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Abstract: In the paper, we study an n-dimensional complete connected and oriented hyper-

surface MN in Hn+1(−1) with constant mean curvature and two distinct principal curvatures, one

of which is simple. By using the moving frames, we obtain that if the squared norm of second fun-

damental form of Mn satisfies a rigidity condition (1.3), the Mn is isometric to hyperbolic cylinder.
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1 Introduction

Let Mn+1(c) be an (n+1)-dimensional connected Riemannian space form with constant
sectional curvature c. According to c > 0, c = 0 or c < 0, it is called sphere space, Euclidean
space or hyperbolic space, respectively, and it denoted by Sn+1(c), Rn+1 or Hn+1(c). Let
Mn be an n−dimensional hypersurface in Mn+1(c). As it is well known there many rigidity
results with constant mean curvature, constant scalar curvature or constant k-th mean cur-
vature in Mn+1(c), for example, see [1–6] in Sn+1(c) or Rn+1 and [7–9] in hyperbolic space
Hn+1(c).

In [9], Wu proved the following theorem.
Theorem 1.1 Let Mn (n ≥ 3) be a complete hypersurface in Hn+1(−1) with constant

mean curvature H (|H| > 1) and two distinct principal curvatures with multiplicities n− 1,
1. Set

S± = −n +
n3H2

2(n− 1)
∓ n(n− 2)

2(n− 1)

√
n2H4 − 4(n− 1)H2. (1.1)

If the square length of the second fundamental form satisfies S ≤ S+ or S ≥ S−, then
S = S+ or S = S−, and Mn is isometric to hyperbolic cylinder Sn−1(λ2

+ − 1)×H1( 1
λ2

+
− 1)
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or Hn−1(λ2
− − 1)× S1( 1

λ2
−
− 1), here

λ± =
n|H| ±

√
n2H2 − 4(n− 1)

2(n− 1)
. (1.2)

In this note, we shall also investigate n-dimensional hypersurfaces with constant curva-
ture H (|H| > 1) in Hn+1(−1) and obtain the following result:

Theorem 1.2 Let Mn (n ≥ 3) be a complete hypersurface in Hn+1(−1) with constant
mean curvature H (|H| > 1) and two distinct principal curvatures with multiplicities n− 1,
1. If the square length of the second fundamental form satisfies

S+ ≤ S ≤ S−, (1.3)

then S = S+ or S = S−, and Mn is isometric to hyperbolic cylinder Sn−1(λ2
+−1)×H1( 1

λ2
+
−1)

or Hn−1(λ2
− − 1)× S1( 1

λ2
−
− 1), here

λ± =
n|H| ±

√
n2H2 − 4(n− 1)

2(n− 1)
. (1.4)

2 Preliminaries

Let Mn+1(c) be an (n + 1)-dimensional connected Riemannian space form with con-
stant sectional curvature c. Let Mn be an n-dimensional complete connected and oriented
hypersurface in Mn+1(c). We choose a local orthonormal frame e1, · · · , en, en+1 in Mn+1(c)
such that e1, · · · , en are tangent to Mn. Let ω1, · · · , ωn+1 be the dual coframe. We use the
following convention on the range of indices:

1 ≤ A,B, · · · ≤ n + 1; 1 ≤ i, j, · · · ≤ n.

The structure equations of Mn+1(c) are given by

dωA =
∑

B

ωAB ∧ ωB, ωAB + ωBA = 0, (2.1)

dωAB =
∑

C

ωAC ∧ ωCB + ΩAB, (2.2)

ΩAB = −1
2

∑
CD

KABCDωC ∧ ωD, (2.3)

KABCD = c(δACδBD − δADδBC). (2.4)

Restricting to Mn such that

ωn+1 = 0, ωn+1i =
∑

j

hijωj , hij = hji. (2.5)
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The structure equations of Mn are

dωi =
∑

j

ωij ∧ ωj , ωij + ωji = 0, (2.6)

dωij =
∑

k

ωik ∧ ωkj − 1
2

∑
k,l

Rijklωk ∧ ωl, (2.7)

Rijkl = c(δikδjl − δilδjk) + (hikhjl − hilhjk), (2.8)

n(n− 1)(r − c) = n2H2 − S, (2.9)

where n(n − 1)r is the scalar curvature, H is the mean curvature and S is the squared of
the second fundamental form of Mn.

