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1 Introduction

Throughout this paper, H will denote a complex separable infinite dimensional Hilbert
space. Let B(H) denote the algebra of all bounded linear operators on H and K(H) the ideal
of compact operators in B(H). We recall that, for T ∈ B(H), the spectrum σ(T ) collects
the complex numbers λ for which T −λI fails to be invertible, equivalently is either not one
to one or not onto. An operator T ∈ B(H) is called upper semi-Fredholm if it has closed
range R(T ) with finite dimensional null space N(T ), and if R(T ) has finite co-dimension,
T ∈ B(H) is called a lower semi-Fredholm operator. We call T ∈ B(H) Fredholm if it has
closed range with finite dimensional null space and its range of finite co-dimension. For
a semi-Fredholm operator, let n(T ) = dimN(T ) and d(T ) = dimH/R(T ) = codimR(T ).
The index of a semi-Fredholm operator T ∈ B(H) is given by ind(T ) = n(T ) − d(T ). The
ascent of T , asc(T ), is the least non-negative integer n such that N(T n) = N(T n+1) and
the descent, des(T ), is the least non-negative integer n such that R(T n) = R(T n+1). An
operator T ∈ B(H) is called Weyl if it is Fredholm of index zero. And T ∈ B(H) is called
Browder if it is Fredholm“of finite ascent and descent”: equivalently [4, Theorem 7.9.3]
if T is Fredholm and T − λI is invertible for sufficiently small λ 6= 0 in C. The essential
spectrum σe(T ), the Weyl spectrum σw(T ), the Browder spectrum σb(T ), the Wolf spectrum
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σSF (T ) of T ∈ B(H) are defined by (see [4, 5]): σe(T ) = {λ ∈ C : T − λI is not Fredholm},
σw(T ) = {λ ∈ C : T − λI is not Weyl}, σb(T ) = {λ ∈ C : T − λI is not Browder},

σSF (T ) = {λ ∈ C : T − λI is not semi− Fredholm}.

Let σ0(T ) = σ(T )\σb(T ), ρw(T ) = C\σw(T ), ρb(T ) = C\σb(T ), ρSF (T ) = C\σSF (T ) and

σSF+(T )(σSF−(T )) = {λ ∈ C : T − λIis not upper (lower) semi− Fredholm}.

We call T ∈ B(H) is bounded from below if N(T ) = {0} and R(T ) is closed, σa(T ) =
{λ ∈ C : T − λI is not bounded from below} denotes the approximate point spectrum and
σs(T ) = {λ ∈ C : T − λI is not surjective}.

In this note, we investigate the stability of single valued extension property under com-
pact perturbations for the Helton class operators. Also, we characterize 2×2 upper triangular
operator matrices for which the single valued extension property is stable under compact
perturbations.

2 SVEP and Its Perturbations

In [6], Helton initiated the study of operators which satisfy an identity of the form

T ∗m −
(

m

1

)
T ∗m−1T + · · ·+ (−1)mT m = 0. (1)

We need further study for this class of operators based on (1). Let R and S be in B(H) and
let C(R, S) : B(H) → B(H) be defined by C(R, S)(A) = RA−AS. Then

C(R, S)k(I) =
k∑

j=0

(−1)k−j

(
k

j

)
RjSk−j .

If there is an integer k ≥ 1 such that an operator S satisfies C(R, S)k(I) = 0, we say that
S belongs to the Helton class of R with order k. We denote this by S ∈ Heltonk(R). Let’s
begin with a lemma.

Lemma 2.1 Let S ∈ Heltonk(R), then:

(1) σa(S) ⊆ σa(R), σSF+(S) ⊆ σSF+(R);

(2) σs(R) ⊆ σs(S), σSF−(R) ⊆ σSF−(S);

(3) For any λ ∈ C, N(S − λI) ⊆ N [(R− λI)k];

(4) σp(S) ⊆ σp(R).
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Proof For any λ ∈ C, we have the following equation:

k∑
j=0

(
k

j

)
(R− λI)j(λI − S)k−j

=
k∑

j=0

j∑
r=0

k−j∑
s=0

(−1)k−(s+r)

(
k

j

)(
j

r

)(
k − j

s

)
Rrλj+s−rSk−(j+s)

=
k∑

j=0

(−1)k−j

(
k

j

)
RjSk−j = 0.

Then




[(λI − S)k−1 +

(
k

1

)
(R− λI)(λI − S)k−2

+ · · ·+
(

k

k − 1

)
(R− λI)k−1](λI − S) = −(R− λI)k,

(R− λI)[

(
k

1

)
(λI − S)k−1

+ · · ·+
(

k

k − 1

)
(R− λI)k−2(λI − S) + (R− λI)k−1] = −(λI − S)k.

