¥ oz Z E

Vol. 34 ( 2014)
No. 5 J. of Math. (PRC)

COMPLETE MOMENT CONVERGENCE OF
WEIGHTED SUMS FOR SEQUENCES OF p-MIXING
RANDOM VARIABLES

GUO Ming-le, WU Sheng-ping, XU Chun-yu
(School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, Chma)

Abstract: The complete moment convergence of weighted sums for p-mixing sequences is
investigated. By using moment inequality and truncation method, the sufficient conditions for com-
plete moment convergence of weighted sums for ¢-mixing sequences are obtained, which generalize
the corresponding results of Ahmed et al.(2002) and Chen and Wang (2010).

Keywords: p-mixing; weighted sums; complete moment convergence; complete convergence

2010 MR Subject Classification: 60F15

Document code: A Article ID: 0255-7797(2014)05-0809-11

1 Introduction

Let {X,, n > 1} be a sequence of random variables defined on probability space
(Q,#,P). Write #F = 0{X;;j <i<k},1<j<k<o,

¢(m) =sup{|P(B|A) = P(B)|; Ae Zf, BeZX,, P(A) >0}, m>1.
E>1

We call {X,,, n>1} a ¢-mixing sequence if lim ¢(m) = 0.

It is obvious that ¢(m) = 0 for any m zml_})co)r independent sequences. So independent
sequences are the special case of ¢-mixing sequences. p-mixing is a wide range of dependent
sequence and has valuable applications. Many authors studied the convergence properties
for sequences of p-mixing random variables. We refer the reader to Shao [1] for moment
inequality, Wang et al. [2] for strong law of large numbers and growth rate, Kim and Ko [3],
Chen and Wang [4], Guo and He [5] for complete moment convergence.

A sequence of random variables {X,,,n > 1} is said to converge completely to a constant

aifforanye >0, > P(]X,—a| > ¢) < co. This notion was given firstly by Hsu and Robbins
n=1
[6].
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In view of the Borel-Cantelli lemma, the above result implies that X,, — a almost
surely. Therefore, the complete convergence is a very important tool in establishing almost
sure convergence of summation of random variables as well as weighted sums of random
variables. The converse theorem was proved by Erdos [7]. This results has been generalized
and extended in several directions, see Baum and Katz [8], Gut [9], Taylor et al. [10] and
Cai and Xu [11]. In particular, Ahmed et al. [12] obtained the following result in Banach
space.

Theorem A Let {X,;;i > 1,n > 1} be an array of rowwise independent random
elements in a separable real Banach space (B, || - ||). Let P(|| X, |[|> ) < CP(|X| > x) for
some random variable X, constant C' and all n,7 and = > 0. Suppose that {a,;,7 > 1,n > 1}
be an array of constants such that sup |a,;| = O(n™") for some r > 0, and Z lan;| = O(n%)

i>1 ,
for some « € [0,7). Let 8 be such that a + 3 # —1 and fix § > 0 suchz_tilat 14+ a/r <

d < 2. Denote s = max(1+ (a+ g+ 1)/r, 0). If E|X|®* < o0 and S, = > aniXpi —
i=1

0 in probability, then Zn’aP(H Sy ||> €) < oo for all € > 0.
n=1
The concept of complete moment convergence was given firstly by Chow [13]. Wang

and Su [14] extended and generalized Chow’s result to a Rademacher type p(1 < p < 2)
Banach space. Recently, Chen and Wang [4] obtained the following complete gth moment
convergence result for ¢-mixing sequences.

Theorem B Let {X, X,,,n > 1} be a sequence of identically distributed (-mixing

random variables and denote S, = > X;,n > 1. Suppose that r > 1,0 < p < 2,¢q > 0.
i=1
Then the following statements are equivalent:

E|X|? < oo, if g > rp,
E|X|"log(1 + | X]) < oo, if ¢ =rp, (1.1)
E|X|™ < oo, if 0 < g <rp,
an’Q’q/pE(lrgfgc Sy, — kb| — en'/P)? < o0, Ve >0, (1.2)
n=1 =h=n

where and in the following z; = z if + > 0 and 4 = 0 if < 0, and 2% means (z,)?,
b=EXifrp>landb=0if0<rp<1.

