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Abstract: In this paper, the nonlinear singular perturbation problem for the evolution equa-

tions is studied. The outer solution and corrective terms of the pointed, boundary and initial layers

for the solution are constructed. By using the fixed point theorem, the uniformly validity of solu-

tion to the problem ia proved and the results of the study for the singular perturbation with two

parameters is extended.
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1 Introduction

The nonlinear singular perturbation evolution equations are an important target in
the mathematical, engineering mathematics and physical etc. circles. Many approximate
methods were improved. Recently, many scholars did a great of work, such as de Jager
et al. [1], Barbu et al. [2], Hovhannisyan et al. [3], Graef et al. [4], Barbu et al. [5],
Bonfoh et al. [6], Faye et al. [7], Samusenko [8], Liu [9] and so on. Using the singular
perturbation and other’s theorys and methods the authoes also studied a class of nonlinear
singular perturbation problems [10–24]. In this paper, using the special and simple method,
we consider a class of the evolution equation.

Now we studied the following singular perturbation evolution equations initial-boundary
value problem with two parameters

ε2 ∂2u

∂t2
− µ2Lu = f(t, x, u), (t, x) ∈ (0, T0]× Ω, (1.1)

u = g(t, x), x ∈ ∂Ω, (1.2)

u|t=0 = h1(x), ε
∂u

∂t
|t=0 = h2(x), x ∈ Ω, (1.3)
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where

L =
n∑

i,j=1

αij
∂2

∂xi∂xj

+
n∑

i=1

βi
∂

∂xi

,

n∑
i,j=1

αijξiξj ≥ λ

n∑
i=1

ξ2
i , ∀ξi ∈ <, λ > 0,

ε and µ are small positive parameters, x = (x1, x1, · · · , xn) ∈ Ω,Ω is a bounded region in
<n, ∂Ω denotes boundary of Ω for class C1+α, where α ∈ (0, 1) is Hölder exponent, T0 is a
positive constant large enough, f(t, x, u) is a disturbed term, L signifies a uniformly elliptic
operator.

Hypotheses that
[H1] σ = ε/µ as µ → 0;
[H2] αij , βi with regard to x are Hölder continuous, g and hi are sufficiently smooth

functions in correspondence ranges;
[H3] f is a sufficiently smooth functions in correspondence ranges except x0 ∈ Ω;
[H4] f(t, x, u) ≤ −c < 0, (x 6= x0), where C > 0 is a constant and for f(t, x, u) = 0,

there exists a solution U00, such as lim
x→x0

U(t, x) 6= U(t, x0).

2 Construct Outer Solution

Now we construct the outer solution of problems (1.1)–(1.3).
The reduced problem for the original problem is

f(t, x, u) = 0. (2.1)

From hypotheses, there is a solution U00(t, x) (x 6= x0) to equation (2.1). And there is a
U00(t, x) which satisfies f(t, x0, U00(t.x0)) = 0.

Let the outer solution U00(t, x) to problems (1.1)–(1.3), and

U(t, x) ∼
∞∑

i,j=0

Uij(t, x)εiµj . (2.2)

Substituting eq. (2.2) into eq. (1.1), developing the nonlinear term f in ε, and µ, and
equating coefficients of the same powers of εiµj (i, j = 0, 1, · · · , i + j 6= 0), respectively. We
can obtain Uij(t, x), i, j = 0, 1, · · · , i + j 6= 0. Substituting U00(t, x) and Uij(t, x), i, j =
0, 1, · · · , i + j 6= 0 into eq.(2.2), we obtain the outer solution U(t, x) to the original problem.
But it does not continue at (t, x0) and it may not satisfy the boundary and initial conditions
(1.2)–(1.3), so that we need to construct the pointed layer, boundary layer and initial layer
corrective functions.
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3 Construct Pointed Layer Corrective Term

Set up a local coordinate system (ρ, φ) near x0 ∈ Ω. Define the coordinate of every
point Q in the neighborhood of x0 with the following way: the coordinate ρ(≤ ρ0) is the
distance from the point Q to x0, where ρ0 is small enough. The φ = (φ1, φ2, · · · , φn−1) is a
nonsingular coordinate.

