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Abstract: The paper investigates convergence and mean-square stability of the balanced
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1 Introduction

In many fields of science, the combined dynamical effects of noise and delay have received
an increasing attention. Stochastic differential delay equations (SDDEs) are often used to
describe the dynamical systems, which depend on not only present states but also their past
history with noise disturbance. Unfortunately, explicit solutions can rarely be obtained for
SDDEs. Therefore, it is necessary to establish effective numerical methods for such systems.
Recently, the numerical methods for SDDEs as well as stochastic differential equations(SDEs)
have received a great deal of attention [11, 18]. Many efficient numerical methods are
proposed for solving different types of SDEs. The majority of the numerical methods are
explicit or semi-implicit Euler-Maruyama (short for EM) methods [3, 5, 6, 11–13, 23]. For
example, Liu [7] studied the convergence and mean-square (MS) stability of the semi-implicit
Euler method for linear SDDEs. Wu [21] showed that the backward EM method reproduces
the stability for nonlinear SDDEs using the martingale technique. Mao [16] considered the
exponential stability of equidistant EM approximations for SDDEs. Zhang [22] constructed
the strong convergence with order γ = 0.5 and MS-stability of the split-step backward
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Euler method. Evelyn Buckwar [2] introduced the convergence of the numerical method for
SDDEs.

For the EM method, the implicit part is only resricted to the drift term (or drift-implicit,
which is well adapted for stiff systems with small stochastic noise intensity or additive noise.
The method is unsuitalbe for solving stiff SDEs, in which the stochastic term (or diffusion
term) plays an essential role, since the strong explicit methods work unreliably and large
errors for not too small time step sizes. In order to improve stability properties of numerical
methods for solving stiff SDEs. Milstein [17] proposed an implicit balanced method, which
is a specific method with a kind of balance between approximating stochastic terms in
the numerical scheme. Several authors constructed modified implicit methods (see [19–
20]). Wang [19] discussed the convergence and MS-stability of several split-step backward
balanced Milstein methods for stiff stochastic differential systems. Wang [19] considered
the MS-stability of Milstein method for SDDEs. Gan [5] dealt with asymptotic stability
by using the discretized Itô formula, which was developed by Appleby [1]. To the authors’
best knowledge, there is little work on the convergence and stability of balanced method for
stochastic differential delay equation.

In the paper, we consider a scalar test equation of the form{
dx(t) = [ax(t) + bx(t− τ)]dt + [cx(t) + dx(t− τ))]dw(t), t ≥ 0,

x(t) = ξ(t), t ∈ [−τ, 0],
(1.1)

where a, b, c, d ∈ R, τ be a positive fixed delay, w(t) be a one-dimensional standard Wiener
process. ξ(t) is a C([−τ, 0];R)-value initial segment with E[‖ξ‖2] < ∞, here ‖ξ‖ = sup

−τ≤t≤0
|ξ(t)|.

We shall investigate the convergence and the MS-stability for eq.(1.1). Comparing to the
traditional conditions, a weaker condition of the asymptotic and mean-square stability of the
exact solution is given by applying the semimartingale convergence theorem in the next sec-
tion. Section 3 proves that the numerical solution converges to the exact solution in strong
order 0.5. In Section 4, we shall show that the balanced method reproduces mean-square
stability.

2 Stability of Analytical Solution

Throughout this paper, unless otherwise specified, let |x| be the Euclidean norm in
x ∈ Rn. If A is a vector or matrix, its transpose is denoted by AT . If A is a matrix,
its trace norm is denoted by |A| =

√
trace(AT A), while its operator norm is denoted by

‖A‖ = sup{|Ax| : |x| = 1} (without any confusion with ‖ϕ‖). Let be τ > 0, we shall
denote by C([−τ, 0];Rn) the family of continuous functions from [−τ, 0] to Rn with the
norm ‖ϕ‖ = sup

−τ≤θ≤0
|ϕ(θ)|.

Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration {Ft}t≥0, sat-
isfying the usual conditions (i.e., it is increasing and right continuous and F0 contains all
P-null sets). Let p > 0, denote by Lp

Ft
([−τ, 0];Rn) the family of all Ft-measurable and

C([−τ, 0];Rn)-valued random variables ξ such that E‖ξ‖p < +∞.
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Under the above assumptions, eq. (1.1) has a unique strong solution and has the
following properties (see [17]).

