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1 Introduction

Recently, a lot of papers were published on the issue of the ruin probability, we refer
the reader to [1–6] for more details. We say that a random variable ξ (or its distribution
function F ) is heavy-tailed if it has no finite exponential moments. In ruin probability
theory, heavy-tailed distributions are often used to model large claims. They play a key role
in some fields such as insurance, financial mathematics and queueing theory. In this paper,
we use an important subclass of heavy-tailed distribution, which is called C. A distribution
function F belongs to C if

lim
y↓1

lim inf
x→∞

F̄ (xy)
F̄ (x)

= 1 or, equivalently, lim
y↑1

lim sup
x→∞

F̄ (xy)
F̄ (x)

= 1.

Set

γ(y) := lim inf
x→∞

F̄ (xy)
F̄ (x)

and γF := inf
{− log γ(y)

log y
: y > 1

}
.

In [7], γF is called the upper Matuszewska index of the nonnegative and nondecreasing
function f(x) = (F̄ (x))−1, x > 0. Without any danger of confusion, we simply call γF the
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upper Matuszewska index of the distribution F . See Chapter 2.1 of [7] and [8] for more
details of the Matuszewska index.

The ruin probability in a discrete-time unit-risk model was investigated in [9–11] among
other. In these papers, they always assumed that the company provides only one kind of
insurance contract. In reality this assumption is not correct, for example, an unexpected
claim even might induce more than one type of claim in an umbrella insurance policy. A
typical example is motor insurance where an accident could cause claims for vehicle damages
and the third party injuries. So the ruin probability of multi-risk models is more valuable.
In present paper, we consider a discrete-time multi-risk model with a random interest rate
and assume that the insurance company has k classes of insurance contract. Other basic
assumptions of this model are as follows:

A1 For s = 1, 2, · · · , k, the sth type related net incomes ξsi, i = 1, 2, · · · , n, constitute
a sequence of dependent random variables with common distribution Fs concentrated on
(−∞,+∞), where the net incomes ξsi, called the insurance risk, is understood as the total
incoming premium minus the total claim amount within year n. And {ξsi, i = 1, 2, · · · , n}
satisfy the assumption condition: ∃ x0 > 0 and c > 0 such that

P (|ξsi| > xi|ξsj = xj with j ∈ J) ≤ cP (ξsi > xi)

for all 1 ≤ i ≤ n, ∅ 6= J ⊂ {1, 2, · · · , n}\{i}, xi > x0, and xj > x0 with j ∈ J . Remark that
this condition is assumption B of [1], we denote this assumption condition by assumption A

which will be used in Proposition 2.1.
A2 For j = 1, 2, · · · , n, ηj , called the financial risk, is the discount factor from year j to

year j−1. They constitute a sequence of independent identical distributed random variables,
satisfy that there exist some constants a < a ≤ b < ∞ such that P (a ≤ ηi ≤ b) = 1 for all
1 ≤ i ≤ n.

A3 {ξsi, i = 1, 2, · · · , n}k
s=1 and {ηj , j = 1, 2, · · · , n} are mutually independent.

Let the initial capital of the insurance company be x ≥ 0. We tacitly assume that the sth
type related net incomes ξsi is calculated at the beginning of year i, and the discounted value
of the surplus of the company accumulated till the beginning of year m can be characterized
by Ssm, m = 1, 2, · · · , which satisfy the recurrence equation below:

Ss0 = x, Ssm = x−
m∑

i=1

ξsi

i−1∏
j=1

Yj .

Hence the ruin probability in the considered multi-risk model with initial capital x ≥ 0 is

defined by ϕk(x, n) = P
(

max
1≤m≤n

k∑
s=1

m∑
i=1

ξsi

∏i−1

j=1 ηj

)
.

