uniformly valid in ©Q and we have the
following theorem

Theorem Under hypotheses [H;| — [Hy4], then there exists a solution u(t,x) of the
nonlinear singular perturbation evolution equation initial-boundary value problems (1.1)—
(1.3) with two parameters and holds the uniformly valid asymptotic expansion (5.16) for &
and p in (t,z) € [0, Tp] x Q.

Proof We now get the remainder term R(¢,z) of the initial-boundary value problems
(1.1)—(1.3). Let

u(t,z) =u(t,z) + R(t, z), (6.1)

where

u ~ Uyp+ Z Uije't? + Z (v145(t, ) + v (t, )" 11

,§=0,i+757#0 ,§=0

m
+ Z ’U)ij(T, 1,')5 /Lj

i,7=0

Using eqs. (2.2), (3.9), (4.9), (5.15), (6.1), we obtain

F[R] = ¢ 8;52 LR — f(t,z,u+ R) + f(t,z,7)
= O™ z€Q, A\ =max(e,u,0),
R = O™ z2€0Q, \=max(e,u,o0),
Rl = O™ 2€Q, \=max(e, u,0),
5%—f|t:0 O™ x€Q, X\ =max(e, u,0).

The linearized differential operator L reads

and therefore

Ulp] = flp] — Llp] = f(t,2,9) = f(t, 2, (@+p) + fult,z, @+ p))p.
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For fixed €, 4, the normed linear space N is chosen as

N = {plp € C*((0,Ty] x Q), ploa = g, pli=o = h1, pili=o = h12}

with norm

Ipll = e pl,

and the Banach space B as

B = {qlqg € C((0,To] x )}

with norm

= ma. .
4l e lq|

From the hypotheses we may show that the condition
I~ gl < 17 lgll, Vg€ B

of the fixed point theorem [1, 2] is fulfilled where [~! is independent of € and p, i.e., L™! is

continuous. The Lipschitz condition of the fixed point theorem become

1@ [p2] — Wp: ]

< ¢ + ~pl}+C 2| Iy —
teax APl [pl)lpe = pi} + G max 07 - [p2 = pal}

< Cstl|lp2 — pall,

where C1,Cs and C3 are constants independent of € and p, this inequality is valid for all
p1,p2 in a ball Ky (r) with ||| < 1. Finally, we obtain the result that the remainder term

exists and moreover

R(t,z)| = O(\™), A= .
e o 1Bt 2)] = 0™, max(e, 4, 0)

From eq. (6.1), we have

u = U()o + Z Ul'jEi/sz + Z (Uh‘j(t,l') + ’Uzij(t, x))aiuj

i,§=0,i+j#0 i,j=0
+ Z wii (T, ) + ON™), 0 <e, p,0., \=max(e, u,o).
i,j=0

The proof of the theorem is completed.
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