The main purpose of this paper is to discuss again the above results for weighted sums
of p-mixing sequences. The result of Ahmed et al. [12] is extended to p-mixing case. The
result of Chen and Wang [4] is extended to the case of weighted sums.

For the proofs of the main results, we need to restate a few definitions and lemmas for
easy reference. Throughout this paper, the symbol C' denotes a positive constant which is
not necessarily the same one in each appearance, I(A) denotes the indicator function of A.

[x] denotes the maximum integer not larger than z. For a finite set B, the symbol B denotes
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the number of elements in the set B. Let a,, < b,, denote that there exists a constant C' > 0
such that a, < Cb, for sufficiently large n.

Definition 1.1 A real-valued function I(z), positive and measurable on [A, co) for

I(zA
some A > 0, is said to be slowly varying if lim l(x ) =1 for each A > 0.
xT—00 X

By the properties of slowly varying function and Fubini’s theorem, we can easily prove

the following lemma. Here we omit the details of the proof.

Lemma 1.1 Let X be a random variable and I(z) > 0 be a slowly varying function.
Then

(i) > n'E|X[*I(|X] > n") < CE|X|*log(1 + |X]) for any & > 0,7 > 0;
n=1
(i) Y _nfl(n)EIX|"I(X]| > n?) < CEIX|*TED(X]17) for any 8 > —1,a >

n=1

0,7 > 0;
(i) Y nfl(n)EIX[*I(|X] < nY) < CEIX|*TEDM(X]17) for any 8 < —1, a >

n=1

0,y > 0.

The following two lemmas will play an important role in the proof of our main results.
The proof is due to Shao [1].

Lemma 1.2 Let {X;,i > 1} be a ¢-mixing sequence with mean zero and F|X;|? < co
for all ¢ > 1. Then for all n > 1 and k& > 0, we have

ktn llog 7]
)2 < 1/2 (0 2
E(‘_Zkngz) < 8000n exp{6 ; P22} max  EX;

Lemma 1.3 Let {X;,i > 1} be a ¢-mixing sequence. Suppose that there exists an

array {Cyr, k > 0,n > 1} of positive numbers such that E(Zf;ﬁl X;)? < Cyy, for any

k> 0,n>1,m <n. Then for any ¢ > 2, there exists C' = C(q, ¢(-)) such that

k+j
E X" <ClCi*+E X;|9).
lgljagni_zk; il < QIO + B(, max 1XG])]

Lemma 1.4 (see [15]) Let {X;,i > 1} be a p-mixing sequence with EX; =0, EX? <

3

oo and Z@l/Q(n) < oo. Then E| Y. X, < C
— i=1

By Lemma 1.3 and Lemma 1.4, we deduce the following lemma.

EX2.
=1

Lemma 1.5 Under the conditions of Lemma 1.4, then for any ¢ > 2, there exists

J n n
C'=C(q,¢()) such that B sup | > Xi|? < C{(D_EX})?*+Y " E|Xi|7}.
Isjsn 5 i=1 i=1
By monotone convergence theorem and Lemma 1.5, we can obtain the following lemma.

Lemma 1.6 Under the conditions of Lemma 1.4, then for any ¢ > 2, there exists

J e o] ]
C = C(q, p(+)) such that Fsu X;lt<C EX?)9/? 4 E|X;|7}.
(a,() up| D Xilt < CUQ_ BXH + 3 B

i=1 i=1
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2 Main Results and Proofs

Theorem 2.1 Let {X,X,,n > 1} be a sequence of identically distributed ¢-mixing

random variables with EX = 0 and Z(pl/Q < o0. Let {an;,1 <i<n,n>1} be an

array of constants such that "

lrga>2|am| < n~" for some r >0 (2.1)
and

Zn: |an;| < n® for some « € [0,r). (2.2)

i=1

Let 6> —-land s=1+(a+0+1)/r. If

E|X|? < o0, if ¢ > s,
E|X|*log(1+ |X]) < oo, if g =s, (2.3)
E|X|? < o0, if 1 <gq<s,
then
oo k
ZnBE(lrgl?E(n | Zam‘Xﬁ — €)% < oo for all €>0. (2.4)
= ==

