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Abstract: In this paper, under a balanced loss function we investigate admissible predic-

tion of finite population regression coefficient in superpopulation models with and without the

assumption that the underlying distribution is normal, respectively. By using the statistical deci-

sion theory, necessary and sufficient conditions for a homogeneous linear predictor to be admissible

in the class of homogeneous linear predictors are obtained in the non-normal case, we also obtain a

sufficient and necessary condition for a homogeneous linear predictor to be admissible in the class

of all predictors in the normal case, which generalize some relative results under quadratic loss to

balanced loss function.
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1 Introduction

We open this section with some notations: Given a matrix A, the symbols M (A), A′,
tr(A), rk(A) will stand for the range space, the transpose, the trace, the rank, respectively,
of matrix A. The n × n identity matrix is denoted by In. For an n × n matrix A, A > 0
means that A is a symmetric positive definite matrix. A ≥ 0 means that A is a symmetric
nonnegative definite matrix, A ≥ B(A ≤ B) means that A − B ≥ 0(B − A ≤ 0). Rm×n

stands for the set composed of all m× n real matrices.
Let us consider finite population P = {1, · · · , N} as the collection of a known number

N of identifiable units. Associated with the ith unit of P , there are p + 1 quantities:
yi, xi1, · · · , xip, where all but yi are known, i = 1, · · · , N . Denote y = (y1, · · · , yN )′ and
X = (X1, · · · , XN )′, where Xi = (xi1, · · · , xip)′, i = 1, · · · , N . We express the relationships
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among the variables by the linear model

y = Xβ + ε, (1.1)

where β is a p×1 unknown superparameter vector, ε is an N×1 random vector with mean 0
and covariance matrix σ2V , V > 0 is a known matrix, but the parameter σ2 > 0 is unknown.
If ε is a random vector with multivariate normal distribution, the model (1.1) will be written
as

y = Xβ + ε, ε ∼ N(0, σ2V ). (1.2)

Denote the finite population regression coefficient as βN = (X ′V −1X)−1X ′V −1y. In the lit-
erature, a lot of predictions for finite population regression coefficient have been produced.
For example, Bolfarine and Zacks [1, 2] studied Bayes and minimax prediction under square
error loss function. Bolfarine et al. [3] obtained the best linear unbiased prediction under the
generalized prediction mean squared error. Yu and Xu [4] studied the admissibility of linear
predictors under quadratic loss. Xu and Yu [5] obtained the linear admissible predictors
under matrix loss. Recently, Bansal and Aggarwal [6–8] considered Bayes prediction of fi-
nite population regression coefficient of some superpopulation regression model with normal
assumption using Zellner’s [9] balanced loss function. However, there is not much literature
on the linear admissible prediction of the finite population regression coefficient in the su-
perpopulation models with and without the assumption that the underlying distribution is
normal using Zellner’s balanced loss function.

In order to predict the finite population regression coefficient βN , let us select a sample
s of size n(≤ N) from P according to some specified sampling plan in order to obtain
information on βN . Let r = P − s be the unobserved part of P . After the sample has been
selected, we may reorder the elements of y such that we have the corresponding partitions
of y, X and V , that is

y =

(
ys

yr

)
, X =

(
Xs

Xr

)
, V =

(
Vs Vsr

Vrs Vr

)
.

Following Bolfarine et al.[3], we can write the finite population regression coefficient βN

as
βN = Qsys + Qryr,

where

Qs = F−1BC−1, Qr = F−1DE−1,

B = X ′
s −X ′

rV
−1

r Vrs, C = Vs − VsrV
−1

r Vrs,

D = X ′
r −X ′

sV
−1

s Vsr, E = Vr − VrsV
−1

s Vsr

and
F = BC−1Xs + DE−1Xr.
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Consider the class of homogeneous linear predictors as £ = {Lys : L ∈ Rp×n}. Let δ(ys)
be a predictor of βN , in this article, we use Zellner’s balanced loss function