From the first equation, we can prove that σa(S) ⊆ σa(R), σSF+(S) ⊆ σSF+(R), σp(S) ⊆
σp(R) and for any λ ∈ C, N(S − λI) ⊆ N [(R − λI)k]. Using the second equation, we get
that σs(R) ⊆ σs(S) and σSF−(R) ⊆ σSF−(S).

An operator T on a complex Hilbert space H is said to have the single valued extension
property(SVEP for short), denoted by T ∈(SVEP), if for every open set U ⊆ C, the only
analytic solution f(·) : U → H of the equation (T − λI)f(λ) = 0 for all λ ∈ U is the zero
function on U . Clearly, T has the SVEP if intσp(T ) = ∅, where σp(T ) denotes the point
spectrum of T . The single valued extension property is possessed by many important classes
of operators such as hyponormal operators and decomposable operators. The interested
reader is referred to (see [1, 3, 9]) for more details. Next we study the Helton class of an
operator which has the single valued extension property.

Theorem 2.1 Let S ∈ Heltonk(R). If R ∈ B(H) has the single valued extension
property, then S has the single valued extension property.

Proof Let f : D → H be an analytic function such that (λI − S)f(λ) ≡ 0, where
D ⊆ C is open. By (4) in Lemma 2.1, we know that (R − λI)kf(λ) ≡ 0. Since R ∈ B(H)
has the single valued extension property, it follows that (R−λI)k−1f(λ) ≡ 0. By induction,
we have f(λ) ≡ 0. So we conclude that S has the single valued extension property.

In order to study the stability of the single valued extension property, we first give a
lemma (see [10], Theorem 1.3).

Lemma 2.2 Let T ∈ B(H), then T + K ∈(SVEP) for all K ∈ K(H) if and only if
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(1) intσSF (T ) = ∅;
(2) ρSF (T ) is connected.
If R ∈ K(H) and S ∈ Heltonk(R), from Lemma 2.1, we know that σSF+(S) = {0}.

Then σSF (S) = {0} since S has the single valued extension property. For any polynomial p,
σSF (p(S)) = {p(0)}. Thus int σSF (p(S)) = ∅ and ρSF (p(S)) is connected. So we have that

Corollary 2.1 If R ∈ K(H) and S ∈ Heltonk(R), then p(S) + K has the single valued
extension property for any polynomial p and any K ∈ K(H).

In [10], if ρSF (T ) is connected, then σ(T + K) = σSF (T + K) ∪ σ0(T + K) for all
K ∈ K(H).

Theorem 2.2 Let S ∈ Heltonk(R). If R + K has the single valued extension property
for all K ∈ K(H), then S + K has the single valued extension property for all K ∈ K(H) if
and only if σSF+(S) = σSF−(S).

Proof We know that σ(R) = σSF (R) ∪ σ0(R) since ρSF (R) is connected (Lemma 2.2).
It can induce that σSF+(R) = σSF−(R).

If S + K has the single valued extension property for all K ∈ K(H), we know that
ρSF (S) is connected. Then σ(S) = σSF (S) ∪ σ0(S). This implies that σSF+(S) = σSF−(S).

For the converse, if σSF+(S) = σSF−(S), we know from Lemma 2.1 that

σSF+(S) = σSF+(R) = σSF−(R) = σSF−(S).

Then

σSF (S) = σSF+(S) ∩ σSF−(S) = σSF+(S) = σSF+(R) ∩ σSF−(R) = σSF (R).

So ρSF (S) = ρSF (R) and intσSF (S) = intσSF (R). Since R+K has the single valued extension
property for all K ∈ K(H), by Lemma 2.2, S + K has the single valued extension property
for all K ∈ K(H).

From the proof of Theorem 2.2, we can get: Let S ∈ Heltonk(R), if R has the single
valued extension property, then S + K has the single valued extension property for all
K ∈ K(H) if and only if σSF+(S) = σSF−(S) and R + K has the single valued extension
property for all K ∈ K(H).

If S ∈ Heltonk(R) and R ∈ Heltonk(S), then

στ (S) = στ (R),

where στ ∈ {σa, σSF+ , σSF− , σp, σs}. By Theorem 2.1 and Theorem 2.2, we have
Corollary 2.2 Let S ∈ Heltonk(R) and R ∈ Heltonk(S), then
(1) R has the single valued extension property if and only if S has the single valued

extension property;
(2) R + K has the single valued extension property for all K ∈ K(H) if and only if

S + K has the single valued extension property for all K ∈ K(H).
If S and R have the single valued extension property, does S +R have the single valued

extension property? So far we don’t know the answer about this question. But we consider
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the special cases of this question. We start with the case of Helton class. If S ∈ Heltonk(R)
and SR = RS, then R ∈ Heltonk(S). By Corollary 2.2, there is the result

