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1 Introduction

Let u : (Mm, g) → (Nn, h) be a smooth map between Riemannian manifolds (Mm, g)
and (Nn, h). Recently, Kawai and Nakauchi [1] introduced a functional related to the pull-
back metric u∗h as follows:

Φ(u) =
1
4

∫

M

||u∗h||2dvg (1.1)

(see [2–4]), where u∗h is the symmetric 2-tensor defined by

(u∗h)(X, Y ) = h(du(X), du(Y ))

for any vector fields X, Y on M and ||u∗h||, its norm as ||u∗h||2 =
m∑

i,j=1

[h(du(ei), du(ej))]2

with respect to a local orthonormal frame (e1, · · · , em) on (M, g). The map u is stationary
for Φ if it is a critical point of Φ(u) with respect to any compact supported variation of u

and u is stationary stable if the second variation for the functional Φ(u) is non-negative.
They showed that the non-existence of nonconstant stable stationary map for Φ, either from
Sm (m ≥ 5) to any manifold, or from any compact Riemannian manifold to Sn ( n ≥ 5).
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On the other hand, Lichnerowicz in [5] (also see [6]) introduced the f -harmonic maps,
generalizing harmonic maps. Let f : (M, g) → (0,+∞) be a smooth function. A smooth
map u : M → N is said to be an f -harmonic map if it is a critical point of the following
f -energy

Ef (u) =
∫

M

f
||du||2

2
dvg

with respect to any compactly supported variation of u, where ||du|| is the Hilbert-Schmidt
norm of the differential of u:

||du||2 = tracegu
∗h =

m∑
i=1

h(du(ei), du(ei)).

The Euler-Lagrange equation gives the f -harmonic map equation (see [7–9])

τf (u) = fτ(u) + du(gradf) = ftraceg(∇du) + du(gradf). (1.2)

Ara [10] introduced the F -harmonic maps, generalizing harmonic maps. Let F : [0,∞) →
[0,∞) be a C2 function such that F (0) = 0 and F ′(t) > 0 for t ∈ [0,∞). A smooth map
u : M → N is said to be an F -harmonic map if it is a critical point of the following F -energy
functional EF given by

EF (u) =
∫

M

F (
||du||2

2
)dvg

with respect to any compactly supported variation of u. The Euler-Lagrange equation gives
the F -harmonic map equation

τF (u) = F ′(
||du||2

2
)τ(u) + du(gradF ′(

||du||2
2

))

= F ′(
||du||2

2
)traceg(∇du) + du(gradF ′(

||du||2
2

)). (1.3)

There were many results for F -harmonic maps such as [11–13]. From (1.2) and (1.3), we
know that any F -harmonic map is a special f -harmonic map.

Recently, Dong and Ou in [14] introduced the stress energy tensor Sf associated with
Ef -energy as following:

Sf = f [
||du||2

2
g − h(du(.), du(.))].

Via the stress-energy tensor Sf of Ef , monotonicity formula and Liouville-type results were
investigated in [14].

In this paper, we generalize and unify the concept of critical point of the functional Φ.
For this, we define the functional Φf by

Φf (u) =
∫

M

f(x)
||u∗h||2

4
dvg, (1.4)
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which is Φ if f = 1. We call u an f -stationary map for Φf (u), if d
dt

Φf (ut)|t=0 = 0 for any
compactly supported variation ut : M → N with u0 = u. We derive the first variation
formula of Φf and we introduce the f -stress energy tensor SΦf

associated to Φf . Then we
use the f -stress energy tensor to obtain the monotonicity formula and vanishing theorems for
f -stationary map under some conditions on f . The monotonicity formulas can also be used
to investigate the constant Dirichlet boundary value problem. We also obtain the unique
constant solution of the constant Dirichlet boundary value problem on some starlike domain
for f -stationary map.