L(δ(ys), βN ) = θ(ys−Xsδ(ys))′(ys−Xsδ(ys))+(1−θ)(δ(ys)−βN )′X ′
sXs(δ(ys)−βN ). (1.3)

Here θ ∈ [0, 1] is a weight coefficient. Zellner’s balanced loss function takes both precision
of estimation and goodness of fit of model into account, so it is a more comprehensive and
reasonable standard than quadratic loss and residual sum of square. Moreover, we know that
the balanced loss function is more sensitive than the quadratic loss function, which means
that if a prediction is admissible under the balanced loss function, it is also admissible
under the quadratic loss function. Therefore, the study about the admissible prediction
under the balanced loss function is significant. Denote the corresponding risk function as
R(δ(ys), βN ) = E(L(δ(ys), βN )).

In this paper, we discuss the admissibility of linear predictors in the class of homogeneous
linear predictors and in the class of all predictors, respectively.

The rest of this paper is organized as follows: Necessary and sufficient conditions for
homogeneous linear predictors of βN to be admissible in £ under model (1.1) and loss
function (1.3) are placed in Section 2. In Section 3, we give the sufficient conditions for
homogeneous linear predictors to be admissible in the class of all predictors under model
(1.2) and loss function (1.3). Concluding remarks are given in Section 4.

2 Admissibility of a Homogeneous Linear Predictor in the Class of

Linear Predictors

In this section, we give necessary and sufficient conditions for homogeneous linear pre-
dictors to be admissible in £ under the model (1.1) and the balanced loss function (1.3).
First, we give a definition for admissibility.

Definition 2.1 The predictor δ1(ys) is called as good as δ2(ys) if and only if R(δ1(ys), βN )
≤ R(δ2(ys), βN ) for all β ∈ Rp and σ2 > 0, and δ1(ys) is called better than δ2(ys) iff δ1(ys)
is as good as δ2(ys) and R(δ1(ys), βN ) 6= R(δ2(ys), βN ) at some β0 ∈ Rp and σ2

0 > 0. Let
L be a class of predictors, then a predictor δ(ys) is said to be admissible for βN in L iff
δ(ys) ∈ L and there exists no predictor in L which is better than δ(ys).

Lemma 2.1 (Wu [10]) Consider the following model

ys = Xsβ + εs, (2.1)

where εs is a n× 1 unobservable random vector with E(εs) = 0,Cov(εs) = σ2Vs, Xs and Vs

are known n× p and n×n matrices, respectively. Whereas β ∈ Rp and σ2 > 0 are unknown
parameters. If Sβ is a linearly estimable variable under the model (2.1), then under the loss
function (d− Sβ)′(d− Sβ), Lys is an admissible estimator of Sβ in £ if and only if

(1) L = LXs(X ′
sV

−1
s Xs)−1X ′

sV
−1

s ,
(2) LXs(X ′

sV
−1

s Xs)−1S′ − LXs(X ′
sV

−1
s Xs)−1X ′

sL
′ ≥ 0.
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Theorem 2.1 Under model (1.1), Lys is an admissible predictor of βN in £ under the
balanced loss function (1.3) if and only if

(1) L = LXs(X ′
sV

−1
s Xs)−1X ′

sV
−1

s + θ(X ′
sXs)−1X ′

s − θ(X ′
sV

−1
s Xs)−1X ′

sV
−1

s ,
(2) (L− θ(X ′

sXs)−1X ′
s − (1− θ)(Qs + QrVrsV

−1
s ))Xs(X ′

sV
−1

s Xs)−1(Ip −X ′
sL

′) ≥ 0.
Proof By direct operation, we have

R(Lys, βN )

= E[θ(ys −XsLys)′(ys −XsLys) + (1− θ)(Lys −Qsys −Qryr)′X ′
sXs(Lys −Qsys −Qryr)]

= E[(L̃ys − S̃β)′(L̃ys − S̃β)]

+σ2tr[θVs + (1− θ)Q′
sX

′
sXsQsVs + 2(1− θ)Q′

sX
′
sXsQrVrs + (1− θ)Q′

rX
′
sXsQrVr]

−σ2tr[H(θH−1X ′
s + (1− θ)(Qs + QrVrsV

−1
s ))Vs(θH−1X ′

s + (1− θ)(Qs + QrVrsV
−1

s ))′],

where

H = X ′
sXs, L̃ = H

1
2 (L− θH−1X ′

s − (1− θ)(Qs + QrVrsV
−1

s )),

S̃ = (1− θ)H
1
2 (Ip −QsXs −QrVrsV

−1
s Xs).