Proof Without loss of generality, from (2.1) and (2.2), we can assume
< i < n®. .
112?2; |ani| <n” Z |lani| < n (2.5)

It is obvious that

B 1/a
;”EQIE%JZ“MX' F= 3o [ P 13 et

< B X 14\ Qg —- .
< Zln P(llél}?zin\ZamX | > € +Z / 1réll?<xn|;asz| >z Nde =1 + I,

Thus, it suffices to show that I; < oo and I, < oco. We prove only Iy < 0o, the proof of
I} < oo is analogous. Set for alln > 1 and 1 < i < n, X, = an Xl (|an: Xi| < /7). Note
that

o co n e} 0o k
fos S [ Pl s 3 [P 13Xl e
n=1 1 =1 n=1 1 i
=: 13+I4.

For any ¢ > 1, by (2.5), we have

n
> lanil” Z|am||am\q L<prtas 1)Z|am| < porrlah), (2.6)
=1



No. 5 Complete moment convergence of weighted sums for sequences of p-mixing random variables 813

oo

For I3, noting that / P(\am-Xi| > xl/q) dz < FElan; X;|"I(Ja,;X;| > 1), by Lemma 1.1,
1
(2.3) and (2.6), we have

I < Y 0> BlawXilT(janXi) > 1) <Y 0> Jaw|"E|X[7I(|X] > n")
n=1 i=1 n=1 i=1

< ) PtV X (X > )

n=1
ZnﬁJra*T(q*l)E\XP, if ¢ > s,
n=1
< D n'EIXPI(X]| > ), if g =s,
n=1

Y e DEIX|I(1X] >0, if1<q<s,

n=1
4 o0
Znﬁﬂkr(q*l), if ¢ > s,
<< n=1
E|X|*log(1 + | X]), if g = s,
E|X|?, ifl1 <qg<s,
< oo (2.7)

Next we deal with I,. We first verify that

k
—-1/q )
sup max | Z;EXM — 0 asn — oo. (2.8)

z>1

Since (2.3) implies E|X|**%/" < 0o, we have by EX = 0 that

k k
suprl/q max |ZEX7”| = sgpxil/q max |2EamXiI(|amXi‘ > l‘l/q)|
i=1 z=1 i=1

e>1 1<k<n 1<k<n

< Y ElanXilI(|lan Xi| > 1) < n*E[X|I(|X]| > n")
=1

< EIX|"TI(|X|>n") — 0asn — oco.

Thus, to prove I; < oo, we need only to show that

[eS) ) k
I5 =: Znﬁ/l P(1r£1?<xn | Z(Xm — EX,;)| > 29 dz < cc.
n=1 =T =

By Lemma 1.5, Markov’s inequality and C, inequality, for any t > 2, we have

o o0 k
I; < Znﬁ/ Cl?it/qE max |Z(Xm - EXm')|tdx
n=1 1 1=1

1<k<n
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n=1 1

i=1
+Znﬁ/ e ZE\amXi|tI(|amXi| < xl/q)dx
n=1 1 i=1
= IG + [7.

For Ig, since 8 > —1, we can choose s’ < 2 such that 1+ a/r < s’ < s. Taking sufficiently
large t such that —s't/(2¢q) < —1 and 8+ (a — (s’ — 1))t/2 < —1, by (2.3), (2.5) and (2.6)
we obtain

Iy =

IN

HM8 HM8

/ o ZE|amX| |ani X312 I(|ani Xi| < 2V/9)!/%dx

t/2 o
o (Zm ¥ E|x|3> do € SO nPHOTE e o

=1 n=1

Finally, we deal with I;. Set
Ly ={i =1 (n(G+1)7" <lan| < (ng)™"}, j=1,2,---.