Lemma 2.1 For any given T > 0, there exists positive numbers C1, C2 and M such
that the solution of eq. (1.1) satisfies

E( sup
−τ≤t≤T

|x(t)|2) ≤ C1[1 + E‖ξ‖2], t ∈ [−τ, T ],

E|x(t)− x(s)|2 ≤ C2(t− s), 0 ≤ s < t ≤ T, t− s < 1,

E|ax(t) + bx(t− τ)|2 ≤
√

2M(1 + E‖ξ‖), t ∈ [0, T ].

In order to establish a result of stability under a weaker condition compared to the tradi-
tional condition, the following semi-martingale convergence theorem [14] plays an important
role.

Lemma 2.2 Let {At}t≥0} and {Ut}t≥0} be two continuous adapted increasing processes
on t ≥ 0 with A0 = U0 = 0 a.s.. Let {Mt}t≥0} be a real-valued continuous local martingale
with M0 = 0 a.s.. Let ζ be a nonnegative F0-measurable random variable. Define

Xt = ζ + At − Ut + Mt for t ≥ 0.

If Xt is nonnegative, then

{ lim
t→∞

At < ∞} ⊂ { lim
t→∞

Xt < ∞} ∩ { lim
t→∞

Ut < ∞} a.s.,

where C ⊂ D a.s. means P (C ∩Dc) = 0. In particular, if lim
t→∞

At < ∞ a.s., then for almost
all ω ∈ Ω

lim
t→∞

Xt(ω) < ∞, lim
t→∞

Ut(ω) < ∞
and

−∞ < lim
t→∞

M(t, ω) < ∞.

That is, all of the three processes X(t), A(t) and M(t) converge to finite random variables.
Theorem 2.3 Suppose that the condition

2a + c2 + 2|b + cd|+ d2 < 0 (2.1)

holds. Then the solution of eq. (1.1) is mean square stable, i.e., lim sup
t→∞

E[|x(t)|2] = 0.

Moreover, the solution of eq. (1.1) is also aymptotic stable, i.e., lim sup
t→∞

|x(t)| = 0.

Proof Define V (x) = x2, by the Itô formula and the inequality 2ab ≤ a2 + b2, we
compute

dV (x)

= (2x(t)[ax(t) + bx(t− τ)] + [cx(t) + dx(t− τ)]2)dt + 2x(t)[cx(t) + dx(t− τ)]dw(t)

= [(2a + c2)x2(t) + d2x2(t− τ) + 2(b + cd)x(t)x(t− τ)]dt + 2x(t)[cx(t) + dx(t− τ)]dw(t)

= [(2a + c2)x2(t) + d2x2(t− τ) + |b + cd|(x2(t) + x2(t− τ))]dt

+2x(t)[cx(t) + dx(t− τ)]dw(t)

= [(2a + c2 + |b + cd|)x2(t) + (d2 + |b + cd|)x2(t− τ)]dt + 2x(t)[cx(t) + dx(t− τ)]dw(t).
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Since d[eεtV (x(t))] = eεt[εV (x)dt + dV (x)], ε > 0, integrating and computing

eεtV (x(t))

= V (0) +
∫ t

0

[(ε + 2a + c2 + |b + cd|)x2(s) + (d2 + |b + cd|)x2(s− τ)]ds

+2
∫ t

0

x(s)[cx(s) + dx(s− τ)]dw(s)

= V (0) +
∫ t

0

(ε + 2a + c2 + |b + cd|)x2(s)ds +
∫ t−τ

−τ

(d2 + |b + cd|)x2(s)ds

+2
∫ t

0

x(s)[cx(s) + dx(s− τ)]dw(s)

≤ V (0) +
∫ t

0

(ε + 2a + c2 + d2 + 2|b + cd|)x2(s)ds +
∫ 0

−τ

(d2 + |b + cd|)x2(s)ds

+2
∫ t

0

x(s)[cx(s) + dx(s− τ)]dw(s). (2.2)

Since 2a + c2 + 2|b + cd|+ d2 < 0, choose ε < −2a− c2 − 2|b + cd| − d2, then

ε + 2a + c2 + 2|b + cd|+ d2 < 0.

Lemma 2.1 implies that there exists a constant M0 such that eεtx2 ≤ M0. That is,

lim sup
t→∞

|x|2 = 0 a.s..