2 The First Variation Formula for Φf (u)

Let ∇ and N∇ always denote the Levi-Civita connections of M and N respectively.
Let ∇̃ be the induced connection on u−1TN defined by ∇̃XW =N ∇du(X)W , where X is a
tangent vector of M and W is a section of u−1TN . We choose a local orthonormal frame
field {ei} on M . We define the f -tension field τΦf

(u) of u by

τΦf
(u) = −δ(fσu) = fdivσu + σu(gradf), (2.1)

where σu =
∑

j h(du(.), du(ej))du(ej), which was defined in [1].
Under the notation above we have the following:
Lemma 2.1 (The first variation formula) Let u : M → N be a C2 map. Then

d

dt
Φf (ut)|t=0 = −

∫

M

h(τΦf
(u), V )dvg, (2.2)

where V = d
dt

ut|t=0.
Proof Let Ψ : (−ε, ε)×M → N be any smooth deformation of u such that

Ψ(t, x) = ut(x), dΨ(
∂

∂t
)|t=0 =

d

dt
ut|t=0 = V, (2.3)

where ε is a positive constant. Let ut(x) = Ψ(t, x) and then u0(x) = u(x). Now we compute

d

dt
Φf (ut)|t=0 =

∫

M

f
∂

∂t

||u∗t h||2
4

|t=0dvg

=
1
4

∫

M

f
∂

∂t
[
∑
i,j

h(dut(ei), dut(ej))2]|t=0dvg

=
∫

M

f
∑
i,j

h(∇̃ ∂
∂t

dΨ(ei), dΨ(ej))h(dΨ(ei), dΨ(ej))|t=0dvg

=
∫

M

f
∑

i

h(∇̃ei
dΨ(

∂

∂t
), σu(ei))|t=0dvg

=
∫

M

f
∑

i

[eih(dΨ(
∂

∂t
), σu(ei))− h(dΨ(

∂

∂t
), ∇̃ei

σu(ei))]|t=0dvg,

where we use that

∇̃∂/∂tdΨ(ei)− ∇̃ei
dΨ(

∂

∂t
) = dΨ([

∂

∂t
, ei]) = 0
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for the forth equality.

Let Xt be a compactly supported vector field on M such that g(Xt, Y ) = h(dΨ( ∂
∂t

), σut
(Y ))

for any vector field Y on M . Then

d

dt
Φf (ut)|t=0 =

∫

M

f
∑

i

[eig(Xt, ei)− h(dΨ(
∂

∂t
), ∇̃ei

σu(ei))]|t=0dvg

=
∫

M

f
∑

i

[g(∇ei
Xt, ei) + g(Xt,∇ei

ei)− h(dΨ(
∂

∂t
), ∇̃ei

σu(ei))]|t=0dvg

=
∫

M

f [div(Xt)−
∑

i

h(dΨ(
∂

∂t
), ∇̃ei

σu(ei)− σu(∇ei
ei))]|t=0dvg

=
∫

M

[div(fXt)− h(dΨ(
∂

∂t
), fdiv(σu) + σu(gradf))]|t=0dvg

= −
∫

M

h(τΦf
(u), V )dvg,

where we use the Green’s theorem for the last equation. This proves Lemma 2.1.

The first variation formula allows us to define the notion of f -stationary for the func-
tional Φf .

Definition 2.2 A smooth map u is called f -stationary map for the functional Φf if it
is a solution of the Euler-Lagrange equation τΦf

(u) = 0.

3 f-Stress Energy Tensor

Following Baird [15], for a smooth map u : (M, g) → (N, h), we associate a symmetric
2-tensor SΦf

to the functional Φf called the f -stress energy tensor

SΦf
(X, Y ) = f [

||u∗h||2
4

g(X, Y )− h(σu(X), du(Y ))], (3.1)

where X, Y are vector fields on M .