2 Main Result

In this section, several propositions used in Section 3 are provided, and our main result
is presented.
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Proposition 2.1 Suppose that {ξi, 1 ≤ i ≤ n} are n real-valued random variables
with Fi ∈ C for all 1 ≤ i ≤ n, and Fi ∗Fj ∈ C for all 1 ≤ i 6= j ≤ n, and satisfy that ∃ x0 > 0
and c > 0 such that

P (|ξi| > xi|ξj = xj with j ∈ J) ≤ cP (ξi > xi)

for all 1 ≤ i ≤ n, ∅ 6= J ⊂ {1, 2, · · · , n}\{i}, xi > x0, and xj > x0 with j ∈ J . If there exist
some constants 0 < a ≤ b < ∞ such that P (a ≤ ηi ≤ b) = 1 for all 1 ≤ i ≤ n, then the
following relation

P
(

max
1≤m≤n

m∑
k=1

ξk

k∏
j=1

ηj > x
)
∼ P

( n∑
k=1

ξk

k∏
j=1

ηj > x
)
∼

n∑
k=1

P
(
ξk

k∏
j=1

ηj > x
)
,

as x →∞. Here Fi ∗ Fj ∈ C denotes the convolution of distribution Fi and Fj .
This proposition is the conclusion of Theorem 2 of [1] when distribution function belongs

to C, and plays a key role in the proof of our result. Repeated using Corollary 2.5 of [8], we
can get the following proposition.

Proposition 2.2 If ξ ∈ C, there exist some constants 0 < a ≤ b < ∞ such that
P (a ≤ ηi ≤ b) = 1 for all 1 ≤ i ≤ k, then ξ

∏k

i=1 ηk ∈ C.
From Theorem 3.3 of [8], we can obtain Proposition 2.3, that is
Proposition 2.3 If ξ ∈ C, Eηp < ∞ for some p > γF , and ξ and η are mutually

independent, then P (ξη > x) ³ P (ξ > x).
The following exhibits one such situation in a discrete-time multi-risk model and is the

main result of this paper.
Theorem 2.1 Suppose that assumptions A1–A3 hold, and Fs ∈ C and γFs

> 0 for
1 ≤ s ≤ k. If there exists some positive constant p > max

1≤s≤k
γFs

such that Eηp
i < ∞ for all

1 ≤ i ≤ n, then

ϕk(x, n) ∼
k∑

s=1

n∑
i=1

P
(
ξsi

i−1∏
j=1

ηj > x
)

as x →∞ (2.1)

holds for any n ≥ 1.

3 Proof

For notational convenience, throughout this section, all limit relations are for x → ∞
unless stated otherwise. In order to prove Theorem 2.1, we need to divide the proof into the
following two theorems.

Theorem 3.1 Under the conditions of Theorem 2.1, we have

ϕk(x, n) .
k∑

s=1

n∑
i=1

P
(
ξsi

i−1∏
j=1

ηj > x
)
. (3.1)

Proof We give the proof of Theorem 3.1 by induction approach. It is trivial that
relation (3.1) holds for k = 1 from Proposition 2.1. When k = 2, for any fixed 0 < ε < 1

2
,
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we have

ϕ2(x, n) = P
(

max
1≤m≤n

2∑
s=1

m∑
i=1

ξsi

i−1∏
j=1

ηj > x
)

≤ P
(

max
1≤m≤n

m∑
i=1

ξ1i

i−1∏
j=1

ηj + max
1≤m≤n

m∑
i=1

ξ2i

i−1∏
j=1

ηj > x
)

≤ P
({

max
1≤m≤n

m∑
i=1

ξ1i

i−1∏
j=1

ηj > (1− ε)x
}⋃{

max
1≤m≤n

m∑
i=1

ξ2i

i−1∏
j=1

ηj > (1− ε)x
}

⋃{
max

1≤m≤n

m∑
i=1

ξ1i

i−1∏
j=1

ηj > εx, max
1≤m≤n

m∑
i=1

ξ2i

i−1∏
j=1

ηj > εx
})

≤ P
(

max
1≤m≤n

m∑
i=1

ξ1i

i−1∏
j=1

ηj > (1− ε)x
)

+ P
(

max
1≤m≤n

m∑
i=1

ξ2i

i−1∏
j=1

ηj > (1− ε)x
)

+P
(

max
1≤m≤n

m∑
i=1

ξ1i

i−1∏
j=1

ηj > εx, max
1≤m≤n

m∑
i=1

ξ2i

i−1∏
j=1

ηj > εx
)

= P1 + P2 − P3. (3.2)

First, we deal with P1. By Proposition 2.1 and Proposition 2.2, for any 0 < δ < 1, we
have

P1 ≤ (1 + δ)
n∑

i=1

P
(
ξ1i

i−1∏
j=1

ηj > (1− ε)x
)
≤ (1 + δ)2

n∑
i=1

P
(
ξ1i

i−1∏
j=1

ηj > x
)
. (3.3)