Taking expectation to (2.2), we have EeεtV (x(t)) ≤ M ′, i.e., lim sup
t→∞

E|x(t)|2 = 0.

Remark 2.4 In Theorem 2.3, condition 2a + c2 + 2|b + cd|+ d2 < 0 is weaker than the
traditional condition (see [6–7, 19])

2a + 2|b|+ (|c|+ |d|)2 < 0. (2.3)

That is, 2a + 2|b|+ (|c|+ |d|)2 < 0 implies that 2a + c2 + 2|b + cd|+ d2 < 0. In fact,

2a + c2 + 2|b + cd|+ d2

= 2a + 2|b|+ 2|b + cd|+ c2 + 2|c||d|+ d2 − 2|b| − 2|c||d|
= 2a + 2|b|+ (|c|+ |d|)2 − (2|b|+ 2|c||d| − 2|b + cd|)
≤ 2a + 2|b|+ (|c|+ |d|)2,

noting that |b| + |c||d| ≥ |b + cd|. It is obvious that 2a + 2|b| + (|c| + |d|)2 < 0 implies
2a + c2 + 2|b + cd|+ d2 < 0.

3 Convergence of Stochastic Differential Delay Equations

In the section, we apply the balanced implicit method (see [4, 16]) to eq. (1.1). This
derives the following numerical scheme

Xn+1 = Xn + (aXn + bXn−m)h + (cXn + dXn−m)∆ωn + C(Xn)(Xn −Xn+1), (3.1)
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here h ≥ 0 is a stepsize which satisfies τ = mh for a positive integer m. Let tn = nh(n ≥ 0).
Xn is an approximation to x(tn) if tn ≤ 0, we have Xn = ξ(tn). Moreover, increments
∆ωn = ω(tn+1) − ω(tn), n = 1, 2, · · · are independent N(0, h)-distributed Gaussian random
variables Ftn

-measurable at the mesh-point tn. C(Xn) is given by

C(Xn) = C0(Xn)h + C1(Xn)|∆ωn| = c0nh + c1n|∆ωn|,
where the c0n = C0(Xn), c1n = C1(Xn) are called control functions which are often chosen
as constants. The control functions must satisfy some conditions.

Assumption 3.1 The c0n and c1n represent bounded functions. For any real numbers
α0 ∈ [0, α0], α1 ≥ 0, where α0 ≥ h for all step sizes h considered and (t, x) ∈ [0,∞]×R, the
matrix M(x) = 1+α0c0n(x)+α1c1n(x) has an inverse and satisfies the condition |(M(x))−1| ≤
C < ∞, here C is a positive constant.

The section will prove the convergence of scheme (3.1), which involves two useful def-
initions. Noting that the various constants throughout the section will be given the same
letter C except for c0n and c1n.

Definition 3.2 (see [4]) The local error of the above approximation of the solution x(t)
of eq. (1.1) is the sequence of random variables δn+1 = x(tn+1)−X(tn+1), n = 0, 1, · · · , N−1.

Here X(tn+1) be the value obtained after just one step eq. (3.1), i.e.,

X(tn+1) = x(tn) + (ax(tn) + bx(tn − τ))h + (cx(tn) + dx(tn − τ))∆ωn

+C(x(tn))(x(tn)−X(tn+1)).

The global error of the above approximation of the solution x(t) of eq. (1.1) is the sequence
of random variables εn = x(tn)−Xn, n = 1, · · · , N.

We shall prove that approximation (3.1) is convergent with order γ = 1
2
, which depends

on the following result established by Evelyn Buckwar (see [3]).
Lemma 3.3 Suppose the method defined by (3.1) such that the following estimates

max
0≤n≤N

|E(δn+1)| ≤ Chp1 as h → 0, (3.2)

max
0≤n≤N

(E(δn+1)2)1/2 ≤ Chp2 as h → 0 (3.3)

hold with p2 ≥ 1
2

and p1 ≥ p2 + 1
2
, where the constant C does not depend on h, but may

depend on T and the initial data. That is, method (3.1) is consistent with order p1 in the
mean and with order p2 in the mean-square sense. Then approximation (3.1) for eq. (1.1)
is convergent with order p = p2 − 1

2
. That is, convergence is in the mean-square sense and

max
0≤n≤N

(E|εn|2)1/2 ≤ Chp as h → 0, p = p2 − 1
2
. (3.4)