Proposition 3.1 Let u : (M, g) → (N, h) be a smooth map and SΦf
be the associated

f -stress energy tensor, then for all x ∈ M and for each vector X ∈ TxM ,

(divSΦf
)(X) = −h(τΦf

, du(X)) +
||u∗h||2

4
df(X). (3.2)

Proof Let ∇ and N∇ always denote the Levi-Civita connections of M and N respec-
tively. Let ∇̃ be the induced connection on u−1TN defined by ∇̃XW =N ∇du(X)W , where
X is a tangent vector of M and W is a section of u−1TN . We choose a local orthonormal
frame field {ei} on M with ∇ei

ei|x = 0 at a point x ∈ M .
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Let X be a vector field on M . At x, we compute

(divSΦf
)(X) =

∑
i

(∇ei
SΦf

)(ei, X)

=
∑

i

{eiSΦf
(ei, X)− SΦf

(∇ei
ei, X)− SΦf

(ei,∇ei
X)}

=
∑

i

{ei(f
||u∗h||2

4
g(ei, X))− ei(fh(σu(ei), du(X)))

−f
||u∗h||2

4
g(ei,∇ei

X) + fh(σu(ei), du(∇ei
X)}

= X(f
||u∗h||2

4
)− h(σu(gradf), du(X))

−f
∑

i

eih(σu(ei), du(X)) + f
∑

i

h(σu(ei), du(∇ei
X)

= X(f
||u∗h||2

4
)− h(σu(gradf), du(X))− f

∑
i

h(∇̃ei
σu(ei), du(X))

−f
∑

i

h(σu(ei), ∇̃ei
du(X)) + f

∑
i

h(σu(ei), du(∇ei
X)

= X(f
||u∗h||2

4
)− h(σu(gradf), du(X))

−fh(divσu, du(X))− f
∑

i

h(σu(ei), (∇ei
du)(X))

= X(f
||u∗h||2

4
)− h(τΦf

(u), du(X))− f
∑

i

h(σu(ei), (∇ei
du)(X))

=
||u∗h||2

4
df(X) + f

∑
i,j

h(∇̃Xdu(ei), du(ej))h(du(ei), du(ej))

−h(τΦf
(u), du(X))− f

∑
i

h(σu(ei), (∇ei
du)(X))

=
||u∗h||2

4
df(X)− h(τΦf

(u), du(X))

+f
∑

i

h((∇Xdu)(ei), σu(ei))− f
∑

i

h(σu(ei), (∇ei
du)(X)).

Since (∇Xdu)(ei) = (∇ei
du)(X), we obtain

(divSΦf
)(X) = −h(τΦf

, du(X)) +
||u∗h||2

4
df(X).

This proves this proposition.
From the above proposition, we know that if u : M → N is an f -stationary map, then

(divSΦf
)(X) =

||u∗h||2
4

df(X). (3.3)

Recall that for two 2-tensors T1, T2 ∈ Γ(T ∗M ⊗ T ∗M), their inner product defined as
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follows:
〈T1, T2〉 =

∑
ij

T (ei, ej)T2(ei, ej), (3.4)

where {ei} is an orthonormal basis with respect to g. For a vector field X ∈ Γ(TM), we
denote by θX is dual one form i.e. θX(Y ) = g(X, Y ). The covariant derivative of θX gives a
2-tensor field ∇θX :

(∇θX)(Y, Z) = (∇ZθX)(Y ) = g(∇ZX, Y ). (3.5)

If X = ∇φ is the gradient of some function φ on M , then θX = dφ and ∇θX = Hessφ.
Lemma 3.2 (see [11, 15]) Let T be a symmetric (0, 2)-type tensor field and let X be a

vector field, then

div(iXT ) = (divT )(X) + 〈T,∇θX〉 = (divT )(X) +
1
2
〈T,LXg〉. (3.6)

Let D be any bounded domain of M with C1 boundary. By using the Stokes’ theorem,
we immediately have the following integral formula:

∫

∂D

T (X, ν)dsg =
∫

D

[〈T,
1
2
LXg〉+ div(T )(X)]dvg, (3.7)

where ν is the unit outward normal vector field along ∂D.
By (3.3) and (3.7), we have