Similarly to the proof of relation (3.3), we have

P2 ≤ (1 + δ)2
n∑

i=1

P
(
ξ2i

i−1∏
j=1

ηj > x
)
. (3.4)

Now we deal with P3. For any 0 < δ < 1 and any fixed 0 < ε < 1
2
,

P
(

max
1≤m≤n

m∑
i=1

ξ1i

i−1∏
j=1

ηj > εx | ηj , 1 ≤ j ≤ n
)

≤ P
( n∑

i=1

ξ+
1i

i−1∏
j=1

ηj > εx | ηj , 1 ≤ j ≤ n
)
≤ P

( n∑
i=1

ξ+
1ib

i−1 > εx
)

≤
n∑

i=1

P
(
ξ+
1ib

i−1 >
εx

n

)
=

n∑
i=1

P
(
ξ1ib

i−1 >
εx

n

)
≤ nδ, (3.5)

where the last step is obtained by lim
x→∞

P
(
ξ1ib

i−1 > εx
n

)
= 0 for 1 ≤ i ≤ n. Since ξ2i

i−1∏
j=1

∈ C
for 1 ≤ i ≤ n, there exists some M1 > 0, for any fixed 0 < ε < 1

2
such that

P
(
ξ2i

i−1∏
j=1

> εx
)
≤ M1P

(
ξ2i

i−1∏
j=1

> x
)
. (3.6)
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So, from relation (3.5), Proposition 2.1 and relation (3.6), we get

P3

2∑
s=1

n∑
i=1

P
(
ξsi

∏i−1
j=1 ηj > x

)

=

E
[ 2∏

s=1

P
(

max
1≤m≤n

m∑
i=1

ξsi

i−1∏
j=1

ηj > εx | ηj , 1 ≤ j ≤ n
)]

2∑
s=1

n∑
i=1

P
(
ξsi

∏i−1
j=1 ηj > x

)

=

E
{

P
(

max
1≤m≤n

m∑
i=1

ξ1i

i−1∏
j=1

ηj > εx | ηj , 1 ≤ j ≤ n
)
E

[
P

(
max

1≤m≤n

m∑
i=1

ξ2i

i−1∏
j=1

ηj > εx | ηj , 1 ≤ j ≤ n
)]}

2∑
s=1

n∑
i=1

P
(
ξsi

∏i−1
j=1 ηj > x

)

≤ nδ ·
P

(
max

1≤m≤n

m∑
i=1

ξ2i

i−1∏
j=1

ηj > εx
)

n∑
i=1

P
(
ξ2i

∏i−1
j=1 ηj > x

)

≤ nδ(1 + δ)M1. (3.7)

Combining relation (3.3), (3.4) and (3.7) to relation (3.2), by the arbitrariness of 0 < δ < 1,
relation (3.1) holds for k = 2.

Next suppose that relation (3.1) holds for k− 1, we want to prove it right for k. By the
similar method from relation (3.2) to (3.7), for any fixed 0 < ε < 1

2
and any 0 < δ < 1,

ϕk(x, n) = P
(

max
1≤m≤n

k∑
s=1

m∑
i=1

ξsi

i−1∏
j=1

ηj > x
)

≤ P
({

max
1≤m≤n

k−1∑
s=1

m∑
i=1

ξsi

i−1∏
j=1

ηj > (1− ε)x
}⋃{

max
1≤m≤n

m∑
i=1

ξki

i−1∏
j=1

ηj > (1− ε)x
}

⋃{
max

1≤m≤n

k−1∑
s=1

m∑
i=1

ξ1i

i−1∏
j=1

ηj > εx, max
1≤m≤n

m∑
i=1

ξki

i−1∏
j=1

ηj > εx
})

≤ P
(

max
1≤m≤n

k−1∑
s=1

m∑
i=1

ξsi

i−1∏
j=1

ηj > (1− ε)x
)

+ P
(

max
1≤m≤n

m∑
i=1

ξki

i−1∏
j=1

ηj > (1− ε)x
)

+P
(

max
1≤m≤n

k−1∑
s=1

m∑
i=1

ξsi

i−1∏
j=1

ηj > εx, max
1≤m≤n

m∑
i=1

ξki

i−1∏
j=1

ηj > εx
)

≤ (1 + δ)2
k−1∑
s=1

n∑
i=1

P
(
ξsi

i−1∏
j=1

ηj > x
)

+ (1 + δ)2
n∑

i=1

P
(
ξki

i−1∏
j=1

ηj > x
)

+nδ(1 + δ)M1

k∑
s=1

n∑
i=1

P
(
ξsi

i−1∏
j=1

ηj > x
)
.