Let Mn be an n (n ≥ 3) dimensional complete connected and oriented hypersurface in
Mn+1(c) with constant mean curvature and with two distinct principal curvatures, one of
which is simple. Without loss of generality , we may assume

λ1 = · · · = λn1 = λ, λn = µ, (2.10)

where λi for i = 1, · · · , n are the principal curvatures of Mn. We have

(n− 1)λ + µ = nH, S = (n− 1)λ2 + µ2. (2.11)

From (2.9) and (2.11), we have, for c = −1, that

λµ = (n− 1)(r + 1)− (n− 2)H2 + (n− 2)
√

H4 − (r + 1)H2, (2.12)

on Mn, or

λµ = (n− 1)(r + 1)− (n− 2)H2 − (n− 2)
√

H4 − (r + 1)H2, (2.13)

on Mn.

3 Proof of Theorem

Let Mn be a connected hypersurface in Hn+1(−1) with constant mean curvature and
two distinct principal curvatures λ, µ with multiplicities n− 1, 1. Since the multiplicites are
constant, it is easy to know that their eigenspaces are completely integrable. Let s be the
parameter of arc length of the goedesics corresponding to µ, and we may put ωn = ds. Then
λ and µ are locally functions of s. Let ω = |λ − H|− 1

n . In [9], B.Y. Wu got the following
equations:

d2ω

ds2
+ ω(−1 + H2 + (2− n)Hω−n + (1− n)ω−2n) = 0 (3.1)

for λ > H or

d2ω

ds2
+ ω(−1 + H2 + (n− 2)Hω−n + (1− n)ω−2n) = 0 (3.2)
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for λ < H. Integrating (3.1) and (3.2), we get

(
dω

ds
)2 + (−1 + H2)ω2 + 2Hω2−n + ω2−2n = C (3.3)

for λ > H or

(
dω

ds
)2 + (−1 + H2)ω2 − 2Hω2−n + ω2−2n = C (3.4)

for λ < H.
We first obtain the following propositions:
Proposition 3.1 Let Mn be an n (n ≥ 3)-dimensional complete connected hyper-

surface in Hn+1(−1) with constant mean curvature H (|H| > 1) and two distinct principal
curvatures λ and µ with multiplicities (n− 1) and 1, respectively. If λµ− 1 ≥ 0, then Mn is
isometric to hyperbolic cylinder Sn−1(λ2

+ − 1)×H1( 1
λ2

+
− 1) or Hn−1(λ2

− − 1)× S1( 1
λ2
−
− 1).

Proof Let λ and µ be the two distinct principal curvatures of Mn with multiplicities
(n− 1) and 1 respectively. Then, from nH = (n− 1)λ + µ and ω = |λ−H|− 1

n , we have the
following :

λµ− 1 = −1 + H2 + (2− n)Hω−n + (1− n)ω−2n (3.5)

for λ > H or

λµ− 1 = −1 + H2 + (n− 2)Hω−n + (1− n)ω−2n (3.6)

for λ < H.
Then, if λµ− 1 ≥ 0, we obtain

−1 + H2 + (2− n)Hω−n + (1− n)ω−2n ≥ 0 (3.7)

for λ > H or

−1 + H2 + (n− 2)Hω−n + (1− n)ω−2n ≥ 0 (3.8)

for λ < H. From (3.1) and (3.2), we have d2ω
ds2 ≤ 0. Thus dω

ds
is a monotonic function of

s ∈ (−∞,+∞). Therefore, ω(s) must monotonic when s tends to infinity. From (3.3) and
(3.4), we know that the positive function ω(s) is bounded from above. Since ω(s) is bounded
and is monotonic when s tends infinity, we find that both lims→+∞ ω(s) and lims→−∞ ω(s)
exist and then we have

lim
s→+∞

dω(s)
ds

= lim
s→−∞

dω(s)
ds

= 0. (3.9)