Corollary 2.3 Let S ∈ Heltonk(R) and SR = RS, then
(1) R has the single valued extension property if and only if S has the single valued

extension property;
(2) R + K has the single valued extension property for all K ∈ K(H) if and only if

S + K has the single valued extension property for all K ∈ K(H);
(3) S + K has the single valued extension property for all K ∈ K(H) if and only if

S + R + K has the single valued extension property for all K ∈ K(H).
Proof We only need to prove (3). It is easy to calculate that C(2R, R + S)k(I) = 0,

that is R + S ∈ Heltonk(2R). It is clear that 2R · (R + S) = (R + S) · 2R, then from (2),
S + K has the single valued extension property for all K ∈ K(H) if and only if R + K has
the single valued extension property for all K ∈ K(H) if and only if 2R + K = 2(R + K

2
)

has the single valued extension property for all K ∈ K(H) if and only if S + R + K has the
single valued extension property for all K ∈ K(H).

If SN = NS and Nk = 0 for some k ∈ N, then S ∈ Heltonk(S + N) and S(S + N) =
(N + S)S; Also, we can prove that tS ∈ Heltonk(tS + N) for any t ∈ N. Then

Corollary 2.4 Let SN = NS. If Nk = 0 for some k ∈ N, then
(1) S has the single valued extension property if and only if S +N has the single valued

extension property;
(2) S + K has the single valued extension property for all K ∈ K(H) if and only if

S + N + K has the single valued extension property for all K ∈ K(H);
(3) S + K has the single valued extension property for all K ∈ K(H) if and only if

tS + N + K has the single valued extension property for all K ∈ K(H) and for any t ∈ N.
In Corollary 2.4, if we let N ∈ B(H) be a quasi-nilpotent operator, we can get that

S + K has the single valued extension property for all K ∈ K(H) if and only if S + N + K

has the single valued extension property for all K ∈ K(H). In fact, we know that N is a
Riesz operator. Then ρSF (S + N) = ρSF (S). From Lemma 2.2, we can prove the claim.

Example 2.1 Let T1, T2 ∈ B(`2) be defined by

T1(x1, x2, · · · ) = (x1, 0, x3, x4, · · · ); T2(x1, x2, · · · ) = (0, x1, 0, 0, · · · ),

and let S =

(
T1 0
0 0

)
, N =

(
0 0
0 T2

)
, then SN = NS, N2 = 0 and S + K has the

single valued extension property for all K ∈ K(`2 ⊕ `2). Thus tS + N + K has the single
valued extension property for all K ∈ K(H) and for any t ∈ N.

In [2], the single valued extension property of upper triangular operator matrices has
been studied. We continue this work. In the following, we characterize 2×2 upper triangular
operator matrices for which the single valued extension property is stable under compact
perturbations. Let us give some lemmas which will be used in the main result (Lemma 2.10
in [8] and Theorem 3.1 in [7] or Corollary 4.3 in [10]).
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Lemma 2.3 Let T ∈ B(H) and suppose that ∅ 6= T ⊆ σSF (T ), then given ε > 0, there

exists a compact operator K with ‖K‖ < ε such that T + K =

(
N C

0 A

)
, where N is a

normal operator and σ(N) = σSF (N) = T .
Lemma 2.4 Let T ∈ B(H). If σ(T ) = ∂Ω, where Ω is a bounded connected open

subset of C, then, given ε > 0, there exists K ∈ K(H) with ‖K‖ <

√
m(Ω)

π
+ ε such that

σ(T + K) = Ω. Here m(·) denotes the planar Lebesgue measure.

Theorem 2.3 Let T =

(
R S

0 N

)
∈ B(H ⊕ H), then T + K has the single valued

extension property for all K ∈ K(H ⊕H) if and only if
(1) R + K1 and N + K2 have the single valued extension property for all Ki ∈ K(H)

(i = 1, 2);
(2) σw(T + K) = σb(T + K) for all K ∈ K(H ⊕H).
Proof Suppose T + K has the single valued extension property for all K ∈ K(H ⊕H).

Then intσSF (T ) = ∅ and ρSF (T ) is connected, also σw(T + K) = σb(T + K) for all K ∈
K(H ⊕H).

