
Vol. 34 ( 2014 )
No. 3

数 学 杂 志
J. of Math. (PRC)

SOME IDENTITIES RELATED TO CHEBYSHEF

POLYNOMIALS AND THEIR APPLICATIONS

PAN Xiao-wei
(Department of Common Course, Xi’an Medical University, Xi’an 710021, China)

(Department of Mathematics, Northwest University, Xi’an 710069, China)

Abstract: In this article, we study a kind of sum powers of Chebyshef polynomials. By

using elementary method and the properties of the Chebyshef polynomials, several new identities

are obtained, which generalizes Melham’s conjecture on sums of odd powers of Lucas numbers.

Keywords: Chebyshef polynomials; Fibonacci numbers; Lucas numbers; identity; Melham’s

conjectures

2010 MR Subject Classification: 11B39

Document code: A Article ID: 0255-7797(2014)03-0441-07

1 Introduction

In references [1] and [6], Zhang and Ma studied the properties of the Chebyshef polyno-
mials, and obtained some identities involving the Fibonacci numbers and the Lucas numbers.
The main results in [1] were the following two identities:
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where Tn(x) is the Chebyshef polynomials of the first kind, and Un(x) is the Chebyshef
polynomials of the second kind, defined respectively by
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and
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On the other hand, in a private communication with Cooper, Melham suggested that
it would be interesting to discover an explicit expansion for

L1L2 · · ·L2m+1

n∑
k=1

F 2m+1
2k

as a polynomial in F2n+1, where Fn and Ln denote the Fibonacci number and Lucas number
respectively. Melham [5] also proposed following two conjectures:

Conjecture 1.1 Let m ≥ 1 be a positive integer. Then the sum

L1L3L5 · · ·L2m+1

n∑
k=1

F 2m+1
2k (1.3)

can be expressed as (F2n+1 − 1)2 P2m−1 (F2n+1), where P2m−1(x) is a polynomial of degree
2m− 1 with integer coefficients.

Conjecture 1.2 Let m ≥ 0 be an integer. Then the sum

L1L3L5 · · ·L2m+1

n∑
k=1

L2m+1
2k (1.4)

can be expressed as (L2n+1 − 1) Q2m (L2n+1), where Q2m(x) is a polynomial of degree 2m
with integer coefficients.

Wiemann and Cooper [2] obtained some divisibility properties in the study of some
conjectures of Melham related to the sum

∑n

k=1 F 2m+1
2k . Ozeki [3] proved that
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)
.

Prodinger [4] studied the more general summation
∑n

k=0 F 2m+1+ε
2k+δ , where δ, ε ∈ {0, 1}, and

obtained many interesting identities, two of which are:
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For the sum of powers of Lucas numbers, Prodinger [4] also obtained similar conclusions:
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and
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.

The main purpose of this paper is using the combination method to solve Conjecture
1.2 completely, and prove the following:

Theorem 1.3 Let m ≥ 0 be an integer. Then the sum

L1L3L5 · · ·L2m+1

n∑
k=1

L2m+1
2k

can be expressed as (L2n+1 − 1) Q2m (L2n+1), where Q2m(x) is a polynomial of degree 2m
with integer coefficients.

2 Several Lemmas

In this section, we shall give several simple lemmas which are necessary in the proof of
our theorem. First we have the following:

Lemma 2.1 For any nonnegative integers m and n, we have
m∑

k=1

T 2n
2k (x) = m

(2n)!
4n(n!)2

+
1
4n
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(
2n

n−r
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.

Proof First we give a simple proof for (1.1) and (1.2). In fact, for any positive integer
n and real number x 6= 0, by using the familiar binomial expansion

(
x +

1
x

)n

=
n∑

r=0

(n
r ) xn−2r,

we get (
x +

1
x

)2n

=
(2n)!
(n!)2
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(
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)(
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)
(2.1)

and (
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1
x

)2n+1

=
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r=0

(
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)(
x2r+1 +

1
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)
. (2.2)

From the properties of the Chebyshef polynomials we know that for any integer n,

Tn

(
1
2

(
x +

1
x

))
=

1
2

(
xn +

1
xn

)
. (2.3)
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Now substituting
1
2

(
x +

1
x

)
by y in (2.1) and (2.2), and combining (2.3) we may immedi-

ately deduce the identities

y2n =
(2n)!