By the monotonicity of dω(s)
ds

, we see that dω(s)
ds

≡ 0 and ω(s) is constant. Then we have λ and
µ are constant, that is, Mn is isoparametric. According to Cartan [10], we know that Mn is
isometric to the hyperbolic cylinder Sn−1(λ2

+−1)×H1( 1
λ2

+
−1) or Hn−1(λ2

−−1)×S1( 1
λ2
−
−1).
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By using the same method in Proposition 3.1, we can obtain the following proposition:
Proposition 3.2 Let Mn be an n (n ≥ 3)-dimensional complete connected hyper-

surface in Hn+1(−1) with constant mean curvature H (|H| > 1) and two distinct principal
curvatures λ and µ with multiplicities (n− 1) and 1, respectively. If λµ− 1 ≤ 0, then Mn is
isometric to hyperbolic cylinder Sn−1(λ2

+ − 1)×H1( 1
λ2

+
− 1) or Hn−1(λ2

− − 1)× S1( 1
λ2
−
− 1).

Proof of Theorem 1.2 Since Mn is oriented and the mean curvature H is constant,
we can choose an orientation for Mn such that H > 0. From (2.9), we know that the
inequality S+ ≤ S ≤ S− is equivalent to

1
2(n− 1)2

[n2H2 − n
√

n2H4 − 4(n− 1)H2 − 2(n− 1)] (3.10)

≤ n(r + 1)− 2
n− 2

≤ 1
2(n− 1)2

[n2H2 + n
√

n2H4 − 4(n− 1)H2 − 2(n− 1)],

where n(n− 1)r is the scalar curvature of Mn.
We define the function

f(x) = (n− 1)2x2 − [n2H2 − 2(n− 1)]x + 1. (3.11)

Since f(0) = 1 and |H| = H > 1, we know that function (3.11) has two positive real roots.

x1,2 =
1

2(n− 1)2
[n2H2 ± n

√
n2H4 − 4(n− 1)H2 − 2(n− 1)]. (3.12)

It can be easily checked that x1 ≤ x2 and if x1 ≤ x ≤ x2, then f(x) ≤ 0.
Now we set x = n(r+1)−2

n−2
, from (3.10), we have

f(
n(r + 1)− 2

n− 2
) ≤ 0. (3.13)

If there exists a point p on Mn such that (2.12) and (2.13) hold at p, we have H2 = r+1
at p, from (2.9), we have S = nH2 at p, that is, p is a umbilical point on Mn, that is
contradiction to Mn has no umbilical points. Therefore, we only consider two cases:

Case I If (2.12) holds on Mn, we shall prove that −1 + λµ ≥ 0 on Mn. We consider
three subcases:

(a) If −1 + (n− 1)(r + 1)− (n− 2)H2 ≥ 0, then from (2.12), we have −1 + λµ ≥ 0 on
Mn.

(b) If −1 + (n− 1)(r + 1)− (n− 2)H2 < 0, suppose −1 + λµ < 0 on Mn, from (2.12),
we have

(n− 2)
√

H4 − (r + 1)H2 < −[−1 + (n− 1)(r + 1)− (n− 2)H2]. (3.14)

Therefore, we have

(n− 2)2

n2
{(n− 1)2[

n(r + 1)− 2
n− 2

]2 − [n2H2 − 2(n− 1)]
n(r + 1)− 2

n− 2
+ 1} > 0, (3.15)
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that is, f(n(r+1)−2
n−2

) > 0. This is a contradiction to (3.13), we deduce that −1 + λµ ≥ 0 on
Mn.

