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Abstract: In this article, we study a kind of sum powers of Chebyshef polynomials. By
using elementary method and the properties of the Chebyshef polynomials, several new identities
are obtained, which generalizes Melham’s conjecture on sums of odd powers of Lucas numbers.
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1 Introduction

In references [1] and [6], Zhang and Ma studied the properties of the Chebyshef polyno-
mials, and obtained some identities involving the Fibonacci numbers and the Lucas numbers.

The main results in [1] were the following two identities:

n

o m%(m) + 22N > k>!1(n i)
_ (2472)! li_o - k)2!l(€n++1k . 1)!U2k(x) (1.1)
and
n1 _ (2n4—7|: 1)! ; — k)!(rh — 1)!T2k+1(x)
_ (2n4—: 1)! kz; (n_k)i:ikw)!%k“(x)’ (1.2)

where T),(z) is the Chebyshef polynomials of the first kind, and U, (x) is the Chebyshef
polynomials of the second kind, defined respectively by

T.(z) = % [<m+ \/Oﬁ)n + (x - \/&ﬁ)n}

* Received date: 2012-03-12 Accepted date: 2012-06-20
Foundation item: Supported by Scientific Research Foundation of Shaanxi Provincial Education

Department(2013JK0561); Doctor Foundation of Xi’an Medical University (2012DOC14).
Biography: Pan Xiaowei(1982-), female, born at Xi’an, Shaanxi, lecture, major in analytic number

theory research.



442 Journal of Mathematics Vol. 34

and

0n(0) = 5y | (o4 ve=1) = (o= V=)™

On the other hand, in a private communication with Cooper, Melham suggested that

it would be interesting to discover an explicit expansion for
n
LiLy- - Lopmiq Z F;}:nﬂ

as a polynomial in Fy,,1, where F,, and L,, denote the Fibonacci number and Lucas number
respectively. Melham [5] also proposed following two conjectures:

Conjecture 1.1 Let m > 1 be a positive integer. Then the sum

n

LyLsLs -+ Lomsr Y Fop ™! (1.3)
k=1

can be expressed as (Fy,41 — 1)2 Py, 1 (Fopy1), where Po,,—1(2) is a polynomial of degree
2m — 1 with integer coefficients.

Conjecture 1.2 Let m > 0 be an integer. Then the sum

n

LyLsLs -+ Lomy1 » | Loyt (1.4)
k=1
can be expressed as (Lon+1 — 1) Qam (Lans1), where Qo () is a polynomial of degree 2m
with integer coefficients.
Wiemann and Cooper [2] obtained some divisibility properties in the study of some
conjectures of Melham related to the sum Y ;| F3," ™. Ozeki [3] proved that

1)7
bt = 35 ) (s~ o)

Prodinger [4] studied the more general summation >, _, For" "<, where 4, € € {0, 1}, and
obtained many interesting identities, two of which are:

n

_aany 2m—25+1
F2m+1 _ F2l+1 2m_+1 m J_Jrl
kz_; 2k+1 120: 2(n+1) Z L2m 23+1 J ) (m,],l) 2l + 1
and
n F . m—1 . m—r—1 . B 1 j _1)ym . 1
Sorr =T Y () () f + S e (e g)-
k=0 r=0 §=0 m—

For the sum of powers of Lucas numbers, Prodinger [4] also obtained similar conclusions:

e 2m+1-2 1
L2m+l — L2:L+l 2m+1 E_J-_F; + 4m
kzzg 2k ; 2n+1 jzo ( J ) ( J ) 2r+1 L2m+172j
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and
. - — o 2m 41— 2) (=)™
Lgln:-f—ll — LQT:1 2m+1 ;n ]—l—r
2m+1) 2 .
=0 L2'rn+1—2j

The main purpose of this paper is using the combination method to solve Conjecture
1.2 completely, and prove the following:
Theorem 1.3 Let m > 0 be an integer. Then the sum

LiLsLs - Loy Z Lyt

can be expressed as (Lont1 — 1) Qam (Lant1), where Qo () is a polynomial of degree 2m
with integer coefficients.