Then Uj>11,; = N, where N is the set of positive integers. Note also that for all k > 1, n >
1, t>1,

3
°
v

Z|ani| = Z Z |ans| > Z #;)(n(j +1))7"

j=1i€ly,;

2 rz ﬂInj ]+1 rt(k__’_l)rtfr'
j=k
Hence, we have
Z(ﬁ]—nj) -—7rt < Cna+rkr rt (29)
=k
Note that
I; = Znﬁ/ x_t/qz Z Elan; X1 (|an: X| < 29 dx
n=1 1 j=1i€l,;
< >0 () () / e UE|XI(|X] < 27 (j + 1)) da
n=1  j=1 1
[ee] (e%e] o] (k+1)
= A ey [ XTI <G+ 1)
n=1 J: k=n
< 2" “Z D3I BT R (X < (k1) (G + 1))

k=n

3
1§
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- Znﬁ WZ(nIn] ‘”Zk rHr I RIX (X < 27 (k4 1))

n=1 j=1
+Znﬁ Y (e Y L@ (54 1) < XS (641G 1))
j=1 k=n

For Ig, we choose sufficiently large t such that —rt+rq—1< -1, a+ 8 —rt+r < -1, by

Lemma 1.1 and (2.9) we have

K= Yy XX 27 1)) Y (e
=1

n=1 k=n

< Z notB-—ratr Z kfrt+rq71E|X|tI(|X| < QT(k + 1>r)

n=1 k=n

0o k
= D ETHIEIXPI(X| <27 (k+ 1)) Y neteoretr

k=1 n=1
S kT EIX I (IX] < 27 (k + 1)), if ¢ > s,
k=1
< ) BTN log k)EIX|T(|X| < 27 (k +1)7), if g =s,
k=1
D kT EIXPI(X| < 27 (k+ 1)), if1<q<s,
k=1
E|X|, if ¢ > s,
< E|X|?log(1+ |X]), if g =s,
E|X|?, if1 <qg<s,
< oo (2.11)

For Iy, noting that r¢ —r —1 > —1 for any ¢ > s > 1 and « + 8 > —1, by Lemma 1.1 and
(2.9) we have

) (3+1)(k+1)
I, < Z nﬁ rq Z forittre—1 Z(ﬁlnj) c—rt Z E|X|tl(ir < |X| < (Z + 1)7-)
k=n j=1 i=2(k+1)
< Znﬁ”qzk%”q*l STOEBXIIGE < IXI<G+D)T) > ()i
n=1 k=n i=2(k-+1) J=li(k+1)=1]-1
< Z nﬁfrq Z forttra—1 Z nr+air(1ft)kfr(lft)Elx‘tI(ir < |X‘ < (Z + 1)7")
n=1 k=n i=2(k+1)
) ) k

= Y kTt Y AOEXTIE < X < (4 1)) netPrar

k=1 i=2(k+1) n=1
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( >
Dok ST B < X] < (1)), ifg> s,
k=1 i=2(k+1)
< { YR ogh)y >0 FOEIXIIG < XIS G+1)),  ifg=s,
k=1 i=2(k+1)
STk S OORXIG < |X] < 4 1)), if1<q<s,
\ k=1 i=2(k+1)
E|X|4, if g > s,
< E|X|*log(1 + | X]), if g=s,
E|X|*, if1<gq<s,
< oo, (2.12)

The proof of (2.4) is completed.
Remark 2.1 As in Remark 2.1 of Guo and Zhu [16], (2.4) implies

oo k

Znﬁp(lxg?;(n | Zam-X,-| > ¢€) < oo for all € > 0.

n=1 i=1

Without necessarily imposing any extra conditions, we not only promote and improve the

result of Ahmed et al. [12] from i.i.d. to yp-mixing setting but also obtain the complete
moment convergence of maximum weighted sums for p-mixing sequences.

Theorem 2.2 Let {X,X,,n > 1} be a sequence of identically distributed ¢-mixing

random variables with EX = 0 and Zcpl/z(n) < o0. Let {ani,1 <i <mn,n > 1} be an
n=1

array of constants satisfying (2.1) and (2.2). If @ > 0 and

E| X7 < oo, ifl+a/r<g<2,
E|X """ og(1 + |X]) < oo, ifg=1+a/r (2.13)
E|X |/ < oo, if1<g<14a/r

then
0 k
Zn_lE(lrg]?\i(n | Zam-Xi| —€) < oo for all €>0. (2.14)
n=1 - i=1

Proof Applying the same notation and method of Theorem 2.1, denoting 8 = —1, we
need only to give the different parts. Note that (2.13) implies that I3 < oo. It is obvious
that (2.13) implies E|X|'*®/" < oo. Therefore, we get that (2.8) holds. Thus, to complete
the proof of (2.14), it suffices to show that