Theorem 3.4 The numerical solution produced by the method (3.1) converges to the
exact solution of eq. (1.1) on the mesh-point in the mean-square sense with strong order
0.5, i.e. there exists a positive constant C such that

max
0≤n≤N

(E|εn|2)1/2 ≤ Ch1/2 as h → 0. (3.5)
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Proof To prove (3.5), we first show that the estimates (3.2) holds for the balanced
method (3.1) with p1 = 3/2. For this purpose, the local Euler approximation step defined by

XE(tn+1) = x(tn) + (ax(tn) + bx(tn − τ))h + (cx(tn) + dx(tn − τ))∆ωn,

n = 0, 1, 2, · · · , N −1. Noting that |E[x(tn+1)−XE(tn+1)]| ≤ Ch2 (see [15]), one can deduce
from n = 0, 1, 2, · · · , N − 1 that

|E(δn+1)| = |E[x(tn+1)−X(tn+1)]|
≤ |E[x(tn+1)−XE(tn+1)]|+ |E[XE(tn+1)−X(tn+1)]|
≤ Ch2 + |E[XE(tn+1)−X(tn+1)]|. (3.6)

Denoted by Cn ≡ C(Xn), compute

|E[XE(tn+1)−X(tn+1)]|
= |E(1− 1

1 + Cn

)[(ax(tn) + bx(tn − τ))h + (cx(tn) + dx(tn − τ))∆ωn]|

= |E[
Cn

1 + Cn

(ax(tn) + bx(tn − τ))h +
Cn

1 + Cn

(cx(tn) + dx(tn − τ))∆ωn]|. (3.7)

Exploiting the symmetry property of ∆ωn, then

|E[
Cn

1 + Cn

(cx(tn) + dx(tn − τ))∆ωn]| = |E[(cx(tn) + dx(tn − τ))E(
Cn

1 + Cn

∆ωn|Ftn
)]| = 0.

(3.7) reduces to

|E[XE(tn+1)−X(tn+1)]| = |E[
Cn

1 + Cn

(ax(tn) + bx(tn − τ))h]|.

Since
E[|Cn||Ftn

] = E[|c0nh + c1n|∆ωn|||Ftn
] ≤ |c0n|h + |c1n| 2√

2π
h1/2,

noting that x(tn), x(tn − τ) is Ftn
-measurable, making use of Assumption (3.1) and Lemma

2.1, and computing

|E[
Cn

1 + Cn

(ax(tn) + bx(tn − τ))h]|

≤ E[
|Cn|

|1 + Cn| |ax(tn) + bx(tn − τ)|h]

= ChE[|Cn||ax(tn) + bx(tn − τ)|]
= ChE[|ax(tn) + bx(tn − τ)|E(|Cn||Ftn

)]

≤ Ch3/2E[|ax(tn) + bx(tn − τ)|] ≤ Ch3/2. (3.8)

Substituting for (3.8) into (3.6) yields

max
0≤n≤N

|Eδn+1| ≤ Ch2 + Ch3/2 ≤ Ch3/2.
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Therefore (3.2) holds for p1 = 3/2. In the following, we shall prove that (3.3) holds. Applying
the inequality (a + b)2 ≤ 2(a2 + b2), we have

E|δn+1|2 = E[|x(tn+1)−X(tn+1)|2]
≤ 2E[|x(tn+1)−XE(tn+1)|2] + 2E[|XE(tn+1)−X(tn+1)|2]
≤ Ch2 + 2E[|XE(tn+1)−X(tn+1)|2], (3.9)

noting that E[|x(tn+1) − XE
n+1|2|Ftn

] ≤ Ch2(see[15]). Applying Assumption 3.1 and com-
puting

E[|XE(tn+1)−X(tn+1)|2]
= E[|1− 1

1 + Cn

|2|(ax(tn) + bx(tn − τ))h + (cx(tn) + dx(tn − τ))∆ωn|2]

= E[| Cn

1 + Cn

|2[|(ax(tn) + bx(tn − τ))h + (cw(tn) + dx(tn − τ))∆ωn|2]]

≤ 2hE[| Cn

1 + Cn

(ax(tn) + bx(tn − τ))|2] + 2E[| Cn

1 + Cn

(cx(tn) + dx(tn − τ))∆ωn|2]
≤ 2C2hE[|Cn(ax(tn) + bx(tn − τ))|2] + 2C2E[|Cn(cx(tn) + dx(tn − τ))∆ωn|2]
≤ 2C2hE[|ax(tn) + bx(tn − τ)|2E[|Cn|2|Ftn