∫

∂D

SΦf
(X, ν)dsg =

∫

D

[〈SΦf
,
1
2
LXg〉+

||u∗h||2
4

df(X)]dvg. (3.8)

4 Monotonicity Formulas and Vanishing Theorems

Let (M, g0) be a complete Riemannian manifold with a pole x0. Denote by r(x) the
g0-distance function relative to the pole x0, that is r(x) = distg0(x, x0). Set B(r) = {x ∈
Mm : r(x) ≤ r}. It is known that ∂

∂r
is always an eigenvector of Hessg0(r2) associated to

eigenvalue 2. Denote by λmax (resp. λmin which appeared in [12] ) the maximum (resp.
minimal) eigenvalues of Hessg0(r2)− 2dr ⊗ dr at each point of M − {x0}. Let (Nn, h) be a
Riemannian manifold.

From now on, we suppose that u : (Mm, g) → (N, h) is an f -stationary map, where
g = ϕ2g0, 0 < ϕ ∈ C∞(M). Clearly the vector field ν = ϕ−1 ∂

∂r
is an outer normal vector

field along ∂B(r) ⊂ (M, g). Assume that ϕ satisfies the following conditions:
(ϕ1) ∂ log ϕ

∂r
≥ 0.

(ϕ2) there is a constant C0 > 0 such that

(m− 4)r
∂ log ϕ

∂r
+

m− 1
2

λmin + 1− 2max{2, λmax} ≥ C0.

Remark If ϕ(r) = r2, conditions (ϕ1) and (ϕ2) turn into the following:

2(m− 4) +
m− 1

2
λmin + 1− 2max{2, λmax} ≥ C0.
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Now we set µ = sup
M

r|∂ log f
∂r

| < +∞.

Theorem 4.1 Suppose u : (M, ϕ2g0) → (N, h) is an f -stationary map, where 0 < ϕ ∈
C∞(M). If C0 − µ > 0 and ϕ satisfies (ϕ1), (ϕ2), then

∫

B(ρ1)

f
||u∗h||2

4
dvg

ρC0−µ
1

≤

∫

B(ρ2)

f
||u∗h||2

4
dvg

ρC0−µ
2

(4.1)

for any 0 < ρ1 ≤ ρ2. In particular, if
∫

B(R)

f
||u∗h||2

4
dvg = o(RC0−µ), then u is constant.

Proof We take D = B(R) and X = r ∂
∂r

= 1
2
∇0r2 in (3.8), where ∇0 denotes the

covariant derivative determined by g0. By a direct computation, we have

1
2
LXg =

1
2
LX(ϕ2g0) = rϕ

∂ϕ

∂r
g0 +

1
2
ϕ2LXg0 = r

∂ log ϕ

∂r
g +

1
2
ϕ2LXg0,

and thus

〈SΦf
,
1
2
LXg〉 = 〈SΦf

, r
∂ log ϕ

∂r
g〉+ 〈SΦf

,
1
2
ϕ2LXg0〉

= r
∂ log ϕ

∂r
〈SΦf

, g〉+
1
2
ϕ2〈SΦf

,Hessg0(r
2)〉. (4.2)

Let {ei}m
i=1 be an orthonormal basis with respect to g0 and em = ∂

∂r
. We may assume

that Hessg0(r2) becomes a diagonal matrix w.r.t. {ei}. Then {ẽi = ϕ−1ei} is an orthonnor-
mal basis with respect to g.

