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HYPERSURFACES WITH CONSTANT MEAN
CURVATURE IN A HYPERBOLIC SPACE
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Abstract: In the paper, we study an n-dimensional complete connected and oriented hyper-
surface MY in H"*!(—1) with constant mean curvature and two distinct principal curvatures, one
of which is simple. By using the moving frames, we obtain that if the squared norm of second fun-
damental form of M™ satisfies a rigidity condition (1.3), the M™ is isometric to hyperbolic cylinder.
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1 Introduction

Let M™!(c) be an (n+1)-dimensional connected Riemannian space form with constant
sectional curvature c. According to ¢ > 0, ¢ =0 or ¢ < 0, it is called sphere space, Euclidean
space or hyperbolic space, respectively, and it denoted by S"*1(c), R**! or H""!(c). Let
M™ be an n—dimensional hypersurface in M"*1(c). As it is well known there many rigidity
results with constant mean curvature, constant scalar curvature or constant k-th mean cur-
vature in M"™*1(c), for example, see [1-6] in S"T!(c) or R"*! and [7-9] in hyperbolic space
H"(c).

In [9], Wu proved the following theorem.

Theorem 1.1 Let M™ (n > 3) be a complete hypersurface in H"*!(—1) with constant
mean curvature H (|H| > 1) and two distinct principal curvatures with multiplicities n — 1,
1. Set

n3H?

_ n(n —
S =t o) T o=

2)
1)

If the square length of the second fundamental form satisfies S < S, or S > S_, then
S =08, 0rS=5_,and M" is isometric to hyperbolic cylinder S"~ (A1 — 1) x H'(5% — 1)
7

V/n2H* — 4(n — 1)H2. (1.1)
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or H* '(A\2 —1) x S'(5% — 1), here

_ n|H|+ Vn2H? —4(n - 1)

2= (1.2)

In this note, we shall also investigate n-dimensional hypersurfaces with constant curva-
ture H (JH| > 1) in H"*'(—1) and obtain the following result:

Theorem 1.2 Let M™ (n > 3) be a complete hypersurface in H"*1(—1) with constant
mean curvature H (|H| > 1) and two distinct principal curvatures with multiplicities n — 1,

1. If the square length of the second fundamental form satisfies
S, <85<8, (1.3)

then S = S, or S = S_, and M™ is isometric to hyperbolic cylinder S"~* (A2 —1)x H' ({5 —1)

2
or H" 1(A2 — 1) x S'(5% — 1), here

_ n|H|+£ Vn2H? —4(n - 1)
B 2(n —1)

(1.4)

2 Preliminaries

Let M"*'(c) be an (n + 1)-dimensional connected Riemannian space form with con-
stant sectional curvature c. Let M"™ be an n-dimensional complete connected and oriented
hypersurface in M"!(c). We choose a local orthonormal frame ey, -+ , e,, e,,1 in M"1(c)
such that ey, .- , e, are tangent to M"™. Let wy,- - ,wpr1 be the dual coframe. We use the

following convention on the range of indices:
1<AB,---<n+1; 1<4,4,---<n.

The structure equations of M"!(c) are given by

dwy = ZWAB ANwp, wap+wpa =0, (2.1)
B

dwap = ZWAC ANwep + ag, (2.2)
C
1

Qap = —3 Z Kaipcpwe N wp, (2.3)

cD
Kuapep = ¢(0acdpp —dapdpc). (2.4)

Restricting to M™ such that

Wp41 = 0, Wn41i = Z hijw]‘, hij = hji. (2.5)
J
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The structure equations of M"™ are

1
dwz’j = ;wik N Wy — 5 ; Rijklwk N wy, (27)
Rijii = c(0ixdj1 — 6ubji) + (hikhji — hithjx), (2.8)
n(n—1)(r —c) =n*H? - S, (2.9)

where n(n — 1)r is the scalar curvature, H is the mean curvature and S is the squared of
the second fundamental form of M™.