In the neighborhood of x0 : (0 ≤ ρ ≤ ρ0) ∈ Ω,

L = ann
∂2

∂ρ2
+

n−1∑
i=1

ani
∂2

∂ρ∂φi

+
n−1∑
i,j=1

aij
∂2

∂φi∂φj

+ bn
∂

∂ρ
+

n−1∑
i=1

bi
∂

∂φi

, (3.1)

where

ann =
n∑

i,j=1

αij
∂ρ

∂xi

∂ρ

∂xj

, ani = 2
n∑

j,k=1

αjk
∂ρ

∂xj

∂φi

∂xk

, aij =
n∑

k,l=1

αkl
∂φi

∂xk

∂φj

∂xl

,

bn =
n∑

i,j=1

αij
∂2ρ

∂xi∂xj

, bi =
n∑

i,j=1

αij
∂2

i φi

∂xi∂xj

.

We lead into the variables of multiple scales[1] on (0 ≤ ρ ≤ ρ0) ⊂ Ω:

σ̃ =
h(ρ, φ)

µ
, ρ̃ = ρ φ̃ = φ,

where h(ρ, φ) is a function to be determined. For convenience, we still substitute ρ, φ for
ρ̃, φ̃ below respectively. From eq.(3.1), we have

L =
1
µ2

K0 +
1
µ

K1 + K2, (3.2)

while

K0 = annh2
ρ

∂2

∂ρ2

and K1,K2 are determined operators and their constructions are omitted.
Let hρ =

√
1/ann and the solution u of original problems (1.1)–(1.3) be

u = U(t, x) + V1(t, ρ, φ), (3.3)

where V1 is a pointed layer corrective term. And

V1 ∼
∞∑

i,j=0

v1ij(t, ρ, φ)σiµj . (3.4)

Substituting eqs.(3.1)–(3.4) into eq.(1.1), expanding nonlinear terms in σ and µ, and
equating the coefficients of like powers of σiµj , respectively, for i, j = 0, 1, · · · , we obtain

K10v100 = 0, (ρ, φ) ∈ (0 ≤ ρ ≤ ρ0), (3.5)

v100|ρ=0 = −U00(t, x0), (3.6)

K10v1ij = Gij , (ρ, φ) ∈ (0 ≤ ρ ≤ ρ0), i, j = 0, 1, · · · , i + j 6= 0, (3.7)

v1ij |ρ=0 = −Uij(t, x0), i, j = 0, 1, · · · , i + j 6= 0, (3.8)
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where Gij (i, j = 0, 1, · · · , i + j 6= 0) are determined functions. From problems (3.5)–
(3.6), we can have v100, From v100 and eqs.(3.7)–(3.8), we can obtain solutions v1ij (i, j =
0, 1, · · · , i + j 6= 0), successively.

From the hypotheses, it is easy to see that v1ij (i, j = 0, 1, · · · ) possesses boundary layer
behavior

v1ij = O(exp(−δij
ρ

σ
)), i = 0, 1, · · · , (3.9)

where δij > 0 (i, j = 0, 1, · · · ) are constants.
Let v1ij = ψ(ρ)v1ij , where ψ(ρ) is a sufficiently smooth function in 0 ≤ ρ ≤ ρ0, and

satisfies

ψ(ρ) =

{
1, 0 ≤ ρ ≤ (1/3)ρ0,

0, ρ ≥ (2/3)ρ0.

For convenience, we still substitute v1ij for v1ij below. Then from eq. (3.4), we have the
pointed layer corrective term V1 near (0 ≤ ρ ≤ ρ0) ⊂ Ω.