2 Several Lemmas

In this section, we shall give several simple lemmas which are necessary in the proof of
our theorem. First we have the following:
Lemma 2.1 For any nonnegative integers m and n, we have

n

2n _ (2n) i 2n U47"m+27"—1($) - U2r_1(.'L')
ZTQk ) ( ) + 4n Tz_; (n—r) U2r71(x)

and

n

m n on U4rm 1)-1\T
kz:_OTQk+1< r) = (m+1)4£2( )> +%Z(n4) U(Qil)(x)()

Proof First we give a simple proof for (1.1) and (1.2). In fact, for any positive integer

n and real number x # 0, by using the familiar binomial expansion

(s41) =S @ar.

r=0
we get
2n n
1 _ (2’”“)' 2n 2r 1
e d) e
and

1 2n+1 n 1
(x + m) = Z (i <x2r+1 + x27’+1> . (2.2)

r=0
From the properties of the Chebyshef polynomials we know that for any integer n,

B (4 (e t)) = (e ). )
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1 1
Now substituting 3 <J; + ) by y in (2.1) and (2.2), and combining (2.3) we may immedi-
x
ately deduce the identities

n
|

p = s 230 ()

r=1

and
n

1
T o Z (nt)) Torsa ().

r=0

This proves formulas (1.1) and (1.2).

1 k
Let z = (er v y? 71> be in (2.1) and (2.2), and hence — = (y— y2—1> ,
x
T.(T0(y)) = Trun(y). Then we have

n

T (y) = Af(”); + 42n Z(,f_",.) Tori(y) (2.4)
and .
T (y) = 4% (QZ r) Th2r4+1)(Y)- (2.5)

Now we prove Lemma 2.1. Let « = 2+ Va2 —1, 8 = z — v/22 — 1. Then from (2.4)
and note that o - § = 1 we may get

m

2!L (2”)' 2 2rL
3 tite) = 20 23 (20) 3 1t
2 ' - - 47’ 4r
: m4i<2?>z+ R ey
B (277,)' 1 n on O/L7‘(a47‘7rz o ) ﬂ4r(ﬂ4rm o 1)
- m4’n(n!>2 + 4n Z (nfr) ( ot — 1 + /i —1 )

r=1

(2”)' 1 n o alr + ﬂ4r + adrm Cy4r(7n+1) + ﬂ4'rm _ ﬁ4r(m+1) —9
m4"(n!)2 + 4n Z; ("_7’) 2 — qir — j3ir
. (271)' N i i ( o ) (a4rm+2r _ /B4rm+2r) (OLQT _ 527“) _ (a2r _ 527")2
n 1\2 n n—r r )2
4n(n!) 4 £ (a2 — 32r)
(277/)' 1 . 2n U4rm+2r71(x) - U27‘71(x)
e a2 () Uny1(2) ‘

r=1

This proves the first formula of Lemma 2.1. Similarly, we can deduce the second one.

Lemma 2.2 For any nonnegative integers m and n, we have

= 2n+1 _ 1 = (2n+1) U4mr 2r Zm( )_U2r(x)
ZTQ}@+ (3?) = 52 An + +U2r( )

k=1 r=0
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and

m n

E T2n+1 § : 2n+1 U4mr+4r+2m+1 ( )
2k+1 2 4n U .
k=0 r=0 2T( )

Proof From (2.5) we have
1
ZT;]?JFl(x) _ 47 2n+1 ZTZk(2r+1)

. 1 2k(2r+1 2k(2r+1
:Z T Zi( (2r+1) 4 gok(r+D)
k=
n 2n+:)< 2(2r+1 2m(2r+1) 1) ﬂ2(27‘+1)(62m(27‘+1)_1)>

a2(2r+1) -1 + 32@r+1) 1

n 2n+1

O[ (2m+1)(2r+1) _ 6(2m+1)(2r+1) _ a2r+1 + 62r+1
a2r+1 _ ﬂ27‘+1

1 - (27l+1) U4mr+2r+2m( ) U2T<J/‘>
2w Uar (2) |

r=0

where we have used the identity « - 8 = 1. This proves the first formula of Lemma 2.2.
Similarly, we can deduce the second formula of Lemma 2.2.