In order to prove that Lys is an admissible prediction of βN in £ under balanced loss function
(1.3), we need only to show that L̃ys is an admissible estimator for S̃β under model (2.1)
and loss function (d− S̃β)′(d− S̃β) in £. It follows by Lemma 2.1 that Lys is an admissible
predictor of βN in £ under balanced loss function (1.3) if and only if

(1) L̃ = L̃Xs(X ′
sV

−1
s Xs)−1X ′

sV
−1

s ,
(2) L̃Xs(X ′

sV
−1

s Xs)−1S̃′ − L̃Xs(X ′
sV

−1
s Xs)−1X ′

sL̃
′ ≥ 0.

On the basis of this, we can obtain the result by direct operation.
It is easy to obtain the following corollary by this theorem.
Corollary 2.1 Under model (1.1) and the loss function (1.3), L1ys is an admissible

predictor of βN in £, where L1 = θ(X ′
sXs)−1X ′

s + (1− θ)(X ′
sV

−1
s Xs)−1X ′

sV
−1

s .
If (ys − Xsδ(ys))′(ys − Xsδ(ys)) is also considered to be a kind of loss function, then

(X ′
sXs)−1X ′

sys is the best linear unbiased prediction in £. This corollary illustrates that
the linear admissible prediction under loss (1.3) are convex combination between the linear
admissible predictions under loss (ys − Xsδ(ys))′(ys − Xsδ(ys)) and the linear admissible
predictions under loss (δ(ys) − βN )′X ′

sXs(δ(ys) − βN ). Moreover, the weights assigned to
the goodness of fit of model and the precision of estimation are consistent to the weights
assigned to their corresponding admissible predictions. It is clear to illustrate the use of the
balanced loss function (1.3).

3 Admissibility of a Homogeneous Linear Predictor in the Class of All

Predictors

In section 2, we have given the necessary and sufficient conditions for a homogeneous
linear predictor to be admissible in the class of homogeneous linear predictors. It is interest-
ing to discuss the problem whether the admissible predictor is also admissible in the class
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of all predictors. In this section, we will answer this problem under model (1.2) and the loss
function (1.3). In the following, we first give some lemmas.

Lemma 3.1 (Wu [11]) Consider the following model

ỹs = X̃sβ + ε̃, ε̃ ∼ N(0, σ2In), (3.1)

where ỹs ∈ Rn, X̃s ∈ Rn×p. Let L and S be known p×n matrices. If L satisfies the following
conditions:

(1) L = LX̃s(X̃ ′
sX̃s)−1X̃ ′

s,

(2) LX̃s(X̃ ′
sX̃s)−1X̃ ′

sL
′ ≤ LX̃s(X̃ ′

sX̃s)−1X̃ ′
sS

′,

(3) rk(LX̃s(X̃ ′
sX̃s)−1X̃ ′

s(S − L)′) ≥ rk(L)− 2.

Then an estimator Lỹs of SX̃sβ is admissible in the class of all estimators under loss function
(d− SX̃sβ)′(d− SX̃sβ).

Lemma 3.2 (Rao [12]) Let L and S be m× n matrices. Then LS′ is symmetric and
LL′ ≤ LS′ if and only if there exists an n× n symmetric matrix M ≥ 0 such that L = SM ,
rk(M) = rk(L) and the eigenvalues of M are in the closed interval [0, 1].