]]

+2C2E[|cx(tn) + dx(tn − τ)|2E[|Cn∆ωn|2|Ftn
]]. (3.10)

Making use of the properties

E[(∆ωn)2i] = (2i− 1)!!hi, E[(∆ωn)2i−1] = 0, i = 1, 2, · · · ,

E[|∆ωn|2i−1] =
2i

√
2π

(i− 1)!h
2i−1

2 , i = 1, 2, · · · ,

where (2i− 1)!! = (2i− 1)(2i− 3) · · · 3 · 1, (i− 1)! = (i− 1)(i− 2) · · · 2 · 1, we compute

E[|Cn|2|Ftn
] = E[(c0nh + c1n|∆ωn|)2|Ftn

]

≤ c2
0nh2 + 2c0nc1nhE[|∆ωn||Ftn

] + E[c2
1n|∆ωn|2|Ftn

]

≤ c2
0nh2 +

4√
2π

c0nc1nh3/2 + c2
1nh ≤ Ch, (3.11)

E[|Cn∆ωn|2|Ftn
] = E[(c0nh∆ωn + c1n|∆ωn|∆ωn)2|Ftn

]

≤ c2
0nh2E[(∆ωn)2|Ftn

] + 2c0nc1nhE[|∆ωn|3|Ftn
] + c2

1nE[∆ωn)4|Ftn
]

≤ c2
0nh3 +

8√
2π

c0nc1nh5/2 + 3c2
1nh2

≤ Ch2. (3.12)

Substituting for (3.11)–(3.12) into (3.10), and making use of Lemma 2.1 yields

E|XE
n+1 −X(tn+1)|2 ≤ Ch2E[|ax(tn) + bx(tn − τ)|2] + Ch2E[|cx(tn) + dx(tn − τ)|2] ≤ Ch2.

By this and (3.9), condition (3.3) holds. Lemma 3.3 implies max
0≤n≤N

(E(εn+1)2)1/2 ≤ Ch1/2.
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4 Mean-Square Stability of Numerical Scheme

In the section, we shall investigate mean square stability of the balanced method. Now,
we present the main result of the paper as follows.

Definition 4.1 Under condition (2.3), a numerical method is said to be mean square
stable(MS-stable), if there exists a h{a,b,c,d,c0n,c1n} > 0, such that any application of the
method to problem (3.1) generates numerical approximation Xn, which satisfy lim

n→∞
E|Xn|2 =

0 for all h ∈ (0, h{a,b,c,d,c0n,c1n}).
Theorem 4.2 Assume that C < 1 and condition (2.3) satisfing.
(i) If c0n = −a−|b|, c1n > 0, then the balanced method is MS-stable for h < min{h∗1, 1},

where h∗1 = (1/C2−1)2

(4/
√

2πc1n+(|d|+|c|)2+c2
1n)2

.

(ii) If c1n < 0, a + c0n > |b|, then the balanced method is MS-stable for h < h∗2, where
h∗2 = 1−C2

C2[2a+2c0n+(|d|+|c|)2+c2
1n+2|b|+(|a+c0n|+|b|)2] .

(iii) If c1n < 0, c0n < 0, then the balanced method is MS-stable for h < min{h∗3, 1}, ,
where h∗3 =

1/C2 − 1
(|a + c0n|+ |b|+ |c1n|)2 .

(iv) If c1n = 0, c0n = 0. then the method is MS-stable for h < min{1, −(2a+2|b|+(|d|+|c|)2)
(|a|+|b|)2 },

or If c1n = 0, c0n = 0, 2a + 2|b|+ (|d|+ |c|)2) + (|a|+ |b|)2 < 0, then the method is MS-stable
for h < 1, in which the balanced method (3.1) reduces to EM method.