4 Construct Boundary Layer Corrective Term

Now we set up a local coordinate system (ρ, φ) in the neighborhood near ∂Ω : 0 ≤ ρ ≤ ρ0

as Ref. [9], where φ = (φ1, φ2, · · · , φn−1). In the neighborhood of ∂Ω : 0 ≤ ρ ≤ ρ0,

L = ann
∂2

∂ρ2 +
n−1∑
i=1

ani
∂2

∂ρ∂φi

+
n−1∑
i,j=1

aij
∂2

∂φi∂φj

+ bn
∂

∂ρ
+

n−1∑
i=1

bi
∂

∂φi

, (4.1)

where

ann =
n∑

i,j=1

αij
∂ρ

∂xi

∂ρ

∂xj

, ani = 2
n∑

j,k=1

αjk
∂ρ

∂xj

∂φi

∂xk

, aij =
n∑

k,l=1

αkl
∂φi

∂xk

∂φj

∂xl

,

bn =
n∑

i,j=1

αij
∂2ρ

∂xi∂xj

, bi =
n∑

i,j=1

αij
∂2

i φi

∂xi∂xj

.

We lead into the variables of multiple scales [1] on (0 ≤ ρ ≤ ρ0) ⊂ Ω:

σ =
h(ρ, φ)

µ
, ρ̃ = ρ φ̃ = φ,

where h(ρ, φ) is a function to be determined. For convenience, we still substitute ρ, φ for
ρ̃, φ̃ below respectively. From (4.1), we have

L =
1
µ2

K0 +
1
µ

K1 + K2, (4.2)

while

K0 = annh
2

ρ

∂2

∂σ2

and K1,K2 are determined operators and their constructions are omitted too.
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Let hρ =
√

1/ann and the solution u of original problems (1.1)–(1.3) be

u = U + V2, (4.3)

where V2 is a boundary layer corrective term. And

V2 ∼
∞∑

i,j=0

v2ij(t, ρ, φ)εiσj . (4.4)

Substituting eq.(4.4) into eqs.(1.1) and (1.2), expanding nonlinear terms in ε and σ,
and equating the coefficients of like powers of εiσj (i, j = 0, 1, · · · ). And we obtain

K0v200 = 0, (ρ, φ) ∈ (0 ≤ ρ ≤ ρ0), (4.5)

v200|ρ=0 = g(t, x)− U00(t, x), (4.6)

K0v2ij = Gij , (ρ, φ) ∈ (0 ≤ ρ ≤ ρ0), i, j = 0, 1, · · · , i + j 6= 0, (4.7)

v2ij |ρ=0 = −Uij(t, x0), i, j = 0, 1, · · · , i + j 6= 0, (4.8)

where Gij (i, j = 0, 1, · · · , i + j 6= 0) are determined functions successively, their construc-
tions are omitted too.

From problems (4.5)–(4.6), we can have v200. And from eqs. (4.7), (4.8), we can obtain
solutions v2ij (i = 0, 1, · · · , i+j 6= 0) successively. Substituting into eq. (4.4), we obtain the
boundary layer corrective function V2 for the original boundary value problems (1.1)–(1.3).

From the hypotheses, it is easy to see that v2ij (i, j = 0, 1, · · · ) possesses boundary layer
behavior

v2ij = O(exp(−δij
ρ

σ
)), i, j = 0, 1, · · · , (4.9)

where δij > 0 (i, j = 0, 1, · · · ) are constants.
Let v2ij = ψ(ρ)v2ij , where ψ(ρ) is a sufficiently smooth function in 0 ≤ ρ ≤ ρ0, and

satisfies

ψ(ρ) =

{
1, 0 ≤ ρ ≤ (1/3)ρ0,

0, ρ ≥ (2/3)ρ0.

For convenience, we still substitute v2ij for v2ij below. Then from eq. (4.4) we have the
boundary layer corrective term V2 near (0 ≤ ρ ≤ ρ0).