(c) If −1+ (n− 1)(r +1)− (n− 2)H2 ≥ 0 at a point p of Mn and −1+ (n− 1)(r +1)−
(n − 2)H2 < 0 at other points of Mn, in this case, from (a) and (b), we have −1 + λµ ≥ 0
on Mn.

Therefore, we know that if (2.12) holds on Mn, then −1+λµ ≥ 0 on Mn. By Proposition
3.1, we obtain that Mn is isometric to hyperbolic cylinder Sn−1(λ2

+ − 1) × H1( 1
λ2

+
− 1) or

Hn−1(λ2
− − 1)× S1( 1

λ2
−
− 1), and λ± = n|H|±

√
n2H2−4(n−1)

2(n−1)
.

Case II If (2.13) holds on Mn, we consider three subcases:

(d) If −1 + (n− 1)(r + 1)− (n− 2)H2 ≤ 0, then from (2.13), we have −1 + λµ ≤ 0 on
Mn.

(e) If −1 + (n− 1)(r + 1)− (n− 2)H2 > 0 on Mn, suppose −1 + λµ > 0 on Mn, from
(2.13), we have

(n− 2)
√

H4 − (r + 1)H2 < −1 + (n− 1)(r + 1)− (n− 2)H2. (3.16)

Therefore, we have

(n− 2)2

n2
{(n− 1)2[

n(r + 1)− 2
n− 2

]2 − [n2H2 − 2(n− 1)]
n(r + 1)− 2

n− 2
+ 1} > 0, (3.17)

that is, f(n(r+1)−2
n−2

) > 0. This is a contradiction to (3.13), we deduce that −1 + λµ ≤ 0 on
Mn.

(f) If −1 + (n− 1)(r + 1)− (n− 2)H2 ≤ 0 at a point p of Mn and −1 + (n− 1)(r + 1)−
(n − 2)H2 > 0 at other points of Mn, in this case, from (d) and (e), we have −1 + λµ ≤ 0
on Mn.

Therefore, we know that if (2.13) holds on Mn, then −1+λµ ≤ 0 on Mn. By Proposition
3.2, we obtain that Mn is isometric to hyperbolic cylinder Sn−1(λ2

+ − 1) × H1( 1
λ2

+
− 1) or

Hn−1(λ2
− − 1)× S1( 1

λ2
−
− 1), and λ± = n|H|±

√
n2H2−4(n−1)

2(n−1)
.

This proves Theorem 1.2.

Remark Wu in Theorem 1.1 (Theorem 5.2 in [9]) considered the complete hyper-
surfaces in Hn+1(−1) which satisfied the condition: S ≥ S− or S ≤ S+. He obtained the
existence of the global solutions of (3.3) or (3.4) under some conditions for C. From the exis-
tence of global solutions, he proved the Theorem 1.1. On the other hand, we in Theorem 1.2
consider the complete hypersurfaces in Hn+1(−1) which satisfy the condition: S+ ≤ S ≤ S−.
We obtain that the sectional curvature λµ− 1 of Mn satisfies that λµ− 1 ≥ 0 or λµ− 1 ≤ 0.
From Proposition 3.1 or Proposition 3.2, we can prove Theorem 1.2.
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双曲空间形式中具有常平均曲率的超曲面

韩英波, 冯书香

(信阳师范学院数学与信息科学学院, 河南信阳 464000)

摘要: 本文研究了双曲空间形式Hn+1(−1)中具有常平均曲率及两个离散主曲率(其中一个主曲率

是1 -重)的完备连通可定向的n -维超曲面Mn. 利用活动标架, 得到如果Mn的基本形式的模长满足刚性条

件(1.3), 那么Mn同构双曲柱面.
关键词: 超曲面；双曲空间形式；常平均曲率
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