Proof According to (3.1), we obtain

Xn+1 =
1 + ah + c∆ωn + Cn

1 + Cn

Xn +
bh + d∆ωn

1 + Cn

Xn−m, (4.1)

and

X2
n+1 =

(1 + ah + c∆ωn + c0nh + c1n|∆ωn|)2
(1 + Cn)2

X2
n +

(bh + d∆ωn)2

(1 + Cn)2
X2

n−m

+
2(1 + ah + c∆ωn + c0nh + c1n|∆ωn|)(bh + d∆ωn)

(1 + Cn)2
XnXn−m

=
(1 + ah + c∆ωn + c0nh + c1n|∆ωn|)2

(1 + Cn)2
X2

n +
(bh + d∆ωn)2

(1 + Cn)2
X2

n−m

+
bh + b(a + c0n)h2 + bc1nh|∆ωn|+ dc(∆ωn)2

(1 + Cn)2
2XnXn−m

+
(bch + d + d(a + c0n)h)∆ωn + dc1n|∆ωn|∆ωn

(1 + Cn)2
2XnXn−m.

Taking expectation yields

EX2
n+1 ≤ E[

(1 + ah + c∆ωn + c0nh + c1n|∆ωn|)2
(1 + Cn)2

X2
n] + E[

(bh + d∆ωn)2

(1 + Cn)2
X2

n−m]

+E[
bh + b(a + c0n)h2 + bc1nh|∆ωn|+ dc(∆ωn)2

(1 + Cn)2
2XnXn−m]

+E[
(bch + d + d(a + c0n)h)∆ωn + dc1n|∆ωn|∆ωn

(1 + Cn)2
2XnXn−m]. (4.2)
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By the symmetry property of ∆ωn, then

E[
(bch + d + d(a + c0n)h)∆ωn + dc1n|∆ωn|∆ωn

(1 + Cn)2
2XnXn−m] = 0.

Noting that E[∆ωn] = 0, E[|∆ωn|] = 2√
2π

h1/2, E[(∆ωn)2] = h,E[|∆ωn|∆ωn] = 0, compute

E[
bh + b(a + c0n)h2 + bc1nh|∆ωn|+ dc(∆ωn)2

(1 + Cn)2
2XnXn−m]

≤ |bh + b(a + c0n)h2|E|2XnXn−m

(1 + Cn)2
|+ |bc1n|hE[

2XnXn−m

(1 + Cn)2
|∆ωn|]

+|dc|E[|2XnXn−m

(1 + Cn)2
(∆ωn)2|]

≤ C2|bh + b(a + c0n)h2|(EX2
n + EX2

n−m) + |bc1n|C2hE[2|XnXn−m|E(|∆ωn||Ftn
)]

+|dc|C2E(2|XnXn−m|E[(∆ωn)2|Ftn
])

≤ C2[|bh + b(a + c0n)h2|+ 2√
2π
|bc1n|h3/2 + |dc|h](EX2

n + EX2
n−m)

≤ 2C2[|bh + b(a + c0n)h2|+ 2√
2π
|bc1n|h3/2 + |dc|h]max{EX2

n, EX2
n−m}. (4.3)

Compute

E(1 + (a + c0n)h + c∆ωn + c1n|∆ωn|)2

= E[1 + (a + c0n)2h2 + c2(∆ωn)2 + c2
1n|∆ωn|2 + 2(a + c0n)h + 2c∆ωn + 2c1n|∆ωn|

+2(a + c0n)ch∆ωn + 2(a + c0n)c1nh|∆ωn|+ 2cc1n|∆ωn|∆ωn]

= 1 + (a + c0n)2h2 + c2h + c2
1nh + 2(a + c0n)h +

4√
2π

c1n

√
h +

4√
2π

(a + c0n)c1nh3/2

= 1 +
4√
2π

c1n

√
h + (c2 + c2

1n + 2(a + c0n))h +
4√
2π

(a + c0n)c1nh3/2 + (a + c0n)2h2

(4.4)

and
E(bh + d∆ωn)2 = b2h2 + d2h. (4.5)

Substituting for (4.3)–(4.5) into (4.2), the result is

EX2
n+1 ≤ C2[1 +

4√
2π

c1nh1/2 + (2a + 2c0n + (|d|+ |c|)2 + c2
1n)h

+
4√
2π

((a + c0n)c1n + |bc1n|)h3/2 + ((a + c0n)2 + b2)h2

+2|b||1 + (a + c0n)h|h]max{EX2
n, EX2

n−m}.