5 Construct Initial Layer Corrective Term

The solution u of original problems (1.1)–(1.3) be

u = U + V1 + V2 + W, (5.1)

where W is an initial layer corrective term. Substituting eq. (5.1) into eqs. (1.1)–(1.3), we
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have

ε2Wtt − µ2LW = f(t, x, U + V1 + V2 + W )

−f(t, x, U + V1 + V2)− µ2L(U + V1 + V2), (5.2)

W |x∈∂Ω = (g(t, x)− U(t, x)− V2(t, x))x∈∂Ω, (5.3)

W |t=0 = h1(x)− U(0, x)− V1(0, x)− V2(0, x), x ∈ Ω, (5.4)

ε
∂W

∂t
|t=0 = h2(x)− ε(

∂U(0, x)
∂t

− ∂V1(0, x)
∂t

− ∂V2(0, x)
∂t

), x ∈ Ω. (5.5)

We lead into a stretched variable [1, 2]: τ = t/ε and let

W ∼
∞∑

i,j=0

wij(τ, x)εiµj . (5.6)

Substituting eqs. (2.2), (3.4), (4.4) and (5.6) into eqs. (5.2)–(5.5), expanding nonlinear terms
in ε and µ, and equating the coefficients of like powers of εiµj , respectively, for i, j = 0, 1, · · · ,
we obtain

(w00)ττ = f(0, x, U00 + v100 + v200 + w00)− f(0, x, U00 + v100 + v200), (5.7)

w00|x∈∂Ω = 0, (5.8)

w00|τ=0 = h1(x)− U00(0, x)− v100(0, x)− v200(0, x), x ∈ Ω, (5.9)
∂w00

∂τ
|τ=0 = 0, x ∈ Ω. (5.10)

(wij)ττ = Gij , i, j = 0, 1, · · · , i + j 6= 0, (5.11)

wij |x∈∂Ω = h2(x), i, j = 0, 1, · · · , i + j 6= 0, (5.12)

wij |τ=0 = −Uij(0, x)− v1ij(0, x)− v2ij(0, x),

x ∈ Ω, i, j = 0, 1, · · · , i + j 6= 0, (5.13)
∂wij

∂τ
|τ=0 = −∂U(i−1)j(0, x)

∂t
− ∂v1(i−1)j(0, x)

∂t
− ∂v2(i−1)j(0, x)

∂t
,

x ∈ Ω, i, j = 0, 1, · · · , i + j 6= 0, (5.14)

where Gij (i, j = 0, 1, · · · , i + j 6= 0) are determined functions. From problems (5.7)–
(5.10), we can have w00, From w00 and eqs. (5.11)–(5.14), we can obtain solutions wij(i, j =
0, 1, · · · , i + j 6= 0) successively.

From the hypotheses, it is easy to see that wij (i, j = 0, 1, · · · ) possesses initial layer
behavior

wij = O(exp(−δ̃ij
t

ε
)), i = 0, 1, · · · , (5.15)

where δ̃ij > 0 (i, j = 0, 1, · · · ) are constants.
Then from eq. (5.15) we have the initial corrective term W .
From eq. (5.1), thus we obtain the formal asymptotic expansion of solution u for the

nonlinear singular perturbation evolution equations initial-boundary value problems (1.1)–
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(1.3) with two parameters

u ∼ U00 +
∞∑

i,j=0,1,i+j 6=0

Uijε
iµj +

∞∑
i,j=0

(v1ij(t, x) + v2ij(t, x))σiµj

+
∞∑

i,j=0

wij(τ, x)εiµj , 0 < ε, µ, σ ¿ 1. (5.16)

6 The Main Result

Now we prove that this expansion (5.16) is a uniformly valid in Ω and we have the
following theorem