Lemma 3.3 (Wu [11]) Let L and S be m × n matrices. Then the following two
statements are equivalent.

(1) LS′ is symmetric, LL′ ≤ LS′ and rk(LS′ − LL′) ≥ rk(L)− 2,
(2) There exists an n×n symmetric matrix M ≥ 0 such that L = SM , rk(M) = rk(L),

the eigenvalues of M are in [0, 1] and at most two of them are equal to one.
Lemma 3.4 (Rao [12]) Let h(y) be an admissible estimator of g(γ) under (d−g(γ))′(d−

g(γ)). Then for every constant matrix K, Kh(y) is an admissible estimator of Kg(γ) under
(d1 −Kg(γ))′(d1 −Kg(γ)).

Theorem 3.1 Under the model (1.2) and the loss function (1.3), a predictor Lys of
βN is admissible in the class of all predictors if L satisfied the following conditions:

(1) L̃ = L̃Xs(X ′
sV

−1
s Xs)−1X ′

sV
−1

s ,

(2) L̃Xs(X ′
sV

−1
s Xs)−1X ′

sL̃
′ ≤ L̃Xs(X ′

sV
−1

s Xs)−1S̃′,

(3) rk(L̃Xs(X ′
sV

−1
s Xs)−1(S̃ − L̃Xs)′) ≥, rk(L̃)− 2,

where

L̃ = H
1
2 (L− θH−1X ′

s − (1− θ)(Qs + QrVrsV
−1

s )),

S̃ = (1− θ)H
1
2 (Ip −QsXs −QrVrsV

−1
s Xs).

Proof According to the proof of Theorem 2.1, we have

R(Lys, βN )

= E[(L̃ys − S̃β)′(L̃ys − S̃β)] + C2

= E[(L̃1ỹs − S̃1X̃sβ)′(L̃1ỹs − S̃1X̃sβ)] + C2,

where

L̃1 = L̃V
1
2

s , ỹs = V
− 1

2
s ys, X̃s = V

− 1
2

s Xs,

S̃1 = (1− θ)H
1
2 ((X ′

sXs)−1X ′
s −Qs −QrVrsV

−1
s )V

1
2

s
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and

C2 = σ2tr[θVs + (1− θ)Q′
sX

′
sXsQsVs + 2(1− θ)Q′

sX
′
sXsQrVrs + (1− θ)Q′

rX
′
sXsQrVr

−H(θH−1X ′
s + (1− θ)(Qs + QrVrsV

−1
s ))Vs(θH−1X ′

s + (1− θ)(Qs + QrVrsV
−1

s ))′].

Therefore, to prove that Lys is an admissible predictor of βN in the class of all predictors, we
need only to show that L̃1ỹs is an admissible estimator of S̃1X̃sβ in the class of all estimators
under model (3.1) and the loss function (d− S̃1X̃sβ)′(d− S̃1X̃sβ). By Lemma 3.1, we obtain
the result.

Corollary 3.1 Under model (1.2) and the loss function (1.3), L1ys is admissible in
the class of all predictors, where

L1 = θ(X ′
sXs)−1X ′

s + (1− θ)(X ′
sV

−1
s Xs)−1X ′

sV
−1

s .

The proof of this corollary is omitted here since it is easy to verify that L1ys satisfies
the conditions of Theorem 3.1.

Theorem 3.2 Let M (X ′
sL̃

′) ⊂ M (S̃′) and Lys be an admissible predictor of βN in
the class of all predictors under the model (1.2) and the loss function (1.3). Then L satisfies
the following conditions:

(1) L̃ = L̃Xs(X ′
sV

−1
s Xs)−1X ′

sV
−1

s ,

(2) L̃Xs(X ′
sV

−1
s Xs)−1X ′

sL̃
′ ≤ L̃Xs(X ′

sV
−1

s Xs)−1S̃′,

(3) rk(L̃Xs(X ′
sV

−1
s Xs)−1(S̃ − L̃Xs)′) ≥ rk(L̃)− 2,

where

L̃ = H
1
2 (L− θH−1X ′

s − (1− θ)(Qs + QrVrsV
−1

s )),

S̃ = (1− θ)H
1
2 (Ip −QsXs −QrVrsV

−1
s Xs).