1
2
ϕ2〈SΦf

,Hessg0(r
2)〉 =

1
2
ϕ2

m∑
i,j=1

SΦf
(ẽi, ẽj)Hessr2

g0
(ẽi, ẽj)

=
1
2
ϕ2{

m∑
i=1

f
||u∗h||2

4
Hessr2

g0
(ẽi, ẽi)−

m∑
i,j=1

fh(σu(ẽi), du(ẽj))Hessr2

g0
(ẽi, ẽj)}

=
1
2
f
||u∗h||2

4

m∑
i=1

Hessr2

g0
(ei, ei)− 1

2
f

m∑
i=1

h(σu(ẽi), du(ẽi))Hessr2

g0
(ei, ei)

≥ 1
2
f
||u∗h||2

4
[(m− 1)λmin + 2]− 1

2
max{2, λmax}f

m∑
i=1

h(σu(ẽi), du(ẽi))

=
1
2
f
||u∗h||2

4
[(m− 1)λmin + 2]− 1

2
max{2, λmax}f ||u∗h||2

≥ 1
2
[(m− 1)λmin + 2− 4max{2, λmax}]f ||u

∗h||2
4

, (4.3)

and

〈SΦf
, g〉 = mf

||u∗h||2
4

− f

m∑
i,j=1

h(σu(ẽi), du(ẽj))g(ẽi, ẽj)

= mf
||u∗h||2

4
− f ||u∗h||2 ≥ (m− 4)f

||u∗h||2
4

. (4.4)
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From (4.2), (4.3), (4.4), (ϕ1) and (ϕ2), we have

〈SΦf
,
1
2
LXg〉 ≥ [r

∂ log ϕ

∂r
(m− 4) +

m− 1
2

λmin + 1− 2max{2, λmax}]f ||u
∗h||2
4

≥ C0f
||u∗h||2

4
,

i.e.,

〈SΦf
,
1
2
LXg〉 ≥ C0f

||u∗h||2
4

. (4.5)

On the other hand, by the coarea formula and |∇r|g = ϕ−1, we have

∫

∂B(r)

SΦf
(X, ν)dsg =

∫

∂B(r)

[f
||u∗h||2

4
g(X, ν)− fh(σu(X), du(ν))]dsg

= r

∫

∂B(r)

f
||u∗h||2

4
ϕdsg −

∫

∂B(r)

frϕ−1h(σu(
∂

∂r
), du(

∂

∂r
))dsg

= r

∫

∂B(r)

f
||u∗h||2

4
ϕdsg −

∫

∂B(r)

frϕ−1

m∑
i=1

h(du(
∂

∂r
), du(ẽi))2dsg

≤ r

∫

∂B(r)

f
||u∗h||2

4
ϕdsg = r

d

dr

∫ r

0

{
∫

∂B(t)

f ||u
∗h||2
4

|∇r| dsg}dt

= r
d

dr

∫

B(r)

f
||u∗h||2

4
dvg. (4.6)

From (3.8), (4.5) and (4.6), we have

C0

∫

B(r)

f
||u∗h||2

4
dvg +

∫

B(r)

||u∗h||2
4

rdf(
∂

∂r
)dvg ≤ r

d

dr

∫

B(r)

f
||u∗h||2

4
dvg,

so

C0

∫

B(r)

f
||u∗h||2

4
dvg − µ

∫

B(r)

f
||u∗h||2

4
dvg ≤ r

d

dr

∫

B(r)

f
||u∗h||2

4
dvg,

i.e.,

d

dr

∫

B(r)

f
||u∗h||2

4
dvg

rC0−µ
≥ 0. (4.7)

Therefore
∫

B(ρ1)

f
||u∗h||2

4
dvg

ρC0−µ
1

≤

∫

B(ρ2)

f
||u∗h||2

4
dvg

ρC0−µ
2

for any 0 < ρ1 ≤ ρ2. This proves this theorem.
From the proof of Theorem 4.1, we immediately get the following:
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Theorem 4.2 Suppose u : (M, ϕ2g0) → (N, h) is an f -stationary map, where 0 < ϕ ∈
C∞(M). If ∂f

∂r
≥ 0 and ϕ satisfies (ϕ1), (ϕ2), then

∫

B(ρ1)

f
||u∗h||2

4
dvg

ρC0
1

≤

∫

B(ρ2)

f
||u∗h||2

4
dvg

ρC0
2

(4.8)

for any 0 < ρ1 ≤ ρ2. In particular, if
∫

B(R)

f
||u∗h||2

4
dvg = o(RC0), then u is constant.