Theorem Under hypotheses [H1] − [H4], then there exists a solution u(t, x) of the
nonlinear singular perturbation evolution equation initial-boundary value problems (1.1)–
(1.3) with two parameters and holds the uniformly valid asymptotic expansion (5.16) for ε

and µ in (t, x) ∈ [0, T0]× Ω.
Proof We now get the remainder term R(t, x) of the initial-boundary value problems

(1.1)–(1.3). Let
u(t, x) = u(t, x) + R(t, x), (6.1)

where

u ∼ U00 +
m∑

i,j=0,i+j 6=0

Uijε
iµj +

m∑
i,j=0

(v1ij(t, x) + v2ij(t, x))σiµj

+
m∑

i,j=0

wij(τ, x)εiµj .

Using eqs. (2.2), (3.9), (4.9), (5.15), (6.1), we obtain

F [R] ≡ ε2 ∂2R

∂t2
− µ2LR− f(t, x, u + R) + f(t, x, u)

= O(λm+1) x ∈ Ω, λ = max(ε, µ, σ),

R = O(λm+1) x ∈ ∂Ω, λ = max(ε, µ, σ),

R|t=0 = O(λm+1) x ∈ Ω, λ = max(ε, µ, σ),

ε
∂R

∂t
|t=0 = O(λm+1) x ∈ Ω, λ = max(ε, µ, σ).

The linearized differential operator L reads

L[p] = ε2 ∂2p

∂t2
− µ2L[p],

and therefore

Ψ[p] ≡ f [p]− L[p] = f(t, x, u)− f(t, x, (u + p)) + fu(t, x, (u + p))p.
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For fixed ε, µ, the normed linear space N is chosen as

N = {p|p ∈ C2((0, T0]× Ω), p|∂Ω = g, p|t=0 = h1, pt|t=0 = h12}

with norm
‖p‖ = max

t∈(0.T0],x∈Ω
|p|,

and the Banach space B as
B = {q|q ∈ C((0, T0]× Ω)}

with norm
‖q‖ = max

t∈(0.T0],x∈Ω
|q|.

From the hypotheses we may show that the condition

‖L−1[g]‖ ≤ l−1‖g‖, ∀g ∈ B

of the fixed point theorem [1, 2] is fulfilled where l−1 is independent of ε and µ, i.e., L−1 is
continuous. The Lipschitz condition of the fixed point theorem become

‖Ψ[p2]−Ψ[p1]‖
< C1 max

t∈(0,T0],x∈Ω
{(|p|1 + |p|2)|p2 − p1|}+ C2 max

t∈(0,T0],x∈Ω
{|p2| · |p2 − p1|}

< C3t‖p2 − p1‖,

where C1, C2 and C3 are constants independent of ε and µ, this inequality is valid for all
p1, p2 in a ball KN (r) with ‖r‖ ≤ 1. Finally, we obtain the result that the remainder term
exists and moreover

max
t∈(0,T0],x∈Ω

|R(t, x)| = O(λm+1), λ = max(ε, µ, σ).

From eq. (6.1), we have

u ≡ U00 +
m∑

i,j=0,i+j 6=0

Uijε
iµj +

m∑
i,j=0

(v1ij(t, x) + v2ij(t, x))σiµj

+
m∑

i,j=0

wij(τ, x)εiµj + O(λm+1), 0 < ε, µ, σ., λ = max(ε, µ, σ).

The proof of the theorem is completed.
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两参数非线性发展方程的奇摄动尖层解

欧阳成1, 陈贤峰2, 莫嘉琪3

(1.湖州师范学院理学院, 浙江湖州 313000)

(2.上海交通大学数学系, 上海 200240)

(3.安徽师范大学数学系, 安徽芜湖 241003)

摘要: 本文研究了一类具有非线性发展方程奇摄动问题. 引入伸长变量和多重尺度, 构造了初始边值

问题外部解和尖层、边界层和初始层校正项, 得到了问题形式解. 利用不动点定理, 证明了问题的解的一致

有效性. 推广了对两参数的奇摄动问题的研究结果.
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