The arbitrariness of 0 < δ < 1 gives result (3.1). This ends the proof of Theorem 3.1.
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Theorem 3.2 Under the conditions of Theorem 2.1, we have

ϕk(x, n) &
k∑

s=1

n∑
i=1

P
(
ξsi

i−1∏
j=1

ηj > x
)
. (3.8)

Proof We prove relation (3.8) by induction in k. For the case of k = 1, relation (3.8)
holds from Proposition 2.1. From Theorem 3.1, it suffices to prove that relation (3.8) holds
for k = 2.

When k = 2, for any fixed 0 < ε < 1 and x > 0, we have

ϕ2(x, n) = P
(

max
1≤m≤n

2∑
s=1

m∑
i=1

ξsi

i−1∏
j=1

ηj > x
)

≥ P
( 2∑

s=1

n∑
i=1

ξsi

i−1∏
j=1

ηj > x
)

≥ P
({ n∑

i=1

ξ1i

i−1∏
j=1

ηj > (1 + ε)x,

n∑
i=1

ξ2i

i−1∏
j=1

ηj > −εx
}

⋃{ n∑
i=1

ξ1i

i−1∏
j=1

ηj > −εx,

n∑
i=1

ξ2i

i−1∏
j=1

ηj > (1 + ε)x
})

= P
( n∑

i=1

ξ1i

i−1∏
j=1

ηj > (1 + ε)x,

n∑
i=1

ξ2i

i−1∏
j=1

ηj > −εx
)

+P
( n∑

i=1

ξ1i

i−1∏
j=1

ηj > −εx,

n∑
i=1

ξ2i

i−1∏
j=1

ηj > (1 + ε)x
)

−P
( n∑

i=1

ξ1i

i−1∏
j=1

ηj > (1 + ε)x,

n∑
i=1

ξ2i

i−1∏
j=1

ηj > (1 + ε)x
)

= Q1 + Q2 −Q3. (3.9)

For Q1, we have

Q1 ≥ P
( n∑

i=1

ξ1i

i−1∏
j=1

ηj > (1 + ε)x,

n⋂
i=1

{
ξ2i

i−1∏
j=1

ηj >
−εx

n

})

= E
[
P

( n∑
i=1

ξ1i

i−1∏
j=1

ηj > (1 + ε)x,

n⋂
i=1

{
ξ2i

i−1∏
j=1

ηj >
−εx

n

}
| ηj , 1 ≤ j ≤ n

)]

= E
[
P

( n∑
i=1

ξ1i

i−1∏
j=1

ηj > (1 + ε)x | ηj , 1 ≤ j ≤ n
) n∏

i=1

P
(
ξ2i

i−1∏
j=1

ηj >
−εx

n
| ηj , 1 ≤ j ≤ n

)]
.



278 Journal of Mathematics Vol. 34

For 1 ≤ j ≤ n, in view of ηj ∈ [a, b], for any fixed 0 < ε < 1, we have

P
(
ξ2i

i−1∏
j=1

ηj >
−εx

n
| ηj , 1 ≤ j ≤ n

)

= P
(
ξ2i

i−1∏
j=1

ηj >
−εx

n
, ξ2i ≥ 0 | ηj , 1 ≤ j ≤ n

)
+ P

(
ξ2i

i−1∏
j=1

ηj >
−εx

n
, ξ2i < 0 | ηj , 1 ≤ j ≤ n

)

≥ P
(
ξ2ia

i−1 >
−εx

n
, ξ2i ≥ 0

)
+ P

(
ξ2ib

i−1 >
−εx

n
, ξ2i < 0

)

= P
(
ξ2i >

−εx

nbi−1

)
. (3.10)

Since lim
x→∞

P
(
ξ2i > −εx

n

)
= 1 for 1 ≤ i ≤ n, then for any small 0 < δ < 1 and any fixed

0 < ε < 1, we have

P
(
ξ2i >

−εx

nbi−1

)
> 1− δ. (3.11)

Thus, combing relation (3.10), relation (3.11), Proposition 2.1 and Proposition 2.2, for any
small 0 < δ < 1 and any fixed 0 < ε < 1,