Lemma 4.3 [11, 16] Let (Mm, g) be a complete Riemannian manifold with a pole x0.
Denote by Kr the radial curvature of M .

(i) if −α2 ≤ Kr ≤ −β2 with α ≥ β > 0, then

β coth(βr)[g − dr ⊗ dr] ≤ Hess(r) ≤ α coth(αr)[g − dr ⊗ dr];

(ii) if − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0 and 0 ≤ B < 2ε, then

1−B/2ε

r
[g − dr ⊗ dr] ≤ Hess(r) ≤ eA/2ε

r
[g − dr ⊗ dr];

(iii) if − a2

1+r2 ≤ Kr ≤ b2

1+r2 with a ≥ 0 and b2 ∈ [0, 1
4
], then

1 +
√

1− 4b2

2r
[g − dr ⊗ dr] ≤ Hess(r) ≤ 1 +

√
1 + 4a2

2r
[g − dr ⊗ dr].

Lemma 4.4 Let (Mm, g) be a complete Riemannian manifold with a pole x0. Denote
by Kr the radial curvature of M .

(i) if −α2 ≤ Kr ≤ −β2 with α ≥ β > 0 and (m− 1)β − 4α ≥ 0, then

[(m− 1)λmin + 2− 4max{2, λmax}] ≥ 2(m− 4α

β
);

(ii) if − A
(1+r2)1+ε ≤ Kr ≤ B

(1+r2)1+ε with ε > 0, A ≥ 0 and 0 ≤ B < 2ε, then

[(m− 1)λmin + 2− 4max{2, λmax}] ≥ 2[1 + (m− 1)(1− B

2ε
)− 4eA/2ε];

(iii) if − a2

1+r2 ≤ Kr ≤ b2

1+r2 with a ≥ 0 and b2 ∈ [0, 1
4
], then

[(m− 1)λmin + 2− 4max{2, λmax}]

≥ 2[1 + (m− 1)
1 +

√
1− 4b2

2
− 4

1 +
√

1 + 4a2

2
].

Proof If Kr satisfies (i), then by Lemma 4.3, we have on B(r)− {x0}, for every r > 0,

[(m− 1)λmin + 2− 4max{2, λmax}]
≥ (m− 1)2βr coth(βr) + 2− 4× 2αr coth(αr)

= 2[1 + βr coth(βr)(m− 1− 4α

β

coth(αr)
coth(βr)

)]

≥ 2[1 + 1× (m− 1)− 4α

β
)]

= 2[m− 4α

β
],
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where the second inequality is because the increasing function βr coth(βr) → 1 as r → 0,
and coth(αr)

coth(βr)
< 1, for 0 < β < α. Similarly, from Lemma 4.3, the above inequality holds for

cases (ii) and (iii) on B(r).
Theorem 4.5 Let (M, g) be an m-dimensional complete manifold with a pole x0.

Assume that the radial curvature Kr of M satisfies one of the following three conditions:
(i) if −α2 ≤ Kr ≤ −β2 with α ≥ β > 0 and (m− 1)β − 4α ≥ 0;
(ii) if − A

(1+r2)1+ε ≤ Kr ≤ B
(1+r2)1+ε with ε > 0, A ≥ 0, 0 ≤ B < 2ε and 1 + (m− 1)(1−

B
2ε

)− 4eA/2ε > 0;
(iii) if − a2

1+r2 ≤ Kr ≤ b2

1+r2 with a ≥ 0, b2 ∈ [0, 1
4
] and 1 + (m − 1) (1+

√
1−4b2)
2

−
4 (1+

√
1+4a2)
2

> 0.
If u : (M, g) → (N, h) is an f -stationary map and Λ− µ > 0, then

∫

B(ρ1)

f
||u∗h||2

4
dvg

ρΛ−µ
1

≤

∫

B(ρ2)

f
||u∗h||2

4
dvg

ρΛ−µ
2

(4.9)

for any 0 < ρ1 ≤ ρ2, where

Λ =





m− 4α
β

, if Kr satisfies (i),
1 + (m− 1)(1− B

2ε
)− 4eA/2ε, if Kr satisfies (ii),

1 + (m− 1) 1+
√

1−4b2

2
− 4 1+

√
1+4a2

2
, if Kr satisfies (iii).