Let

P = C2[1 +
4√
2π

c1nh1/2 + (2a + 2c0n + (|d|+ |c|)2 + c2
1n)h

+
4√
2π

((a + c0n)c1n + |bc1n|)h3/2 + ((a + c0n)2 + b2)h2 + 2|b||1 + (a + c0n)h|h].
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By recursive calculation we conclude that E|Xn|2 → 0(n →∞) if P < 1. That is, if

C2[1 +
4√
2π

c1nh1/2 + (2a + 2c0n + (|d|+ |c|)2 + c2
1n)h

+
4√
2π

((a + c0n)c1n + |bc1n|)h3/2 + ((a + c0n)2 + b2)h2

+2|b||1 + (a + c0n)h|h] < 1, (4.6)

then method (3.1) is mean-square stable.
(i) If c0n = −a− |b|, c1n > 0, under condition (2.3), it is obvious that c0n > 0, a + c0n =

−|b| < 0, and 1 + (a + c0n)h > 0 for h < |b|−1, (4.6) reduces to

C2[1 +
4√
2π

c1nh1/2 + (2a + 2c0n + 2|b|+ (|d|+ |c|)2 + c2
1n)h

+
4√
2π

((a + c0n)c1n + |b||c1n|)h3/2 + (a + c0n + |b|)2h2]

= C2[1 +
4√
2π

c1nh1/2 + ((|d|+ |c|)2 + c2
1n)h]

≤ C2[1 + (
4√
2π

c1n + (|d|+ |c|)2 + c2
1n)h1/2]. (4.7)

It is obvious from the above that for h < min{h∗1, 1, |b|−1}

C2[1 + (
4√
2π

c1n + (|d|+ |c|)2 + c2
1n)h1/2] < 1,

which implies that (4.6) holds, therefore E|Xn|2 → 0.

(ii) If c1n < 0, a > |b| − c0n, then (a + c0n)c1n + |bc1n| = (a + c0n)c1n − |b|c1n < 0, and

C2[1 + (2a + 2c0n + (|d|+ |c|)2 + c2
1n + 2|b|)h + (|a + c0n|+ |b|)2h2] < 1, (4.8)

which implies (4.6) holds, therefore for h < min{1, h∗2}

C2[1 + (2a + 2c0n + (|d|+ |c|)2 + c2
1n + 2|b|+ (|a + c0n|+ |b|)2)h] < 1,

which implies (4.8) holds, E|Xn|2 → 0.

(iii) If c1n < 0, c0n < 0, then (a + c0n)c1n > 0, and condition (2.3) implies

2a + 2c0n + (|d|+ |c|)2 + 2|b| < 0,

therefore

P ≤ C2[1 + (2a + 2c0n + (|d|+ |c|)2 + 2|b|)h + c2
1nh

+2(|a + c0n||c1n|+ |bc1n|)h3/2 + (|a + c0n|+ |b|)2h2]

≤ C2[1 + c2
1nh + 2(|a + c0n||c1n|+ |bc1n|)h3/2 + (|a + c0n|+ |b|)2h2]

≤ C2[1 + [c2
1n + 2(|a + c0n|+ |b|)|c1n|+ (|a + c0n|+ |b|)2]h]

= C2[1 + (|a + c0n|+ |b|+ |c1n|)2h]. (4.9)
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If C2[1 + (|a + c0n|+ |b|+ |c1n|)2h] < 1, by (4.9), then P < 1, therefore for h < min{h∗3, 1},
then (4.9) holds which implies P < 1, so (4.6) holds and E|Xn|2 → 0.

(iv) If c1n = 0, c0n = 0, then K = 1, and (4.6) reduces to

(2a + (|d|+ |c|)2)h + (a2 + b2)h2 + 2|b||1 + ah|h < 1. (4.10)

If h < min{1, −(2a+2|b|+(|d|+|c|)2)
(|a|+|b|)2 }, then (4.10) holds. Or if

2a + 2|b|+ (|d|+ |c|)2) + (|a|+ |b|)2 < 0,

then (4.10) holds for h < 1.
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随机延迟微分方程的数值方法的收敛性和稳定性

程生敏1, 周少波2

(1. 郑州华信学院基础教学部, 河南新郑 451100)

(2. 华中科技大学数学与统计学院, 湖北武汉 430074)

摘要: 本文研究了随机延迟微分方程的平衡方法的收敛性和均方稳定性. 利用半鞅收敛定理, 给出了

真解的渐进稳定和均方稳定的一个更弱的条件. 平衡方法下随机延迟微分方程的真解的均方稳定性.
关键词: 平衡方法; 随机延迟微分方程; 收敛性; 均方稳定性; 渐进稳定性
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