Proof Take an n × p matrix P̃ such that M (P̃ ) = M (X̃s) and P̃ ′P̃ = Ip, where
p = rk(X̃s). Then X̃s(X̃ ′

sX̃s)−1X̃ ′
s = P̃ P̃ ′. If Lys ∈ £ is an admissible predictor of βN in

the class of all predictors under the model (1.2) and the loss function (1.3), then L̃1ỹs is
an admissible estimator of S̃1X̃sβ in the class of all estimators under the model (3.1) and
the loss function (d − S̃1X̃sβ)′(d − S̃1X̃sβ) according to the proof of Theorem 3.1. This
shows that conditions (1) and (2) of this theorem hold by Lemma 2.1. Therefore, we will
show that (3) holds using (1) and (2). Suppose, to the contrary, that (3) does not hold, i.e.,
rk(L̃Xs(X ′

sV
−1

s Xs)−1(S̃ − L̃Xs)′) < rk(L̃)− 2, which is equivalent to

rk(L̃1X̃s(X̃ ′
sX̃s)−1X̃ ′

s(S̃1 − L̃1)′) < rk(L̃1)− 2.

By equation rk(L̃1) = rk(L̃1X̃s) = rk(L̃1P̃ ), Lemmas 3.2, 3.3 and condition L̃1P̃ P̃ ′L̃ ≤
L̃′1P̃ P̃ ′S̃′1, there exists a p× p symmetric matrix M ≥ 0 such that L̃1P̃ = S̃1P̃M , rk(M) =
rk(L̃1) and the eigenvalues of M are in [0, 1] and at least three eigenvalues are equal to 1. By
the spectral decomposition of P̃ ′S̃′1S̃1P̃ , we write P̃ ′S̃′1S̃1P̃ = Γ∆̃Γ′. Here Γ is an orthogonal
matrix of order p, ∆̃ = diag(τ1, · · · , τq, 0 · · · , 0) and ∆ = diag(τ1, · · · , τq) > 0 with q =
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rk(S̃1P̃ ) = rk(S̃1X̃s). Since M (X̃ ′
sL̃

′
1) ⊂ M (X̃ ′

sS̃
′
1) if and only if M (P̃ ′L̃′1) ⊂ M (P̃ ′S̃′1), it

follows from the definition of M and M (X ′
sL̃

′) ⊂ M (S̃′) that

M (M) = M (P̃ ′L̃′1) ⊂ M (P̃ ′S̃′1) = M (P̃ ′S̃′1S̃1P̃ ).

Moreover, M (Γ′MΓ) ⊂ M (∆̃). This derives that Γ′MΓ =

(
M1 0
0 0

)
, where M1 ≥ 0

is a symmetric matrix of order q and has the same nonzero eigenvalues as those of M .

Take a q × q orthogonal matrix N1 such that N ′
1M1N1 =

(
It 0
0 U

)
, where t ≥ 3 and

U = diag(ω1, · · · , ωq−t) ≥ 0. Then N =

(
N1 0
0 Ip−q

)
is an orthogonal matrix of order p

and

N ′Γ′MΓN =




It 0 0
0 U 0
0 0 0


 , G.

We here write
z = N ′Γ′P̃ ′ỹs, γ = N ′Γ′P̃ ′X̃sβ (3.2)

and (n− p)σ̂2 = ỹ′s(In − X̃s(X̃ ′
sX̃s)−1X̃ ′

s)ỹs. Then eq. (3.2) implies that

z ∼ Np(γ, σ2Ip), (n− p)σ−2σ̂2 ∼ χ2
n−p, (3.3)

and z, σ̂2 are mutually independent. We also have

L̃1ỹs = S̃1P̃ΓNGz, S̃1X̃sβ = S̃1P̃ΓNγ. (3.4)