(4.10)

In particular, if
∫

B(R)

f
||u∗h||2

4
dvg = o(RΛ−µ), then u is constant.

Proof From the proof of Theorem 4.1 for ϕ = 1 and Lemma 4.4, we have

d

dr

∫

B(r)

f
||u∗h||2

4
dvg

rΛ−µ
≥ 0.

Therefore we get the monotonicity formula
∫

B(ρ1)

f
||u∗h||2

4
dvg

ρΛ−µ
1

≤

∫

B(ρ2)

f
||u∗h||2

4
dvg

ρΛ−µ
2

for any 0 < ρ1 ≤ ρ2.
Theorem 4.6 Let M , Kr and Λ be as in Theorem 4.5. If u : (M, g) → (N, h) is an

f -stationary map and ∂f
∂r
≥ 0, then

∫

B(ρ1)

f
||u∗h||2

4
dvg

ρΛ
1

≤

∫

B(ρ2)

f
||u∗h||2

4
dvg

ρΛ
2

(4.11)

for any 0 < ρ1 ≤ ρ2. In particular, if
∫

B(R)

f
||u∗h||2

4
dvg = o(RΛ), then u is constant.
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Proof From Theorem 4.2 and ϕ = 1, we know that formula (4.11) is true.
We say the functional Φf (u) of u is slowly divergent if there exists a positive function

ψ(r) with
∫ ∞

R0

dr

rψ(r)
= +∞ (R0 > 0), such that

lim
R→∞

∫

B(R)

f ||u
∗h||2
4

ψ(r(x))
dvg < ∞. (4.12)

Theorem 4.7 Suppose u : (M, ϕ2g0) → (N, h) is an f -stationary map. If C0 − µ > 0,
ϕ satisfies (ϕ1), (ϕ2) and Φf (u) of u is slowly divergent, then u is constant.

Proof From the proof of Theorem 4.1, we have

(C0 − µ)
∫

B(R)

f
||u∗h||2

4
dvg ≤ R

∫

∂B(R)

f
||u∗h||2

4
ϕdsg. (4.13)

Now Suppose that u is a nonconstant map, so there exists R0 > 0 such that for R ≥ R0,
∫

B(R)

f
||u∗h||2

4
dvg ≥ c1, (4.14)

where c1 is a positive constant. From (4.13) and (4.14), we have
∫

∂B(R)

f
||u∗h||2

4
ϕdsg ≥ c1(C0 − µ)

R
(4.15)

for R ≥ R0.

lim
R→∞

∫

B(R)

f ||u
∗h||2
4

ψ(r(x))
dvg =

∫ ∞

0

dR

ψ(R)

∫

∂B(R)

f
||u∗h||2

4
ϕdsg

≥
∫ ∞

R0

dR

ψ(R)

∫

∂B(R)

f
||u∗h||2

4
ϕdsg

≥ c1(C0 − µ)
∫ ∞

R0

dR

Rψ(R)
= ∞,

which contradicts (4.12), therefore u is constant.
From the proof of Theorem 4.7, we immediately get the following.
Theorem 4.8 Suppose u : (M, ϕ2g0) → (N, h) is an f -stationary map. If ∂f

∂r
≥ 0, ϕ

satisfies (ϕ1), (ϕ2) and Φf (u) of u is slowly divergent, then u is constant.
Theorem 4.9 Let M , Kr and Λ be as in Theorem 4.5. If u : (M, g) → (N, h) is an

f -stationary map, Λ− µ > 0 and Φf (u) of u is slowly divergent, then u is constant.
Theorem 4.10 Let M , Kr and Λ be as in Theorem 4.5. If u : (M, g) → (N, h) is an

f -stationary map, ∂f
∂r
≥ 0 and Φf (u) of u is slowly divergent, then u is constant.