4n(n!)2
T0(y) +

2
4n

n∑
r=1

(
2n

n−r

)
T2r(y)

and

y2n+1 =
1
4n
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r=0

(
2n+1
n−r

)
T2r+1(y).

This proves formulas (1.1) and (1.2).

Let x =
(
y +

√
y2 − 1

)k

be in (2.1) and (2.2), and hence
1
x

=
(
y −

√
y2 − 1

)k

,
Tn(Tm(y)) = Tmn(y). Then we have

T 2n
k (y) =

(2n)!
4n(n!)2

+
2
4n
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(
2n

n−r

)
T2rk(y) (2.4)

and

T 2n+1
k (y) =

1
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(
2n+1
n−r

)
Tk(2r+1)(y). (2.5)

Now we prove Lemma 2.1. Let α = x +
√

x2 − 1, β = x − √x2 − 1. Then from (2.4)
and note that α · β = 1 we may get
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)
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(2n)!

4n(n!)2
+

1
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.

This proves the first formula of Lemma 2.1. Similarly, we can deduce the second one.
Lemma 2.2 For any nonnegative integers m and n, we have

m∑
k=1

T 2n+1
2k (x) =

1
2

n∑
r=0

(
2n+1
n−r

)

4n

U4mr+2r+2m(x)− U2r(x)
U2r(x)
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and

m∑
k=0

T 2n+1
2k+1 (x) =

1
2 · 4n

n∑
r=0

(
2n+1
n−r

) U4mr+4r+2m+1(x)
U2r(x)

.

Proof From (2.5) we have

m∑
k=1

T 2n+1
2k (x) =

1
4n

n∑
r=0

(
2n+1
n−r

) m∑
k=1

T2k(2r+1)(x)

=
n∑

r=0

(
2n+1
n−r

)

4n

m∑
k=1

1
2

(
α2k(2r+1) + β2k(2r+1)

)

=
1
2

n∑
r=0

(
2n+1
n−r

)

4n

(
α2(2r+1)(α2m(2r+1) − 1)

α2(2r+1) − 1
+
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)

=
1
2

n∑
r=0

(
2n+1
n−r

)

4n

(
α(2m+1)(2r+1) − β(2m+1)(2r+1) − α2r+1 + β2r+1
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)

=
1
2

n∑
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(
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)
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U2r(x)

,

where we have used the identity α · β = 1. This proves the first formula of Lemma 2.2.
Similarly, we can deduce the second formula of Lemma 2.2.

Lemma 2.3 For any positive integers m and n, we have

n∑
r=1

L2m+1
2r =

m∑
k=0

(
2m+1
m−k

) L(2n+1)(2k+1) − L2k+1

L2k+1

.

Proof Note that T2k

(√
5

2

)
=

1
2
L2k and U2r

(√
5

2

)
= L2r+1, the Lucas number.

From the first formula of Lemma 2.2 we may immediately deduce that

n∑
r=1

L2m+1
2r =

m∑
k=0

(
2m+1
m−k

) L(2n+1)(2k+1) − L2k+1

L2k+1

.

This proves Lemma 2.3.