(%S) 00 k
Iy =: an/ P( max |§:(Xm — EX,.)| > /) dz < .
n=1 1 i=1

1<k<n
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In fact, noting that « + 8+1>0,—-2r+rq—1< —1,aa—1—r < —1 and (2.13), by taking
t=2 in the proof of (2.10), (2.11) and (2.12), we deduce that

Zn_l/ x_z/qZE\amXi|2I(|amXi| < xl/q)dm
n=1 1

i=1
E|X|? < 0, ifl+a/r<qg<?2,
< E|IX[Mlog(1 + | X|) < oo, if =1+ a/r, (2.15)
E| X[/ < oo, if1<qg<14a/r

Then, by Markov’s inequality, (2.15) and Lemma 1.5, we have

I; < Zn_l/ x_Z/qZE|amXi|2I(|amX¢| < z¥dz < co.
n=1 1

i=1
Corollary 2.1 Let {X, X, ,n > 1} be a sequence of identically distributed p—mixing

random variables with £X = 0 and Z npl/z ) < 0o. Suppose that r > 1,1 <p<2,q> 1.

n=1

Then (1.1) implies

an 2-4/P B( max \ZX|—en1/p <oo, Ve>0.

1<k<n

Proof Take B =7 —2,a,; =n" /P for 1 <i<mn, n>1,and @ = 1 —1/p in Theorem
2.1. Tt is obvious that a,,; satisfies (2.1) and (2.2). Thus, by (1.1) and Theorem 2.1, we have

n’2 q/p _ 1/P
E_l E( 1121}3<Xn| g Xi| —en
r 2 Y. q
E_l E(lrill?x | E_ ani X;| — €)% < o0. (2.16)

Corollary 2.2 Let {X, X,,,n > 1} be a sequence of identically distributed ¢-mixing

random variables with EX = 0 and Z(plﬂ(n) < 00. Suppose that 1 < p<2,1<qg<2.

n=1
Then
E|X|* < o0, ifp<qg<?2,
E|XPlog(1+ |X]) < oo, if g = p, (2.17)
E|X|P < oo, ifl<g<p

oo
implies Znil*q/”E max |ZX | — en'/P)% < 00, Ve > 0.
n=1

1<k<n
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Proof Take 3 = —1,a,; =n" /P for1<i<n,n>1l,andr =1/p, a =1—1/pin
Theorem 2.2. It is obvious that a,; satisfies (2.1) and (2.2). Thus, by (2.17) and Theorem

2.2, we have

00 k
—1—q/p — l/p Ly ) X — )
> s 3 - e, = S B 13
< 00. (2.18)
Remark 2.2 When 1 < p < 2, by Theorem 2.1 and Theorem 2.2, we establish the
results of Chen and Wang [4]. Theorem 2.1 and Theorem 2.2 deal with more general weights,

and generalize and extend those of Chen and Wang [4].
Theorem 2.3 Let {X,X,,n > 1} be a sequence of identically distributed ¢-mixing

random variables with £X = 0 and Z ©'/2(n) < oo. Let {an;,i > 1,n > 1} be an array of

n=1
constants such that
max lan;| < n~" for some r >0 (2.19)
and
oo
Z |an;| < n® for some « € [0,7). (2.20)

i=1

Let 3> —1and s =14 (a+ B+ 1)/r. Then (2.3) implies

ZnﬂE bup|ZamX| 4 < oo for all €>0.

k>1

Proof The proof is the same as that of Theorem 2.1 except that we use Lemma 1.6
instead of Lemma 1.5 and it is omitted.
Theorem 2.4 Let {X, X,,,n > 1} be a sequence of identically distributed ¢-mixing

random variables with EX = 0 and Z ©'/2(n) < oo. Let {an;,i > 1,n > 1} be an array of

n=1

constants satisfying (2.19) and (2.20). If a > 0, then (2.13) implies

anl sup|ZamX| 4 < oo for all €>0.

— k21—

Proof The proof is the same as that of Theorem 2.2 except that we use Lemma 1.6
instead of Lemma 1.5 and it is omitted.
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