Let M™ be an n (n > 3) dimensional complete connected and oriented hypersurface in
M™*1(c) with constant mean curvature and with two distinct principal curvatures, one of

which is simple. Without loss of generality , we may assume

M==X, = A, Ay =p, (2.10)
where \; for ¢ = 1,--- ,n are the principal curvatures of M"™. We have
(n—DA+p=nH, S=(n-—1)\+p> (2.11)

From (2.9) and (2.11), we have, for ¢ = —1, that

M= (n—1)(r+1)—(n—2)H 2)\/H* — (r + 1)H?, (2.12)

on M™, or

M= (n—1)(r+1)—(n—-2)H 2)\/H* — (r + 1)H?, (2.13)
on M™.
3 Proof of Theorem

Let M™ be a connected hypersurface in H"*1(—1) with constant mean curvature and
two distinct principal curvatures A, g with multiplicities n — 1, 1. Since the multiplicites are
constant, it is easy to know that their eigenspaces are completely integrable. Let s be the
parameter of arc length of the goedesics corresponding to p, and we may put w, = ds. Then
X and g are locally functions of s. Let w = [\ — H|~%. In [9], B.Y. Wu got the following

equations:

d2
Tj Fw(—1+H2+ (2 -n)Ho ™+ (1 —n)w ™) =0 (3.1)
s
for A > H or
d2w 2 —n —2n
+w(-1+H*+(n—2)Ho "+ (1 —n)w™ ") =0 (3.2)

ds?
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for A < H. Integrating (3.1) and (3.2), we get

d
(£)2 +(—1+ HY)w? + 2Hw* ™" + w22 = C (3.3)
for A > H or
dw o 2\, 2 2-n 2-2n
(%) +(-1+ H)w? —2Hw" " +w =C (3.4)
for A < H.

We first obtain the following propositions:

Proposition 3.1 Let M™ be an n (n > 3)-dimensional complete connected hyper-
surface in H"*1(—1) with constant mean curvature H (|H| > 1) and two distinct principal
curvatures A and g with multiplicities (n — 1) and 1, respectively. If Ay —1 > 0, then M™ is
isometric to hyperbolic cylinder S"~1(A2 — 1) x Hl(é —1or "' (X2 — 1) x S' (53 — 1).

Proof Let A and p be the two distinct principal curvatures of M™ with multiplicities

1

(n—1) and 1 respectively. Then, from nH = (n — 1)A + p and w = |A — H|~ =, we have the

following :

M—1=-14+H*+2-n)Ho "+ (1 —n)w™ " (3.5)
for A > H or

M—1=-14+H*+(n—-2)Ho "+ (1 —n)w™ " (3.6)

for A < H.
Then, if Ay — 1 > 0, we obtain

1+ H*+2-n)Hw ™"+ (1 -n)w " >0 (3.7)
for A > H or
1+ H*+(n—2)Huo ™"+ (1 —n)w™>" >0 (3.8)

for A < H. From (3.1) and (3.2), we have ‘fs‘;’ < 0. Thus % is a monotonic function of

s € (—o0,+00). Therefore, w(s) must monotonic when s tends to infinity. From (3.3) and

(3.4), we know that the positive function w(s) is bounded from above. Since w(s) is bounded
and is monotonic when s tends infinity, we find that both lim,_, . w(s) and lim,_, o, w(s)

exist and then we have

. dw(s) . dw(s)
1 =1 =0. 3.9
N P R (39)
By the monotonicity of d“:l(ss) , we see that d“:igs) = 0 and w(s) is constant. Then we have A and

w are constant, that is, M™ is isoparametric. According to Cartan [10], we know that M™ is
isometric to the hyperbolic cylinder 5”1 (A2 —1) x H' (5% —1) or H" (A2 —1) x S (5 —1).
z Z
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By using the same method in Proposition 3.1, we can obtain the following proposition:
Proposition 3.2 Let M™ be an n (n > 3)-dimensional complete connected hyper-
surface in H"*1(—1) with constant mean curvature H (|H| > 1) and two distinct principal
curvatures A and g with multiplicities (n — 1) and 1, respectively. If Ay —1 < 0, then M™ is
isometric to hyperbolic cylinder S"~1(X3 — 1) x Hl(é =1 or H"7' (N2 — 1) x S' (53 — 1).
Proof of Theorem 1.2 Since M" is oriented and the mean curvature H is constant,
we can choose an orientation for M™ such that H > 0. From (2.9), we know that the

inequality Sy < .S < S_ is equivalent to

1

m[rﬂﬂ? —ny/n2H* — 4(n — 1)H? — 2(n — 1)] (3.10)
n(r+1)—2 1 S ST 3
— §2(n71)2[nH +ny/n2H* —4(n —1)H? — 2(n — 1)],

where n(n — 1)r is the scalar curvature of M™.
We define the function

f(x) = (n—1)22% - [n?*H?* - 2(n — 1)]z + 1. (3.11)

Since f(0) =1 and |H| = H > 1, we know that function (3.11) has two positive real roots.