By S̃1P̃Γ(Γ′P̃ ′S̃′1S̃1P̃Γ)−Γ′P̃ ′S̃′1S̃1P̃Γ = S̃1P̃Γ, Lemma 3.4 and eq. (3.4), L̃1ỹs is an admis-
sible estimator of S̃1X̃sβ under loss (d− S̃1X̃sβ)′(d− S̃1X̃sβ) if and only if Γ′P̃ ′S̃′1S̃1P̃ΓNGz

is an admissible estimator of g(γ) under the loss function (d− g(γ))′(d− g(γ)), where

g(γ) = Γ′P̃ ′S̃′1S̃1P̃ΓNγ.

Since

N ′
(

∆−1 0
0 Ip−q

)
Γ′P̃ ′S̃′1S̃1P̃ΓNGz = Gz and N ′

(
∆−1 0

0 Ip−q

)
Γ′P̃ ′S̃′1S̃1P̃ΓNγ = Ĩqγ,

where Ĩq =

(
Iq 0
0 0

)
, L̃1ỹs is an admissible estimator of S̃1X̃sβ under loss (d−S̃1X̃sβ)′(d−

S̃1X̃sβ) if and only if Gz is an admissible estimator of Ĩqγ under the loss function (d−Ĩqγ)′(d−
Ĩqγ) by Lemma 3.4. Partition z and γ as

z =




z(1)

z(2)

z(3)




t× 1
(q − t)× 1
(p− q)× 1

, γ =




γ(1)

γ(2)

γ(3)




t× 1
(q − t)× 1
(p− q)× 1

.
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Then the loss of Gz is expressed as

(Gz − Ĩqγ)′(Gz − Ĩqγ)

= (z(1) − γ(1))′(z(1) − γ(1)) + (Uz(2) − γ(2))′(Uz(2) − γ(2)).

Hence, to verify this theorem, we need only to show that z(1) is an inadmissible estimator
of γ(1) under the loss function (d − γ(1))′(d − γ(1)). By eq. (3.3), z(1) ∼ Nt(γ(1), σ

2It) with
t ≥ 3. Take

w = [1− 2c(n− p)(n− p + 2)−1σ̂2(z′(1)z(1))−1]z(1)

with a constant c. Using integration by parts, we have

E(z(1) − γ(1))′(z(1) − γ(1))− E(w − γ(1))′(w − γ(1))

=
4c(n− p)

(n− p + 2)
E[

(z(1) − γ(1))′z(1)σ̂
2

z′(1)z(1)

− c(n− p)σ̂4

(n− p + 2)z′(1)z(1)

]

=
4c(n− p)(t− 2− c)σ4

n− p + 2
E(

1
z′(1)z(1)

) > 0,

if c is specified as one satisfying 0 < c < t− 2. This proves that z(1) is inadmissible.

4 Concluding Remarks

In this paper, necessary and sufficient conditions are given for homogeneous linear pre-
dictors to be admissible in the class of homogeneous linear predictors under the linear model
(1.1). Sufficient conditions are also given for homogeneous linear predictors to be admissible
in the class of all predictors under the linear model (1.2). They are proved to be necessary
under additional conditions. However, it is also interesting to study the minimaxity of ho-
mogeneous linear predictors of the finite population regression coefficient under a balanced
loss function. This will be studied in the other paper.
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平衡损失下有限总体回归系数的线性可容许预测

胡桂开1,2 ,彭 萍1

(1.东华理工大学理学院,江西南昌 330013)

(2.湖南大学数学与计量经济学院,湖南长沙 410082)

摘要: 本文研究了平衡损失函数下正态总体和非正态总体中有限回归系数的可容许预测. 利用统计决

策理论，获得了非正态总体中齐次线性预测为可容许预测的充分必要条件和在正态总体中齐次线性预测在

一切预测类中可容许性的充要条件, 推广了二次损失下的若干相关结果.
关键词: 可容许预测; 有限总体回归系数; 平衡损失函数
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