5 Constant Dirichlet Boundary-Value Problems

To investigate the constant Dirichlet boundary value problems for f -stationary map, we
begin with
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Definition 5.1 (see [11]) A bounded domain D ⊂ M with C1 boundary ∂D is called
starlike if there exists an interior point x0 ∈ D such that

g(
∂

∂rx0

, ν) ≥ 0, (5.1)

where ν is the unit outer normal to ∂D, and the vector field ∂
∂rx0

is the unit vector field such
that for any x ∈ (D − {x0}) ∪ ∂D, ∂

∂rx0
is the unit vector tangent to the unique geodesic

joining x0 and pointing away form x0.
It is obvious that any convex domain is starlike.
Theorem 5.2 Suppose u : (M, ϕ2g0) → (N, h) is an f -stationary map and D ⊂ M is

a bounded starlike domain with C1 boundary with the pole x0 ∈ D. Assume that C0−µ > 0
on D and ϕ satisfies (ϕ1), (ϕ2). If u|∂D ≡ P ∈ N , then u must be constant in D.

Proof Take X = r ∂
∂r

, where r = rx0 . From the proof of Theorem 4.1, we have

〈SΦf
,
1
2
LXg〉 ≥ (C0 − µ)f

||u∗h||2
4

, (5.2)

where C0 is a positive constant. Since u|∂D = P , du(η) = 0 for any tangent vector η of ∂D.
We can derive the following on ∂D:

SΦf
(X, ν) = rSΦf

(
∂

∂r
, ν)

= r[f
||u∗h||2

4
g(

∂

∂r
, ν)− fh(σu(

∂

∂r
), du(ν))]

= rg(
∂

∂r
, ν)[f

||u∗h||2
4

− f ||u∗h||2]

≤ −3rg(
∂

∂r
, ν)f

||u∗h||2
4

≤ 0. (5.3)

From (3.8), (5.2) and (5.3), we have

0 ≤
∫

B(r)

(C0 − µ)f
||u∗h||2

4
dvg ≤ 0, (5.4)

which implies that u(D) ≡ P .
From the proof of Theorem 5.2, we immediately get the following.
Theorem 5.3 Suppose u : (M, ϕ2g0) → (N, h) is an f -stationary map and D ⊂ M is a

bounded starlike domain with C1 boundary with the pole x0 ∈ D. Assume that ∂f
∂r
≥ 0 on

D and ϕ satisfies (ϕ1), (ϕ2). If u|∂D ≡ P ∈ N , then u must be constant in D.
Theorem 5.4 Let M , Kr and Λ be as in Theorem 4.5. Suppose u : (M, g) → (N, h) is

an f -stationary map, D ⊂ M is a bounded starlike domain with C1 boundary with the pole
x0 ∈ D and Λ− µ > 0. If u|∂D ≡ P ∈ N , then u must be constant in D.

Theorem 5.5 Let M , Kr and Λ be as in Theorem 4.5. Suppose u : (M, g) → (N, h) is
an f -stationary map, D ⊂ M is a bounded starlike domain with C1 boundary with the pole
x0 ∈ D and ∂f

∂r
≥ 0. If u|∂D ≡ P ∈ N , then u must be constant in D.
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与拉回度量相关泛函的f-稳态映射的刘维尔型定理

韩英波, 冯书香

(信阳师范学院数学与信息科学学院, 河南信阳 464000)

摘要: 本文研究了与拉回度量相关的广义泛函Φf . 利用f -应力能力张量的方法, 得到f -稳态映射的单

调公式, 消灭定理以及常Dirichlet边值问题在星型区域上的唯一常值解.
关键词: f -稳态映射; f -应力能量张量; 单调公式; 消灭定理
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