Ty = WWH? +ny/n2H* —4(n — 1)H? — 2(n — 1)]. (3.12)
It can be easily checked that x; < 25 and if z; < x < 25, then f(z) <0.

Now we set z = %, from (3.10), we have

n(r+1)—2
n—2

£( ) < 0. (3.13)

If there exists a point p on M™ such that (2.12) and (2.13) hold at p, we have H*> = r+1
at p, from (2.9), we have S = nH? at p, that is, p is a umbilical point on M™, that is
contradiction to M™ has no umbilical points. Therefore, we only consider two cases:

Case I If (2.12) holds on M™, we shall prove that —1 + A\ > 0 on M™. We consider
three subcases:

(a) If =1+ (n—1)(r+1) — (n —2)H? > 0, then from (2.12), we have —1 + A > 0 on
M™.

(b) If =14+ (n—1)(r+1)— (n—2)H? <0, suppose —1 + Ap < 0 on M™, from (2.12),
we have

(n—2)\/H*— (r+1)H2 < —[-1+ (n—1)(r+1) — (n — 2)H?]. (3.14)

Therefore, we have

(n —2)*

(r+1)—2

{(n— 1)2[” nr+1) -2

> = [n*H?* —2(n — 1)]”( ——+ 1} >0, (3.15)

n—2
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that is, f(%) > 0. This is a contradiction to (3.13), we deduce that —1 + Ap > 0 on
M™.

(c) If =14+ (n—1)(r+1)—(n—2)H? > 0 at a point p of M™ and =1+ (n—1)(r+1) —
(n — 2)H? < 0 at other points of M™, in this case, from (a) and (b), we have —1 + Ay > 0
on M™.

Therefore, we know that if (2.12) holds on M™, then —1+Au > 0 on M™. By Proposition
3.1, we obtain that M™ is isometric to hyperbolic cylinder S~ '(X3 — 1) x Hl(é —1) or

. | H| /o7 =41
H' ' (N2 — 1) x §* (5 — 1), and Ay = "RV A 02D,

2(n—1)
Case IT If (2.13) holds on M", we consider three subcases:

(d) f =14+ (n—=1)(r+1) — (n—2)H? <0, then from (2.13), we have —1 + A\ < 0 on
M".

() f =14+ (n—1)(r+1)—(n—2)H* >0 on M", suppose —1 + A > 0 on M™, from
(2.13), we have

(n—2)\/H*—(r+1)H2 < 1+ (n—1)(r+1)— (n—2)H>. (3.16)
Therefore, we have

r+1)—2

(n _22)2 ]2 _ [n2H2 _ 2(n _ 1)]”( —

((n— 1)2[n(r+ 1)—2

1 1
- R +1}>0,  (3.17)

that is, f(%) > (. This is a contradiction to (3.13), we deduce that —1 + Ay < 0 on
M".

() f—1+(n—-1)(r+1)—(n—2)H* <0 at a point pof M and =1+ (n—1)(r+1)—
(n — 2)H? > 0 at other points of M", in this case, from (d) and (e), we have —1 + Au < 0
on M".

Therefore, we know that if (2.13) holds on M™, then —1+Au < 0 on M". By Proposition
3.2, we obtain that M™ is isometric to hyperbolic cylinder S*~1(A3 — 1) x Hl(ﬁ —1) or

Hn—l()\2_ o 1) % Svl(}\L2 o 1)7 and )\i _ n|H\:|:\/'rm

2(n—1)

This proves Theorem 1.2.

Remark Wu in Theorem 1.1 (Theorem 5.2 in [9]) considered the complete hyper-
surfaces in H"*1(—1) which satisfied the condition: S > S_ or S < S,. He obtained the
existence of the global solutions of (3.3) or (3.4) under some conditions for C. From the exis-
tence of global solutions, he proved the Theorem 1.1. On the other hand, we in Theorem 1.2
consider the complete hypersurfaces in H"+1(—1) which satisfy the condition: S; < S < S_.
We obtain that the sectional curvature Ap — 1 of M™ satisfies that Au—1>0or Au—1 < 0.
From Proposition 3.1 or Proposition 3.2, we can prove Theorem 1.2.
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