3 Proof of Theorem

Now we use Lemma 2.3 to prove Theorem 1.3. For any integer k ≥ 0, applying mathe-
matical induction we can prove that L2n+1−1 divide L(2n+1)(2k+1)−L2k+1. In fact note that
L1 = 1, so

(
L(2n+1) − 1

) | (L(2n+1)(2k+1) − L2k+1

)
holds for k = 0. If k = 1, then note that

L3
2n+1 = L3(2n+1) − 3L2n+1 (This identity can be deduced directly from the Binet formula)

and L3 = 4, we have

L3(2n+1) − L3 = L3
2n+1 + 3L2n+1 − 4 = (L2n+1 − 1)

(
L2

2n+1 + L2n+1 + 4
)
.
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So that
(
L(2n+1) − 1

)
divide

(
L3(2n+1) − L3

)
. Suppose that

(
L(2n+1) − 1

) | (L(2n+1)(2k+1) − L2k+1

)

for all integers k ≤ m. Then for k = m + 1, note that

L2(2n+1)L(2n+1)(2m+1) = L(2n+1)(2m+3) + L(2n+1)(2m−1),

we have

L(2n+1)(2m+3) − L2m+3 = L2(2n+1)L(2n+1)(2m+1) − L(2n+1)(2m−1) − L2m+3

=
(
L2

2n+1 + 2
)
L(2n+1)(2m+1) −

(
L(2n+1)(2m−1) − L2m−1

)− 3L2m − 3L2m−1

=
(
L2

2n+1 − 1
)
L(2n+1)(2m+1) + 3

(
L(2n+1)(2m+1) − L2m+1

)

− (
L(2n+1)(2m−1) − L2m−1

)
. (3.1)

Now our conclusion follows from (3.1) and the inductive hypothesis.
On the other hand, note that

L(2n+1)(2m+3) = L2(2n+1)L(2n+1)(2m+1) − L(2n+1)(2m−1)

= (L2
2n+1 + 2)L(2n+1)(2m+1) − L(2n+1)(2m−1), (3.2)

so by mathematical induction we can also prove that

L(2n+1)(2m+1) − L2m+1 = f2m+1 (L2n+1) ,

where f2m+1(x) is a polynomial of degree 2m + 1 with integer coefficients. In fact if m = 0,
then L(2n+1)(2m+1) − L2m+1 = L(2n+1) − L1 = f1 (L2n+1), where f1(x) is a polynomial of
degree 1 with integer coefficients. Suppose that L(2n+1)(2k+1)−L2k+1 = f2k+1 (L2n+1) for all
integers k ≤ m. Then for k = m + 1, note that (3.2), we have

L(2n+1)(2m+3) − L2m+3 = (L2
2n+1 + 2)L(2n+1)(2m+1) − L2m+3 − L(2n+1)(2m−1)

= (L2
2n+1 + 2) (f2m+1(L2n+1) + L2m+1)− L2m+3 − L(2n+1)(2m−1) = f2m+3(L2n+1),

where f2m+3(x) is a polynomial of degree 2m + 3 with integer coefficients. This proves
L(2n+1)(2m+1) − L2m+1 = f2m+1 (L2n+1) for all integers m ≥ 0.

Combining Lemma 2.3, (L2n+1 − 1) divide
(
L(2n+1)(2k+1) − L2k+1

)
= f2k+1 (L2n+1) and

(L2n+1 − 1, L2n+1) = 1, we may immediately deduce that

L1L3L5 · · ·L2m+1

n∑
k=1

L2m+1
2k

= L1L3L5 · · ·L2m+1

(
m∑

k=0

(
2m+1
m−k

) L(2n+1)(2k+1) − L2k+1

L2k+1

)

= (L2n+1 − 1) Q2m (L2n+1) ,

where Q2m(x) is a polynomial of degree 2m with integer coefficients. This completes the
proof of our theorem.
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一些关于Chebyshef多项式以及它们应用的恒等式

潘晓玮

(西安医学院公共课部, 陕西西安 710021)

(西北大学数学系, 陕西西安 710069)

摘要: 本文研究了Chebyshef 多项式的一类幂和问题. 利用初等方法以及Chebyshef 多项式的性质,

获得了一些有趣的恒等式, 推广了Melham关于Lucas数的奇数次幂和的猜想.
关键词: Chebyshef 多项式; Fibonacci 数; Lucas 数; 恒等式; Melham 猜想
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