Q1 ≥ (1− δ)nP
( n∑

i=1

ξ1i

i−1∏
j=1

ηj > (1 + ε)x
)

≥ (1− δ)n+1

n∑
i=1

P
(
ξ1i

i−1∏
j=1

ηj > (1 + ε)x
)

≥ (1− δ)n+2

n∑
i=1

P
(
ξ1i

i−1∏
j=1

ηj > x
)
. (3.12)

Symmetrically,

Q2 ≥ (1− δ)n+2

n∑
i=1

P
(
ξ2i

i−1∏
j=1

ηj > x
)
. (3.13)

Next we turn to Q3. In view of ξ1i ∈ C, and ηj is bounded for 1 ≤ i ≤ n, by Proposition 2.3,
there is some M2 > 0 such that

P
(
ξ2i

i−1∏
j=1

ηj > x
)
≥ M2P (ξ2i > x).

Thus, we have

n∑
i=1

P
(
ξ2i

i−1∏
j=1

ηj > x
)
≥ nM2P (ξ21 > x). (3.14)

Because of ξ2i ∈ C for 1 ≤ i ≤ n, there exists some M3 > 0 such that

P (ξ2ib >
(1 + ε)x

n
) ≤ M3P (ξ2ib > x). (3.15)
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So, by relation (3.14) and (3.15), we have

P
( n∑

i=1

ξ2i

i−1∏
j=1

ηj > (1 + ε)x | ηj , 1 ≤ j ≤ n
)

n∑
i=1

P
(
ξ2i

i−1∏
j=1

ηj > x
)

≤
P

( n∑
i=1

ξ2i

i−1∏
j=1

ηj > (1 + ε)x | ηj , 1 ≤ j ≤ n
)

nM2P (ξ21 > x)

≤
P

( n∑
i=1

ξ+
2i

i−1∏
j=1

ηj > (1 + ε)x | ηj , 1 ≤ j ≤ n
)

nM2P (ξ21 > x)

≤
P

( n∑
i=1

ξ+
2ib

i−1 > (1 + ε)x
)

nM2P (ξ21 > x)

≤
n∑

i=1

P
(
ξ2ib

i−1 > (1+ε)x
n

)

nM2P (ξ21 > x)

≤ M3

M2

(3.16)

Then, using Fatou’s lemma, and relation (3.16), we obtain

lim sup
x→∞

Q3∑2

s=1

∑n

i=1 P
(
ξsi

∏i−1

j=1 ηj > x
)

≤ lim sup
x→∞

E
{ 2∏

s=1

P
( n∑

i=1

ξsi

i−1∏
j=1

ηj > (1 + ε)x | ηj , 1 ≤ j ≤ n
)}

n∑
i=1

P
(
ξ2i

∏i−1

j=1 ηj > x
)

≤ E
{

lim sup
x→∞

2∏
s=1

P
( n∑

i=1

ξsi

i−1∏
j=1

ηj > (1 + ε)x | ηj , 1 ≤ j ≤ n
)

n∑
i=1

P
(
ξ2i

∏i−1

j=1 ηj > x
)

}

≤ (1 + δ)
M3

M2

E
{

lim sup
x→∞

P
( n∑

i=1

ξ1i

i−1∏
j=1

ηj > (1 + ε)x | ηj , 1 ≤ j ≤ n
)}

= 0, (3.17)

where in the fourth equality, we use the following true

lim sup
x→∞

P
(
ξ1i

i−1∏
j=1

ηj > (1 + ε)x | ηj , 1 ≤ j ≤ n
)
≤ lim sup

x→∞
P

(
ξ1ib

i−1 > (1 + ε)x
)

= 0.
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Combing relation (3.12), relation (3.13) and relation (3.17), the arbitrariness of 0 < δ < 1
gives result (3.8) for k = 2. So Theorem 3.2 holds.

From Theorem 3.1 and Theorem 3.2, we know that Theorem 2.1 holds.
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离散时多元风险模型的破产概率

华志强1 ,杨少华2

(1.内蒙古民族大学数学学院,内蒙古通辽 028043)

(2.阜阳师范学院数学与计算科学学院,安徽阜阳 236037)

摘要: 本文研究了离散时多元风险模型的破产概率问题. 利用经典大偏差的方法, 获得了有限水平的

破产概率, 推广了离散时一元风险模型的相应结论.
关键词: 破产概率;大偏差;离散时多元风险模型
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