Lemma 2.3 For any positive integers m and n, we have

L —L
L2m+1 _ 2m+1\ Z(2n+1)(2k+1) 2k41
Z % ( m-k ) Lopt1

5 1 5
Proof Note that Ty <\2f> = §L2k and U,, <{> = Loy11, the Lucas number.

From the first formula of Lemma 2.2 we may immediately deduce that

n m

L — L
I2m+l 2m+1 (2n+1)(2k+1) 2k+1'
; 2r kz_o ( m—k ) L2k+1

This proves Lemma 2.3.

3 Proof of Theorem

Now we use Lemma 2.3 to prove Theorem 1.3. For any integer k > 0, applying mathe-
matical induction we can prove that Lo, 1 — 1 divide L(2n41)@2r+1) — Lox4+1. In fact note that
Ly =1, 50 (Lans1) — 1) | (Lnt1)@rt1) — Loks1) holds for k = 0. If k = 1, then note that
L3, .1 = Ls@nt1) — 3Lap+1 (This identity can be deduced directly from the Binet formula)
and L3 = 4, we have

Lyont1) — Ly = L3, 1 +3Lony1 — 4 = (Lapi1 — 1) (LinH + Lopi1 + 4) :
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So that (L(2n+1) - 1) divide (L3(2n+1) - Lg). Suppose that

(Len+t — 1) | (Lensy@rtt) — Loakt1)

for all integers k < m. Then for kK = m + 1, note that

Lognyy Lentny@m+1) = Lenrn@mes) + Lentr@m—1)s

we have

Lany1y@emes) — Lamas = La@ni1) Lnty@ms1) — Lenty@em-1) — Lamas
= (L§n+1 + 2) Lony1y@msr) — (L(2n+1)(2m—1) - L2m—1) —3Loym — 3Lom—1
= (L3ns1 = 1) Lentnemtn +3 (Lentyemi) — Lomi)
— (L(2n+1)(2m—1) — L2m—1) . (3.1)

Now our conclusion follows from (3.1) and the inductive hypothesis.
On the other hand, note that

Loninemss)y = LeeninLleninemsy) — Lensnemn-1)

= (L§n+1 + 2) Lignt1y2m+1) — Lnt1)@m—1), (3.2)

so by mathematical induction we can also prove that

L(2n+1)(2m+1) - L2m+1 = f2m+l (L2n+1) 5

where fa,,11(2) is a polynomial of degree 2m + 1 with integer coefficients. In fact if m = 0,
then Liont1y@m+1) — Lem+1 = Ln+1) — L1 = fi (Lany1), where fi(x) is a polynomial of
degree 1 with integer coefficients. Suppose that L(an1)2k41) — Lok+1 = fort1 (Lany1) for all
integers k < m. Then for k = m + 1, note that (3.2), we have

L(2n+1)(2m+3) - L2m+3 = (L§7z+1 + 2)L(2n+1)(2m+1) - L2m+3 - L(2n+1)(2m—1)
= (L§n+1 + 2) (f2m+1 (L2n+1) + L2m+1) - L2m+3 - L(2n+1)(2m71) = f2m+3(L2n+1)7

where fo,13(z) is a polynomial of degree 2m + 3 with integer coefficients. This proves
L(2n+1)(2m+1) — L2m+1 = f2'm+1 (L2n+1) for all integers m Z 0.

Combining Lemma 23, (L2n+1 - 1) divide (L(2n+1)(2k:+1) - L2k+1) = f2k+1 (L2n+1) and
(Lapy1 — 1, Loyyq) = 1, we may immediately deduce that

n

LyLsLs - Loy Y L3

k=1
- Lant1y@2k+1) — Lok
— L,Lsls--- Loy, E 2m+1) ~(2nt
1L3ls 2m+1 (k_o ( mek ) [

= (Lan+1 — 1) Qam (Lonyt1)

where Qa,,(x) is a polynomial of degree 2m with integer coefficients. This completes the

proof of our theorem.
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