First, we will prove that intσSF (R) = ∅ and ρSF (R) is connected. If intσSF (R) 6= ∅,
then there exists λ0 ∈ σSF (R) and δ > 0 such that Bδ(λ0) ⊆ σSF (R). Since intσSF (T ) = ∅
and T has the single valued extension property, there must exist λ1 ∈ Bδ(λ0) such that
T − λ1I is an upper semi-Fredholm operator. Using the equation

T − λ1I =

(
R− λ1I S

0 N − λ1I

)
=

(
I 0
0 N − λ1I

)(
I S

0 I

)(
R− λ1I 0

0 I

)
,

we know that R − λ1I is upper semi-Fredholm. It is in contradiction to the fact that
λ1 ∈ Bδ(λ0) ⊆ σSF (R). For the connected property of ρSF (R), if ρSF (R) is not connected,
then we can choose a bounded component Ω of ρSF (R). Since ∂Ω ⊆ σSF (R), by Lemma

2.3, there exists K11 ∈ K(H) such that R + K11 =

(
N1 B

0 A

)
, where N1 is normal and

σ(N1) = σSF (N1) = ∂Ω. By Lemma 2.4, we can choose a compact operator K ′ such
that σ(N1 + K ′) = Ω. We have the fact that N1 + K ′ − λI is Weyl for any λ ∈ Ω. Let

K12 =

(
K ′ 0
0 0

)
, then K12 ∈ K(H) and R + K11 + K12 =

(
N1 + K ′ B

0 A

)
. Let

K1 = K11 + K12 and K =

(
K1 0
0 0

)
, we get that T + K =

(
R + K1 S

0 N

)
. Since

intσSF (T ) = ∅ , there exists λ1 ∈ Ω such that T + K − λ1I is upper semi-Fredholm with
ind(T + K − λ1I) ≤ 0. Thus T + K − λ2I is bounded from below for some λ2 ∈ Ω since
T + K has the single valued extension property. This induces that R + K1−λ2I is bounded
from below. Also N1 +K ′−λ2I is bounded from below. But since N1 +K ′−λ2I is Weyl, we
know that N1 +K ′−λ2I is invertible. It is in contradiction to the fact that σ(N1 +K ′) = Ω.
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Now we prove that intσSF (R) = ∅ and ρSF (R) is connected, then R + K1 has the single
valued extension property for all K1 ∈ K(H).

Second, using the same way we will prove that intσSF (N) = ∅ and ρSF (N) is connected.
If intσSF (N) 6= ∅, then there exists λ0 ∈ σSF (N) and δ > 0 such that Bδ(λ0) ⊆ σSF (N).
Since intσSF (T ) = intσSF (R) = ∅ and both T and R have the single valued extension
property, there must exist λ1 ∈ Bδ(λ0) such that T − λ1I and R − λ1I are upper semi-
Fredholm operators. From the fact that ρSF (T ) and ρSF (R) are connected, we know that
T − λ1I and R − λ1I are Browder operators (see [10], Corollary 2.5). Then there exists
λ2 ∈ Bδ(λ0) such that T − λ2I and R − λ2I are invertible. This induces that N − λ2I is
invertible. It is a contradiction. If ρSF (N) is not connected, then we can choose a bounded
component Ω of ρSF (N). Similar to the preceding proof, we can choose K2 ∈ K(H) such that

N +K2 =

(
N2 + K ′ B

0 A

)
, where N2 is normal, K ′ is compact and σ(N2 +K ′) = Ω. Also,

N2 + K ′− λI is Weyl for any λ ∈ Ω. Let K =

(
0 0
0 K2

)
and T + K =

(
R S

0 N + K2

)
.

Since intσSF (T ) = intσSF (T + K) = ∅, there exists λ1 ∈ Ω such that T + K − λ1I is upper
semi-Fredholm. Then R − λ1I is upper semi-Fredholm. But since ρSF (T ) and ρSF (R) are
connected, we know that both T + K −λ1I and R−λ1I are Browder operators. Thus there
is λ2 ∈ Ω such that both T +K−λ2I and R−λ2I are invertible. We get that N +K2−λ2I

is invertible, which implies that N2 +K ′−λ2I is bounded from below. Then N2 +K ′−λ2I is
invertible since N2 +K ′−λ2I is Weyl. It is in contradiction to the fact that σ(N2 +K ′) = Ω.
We now get that intσSF (N) = ∅ and ρSF (N) is connected, so N + K2 has the single valued
extension property for all K2 ∈ K(H).

For the converse, suppose R+K1 and N +K2 have the single valued extension property
for all Ki ∈ K(H) (i = 1, 2). First we need to prove that T has the single valued extension
property if R and N have the single valued extension property. Let f = f1⊕f2 : D → H⊕H

be an analytic function such that (λI − T )f(λ) ≡ 0, then we have that

{
(λI −R)f1(λ)− Sf2(λ) = 0,

(λI −N)f2(λ) = 0.

Since N has the single valued extension property, it follows that f2(λ) = 0. Then

(λI −R)f1(λ) = 0.

Thus f1(λ) = 0 since R has the single valued extension property. We get that f(λ) ≡
0, which means that T has the single valued extension property. Second we prove that
intσSF (T ) = ∅ and ρSF (T ) is connected. Since ρSF (R) and ρSF (N) are connected, it follows
that σSF+(R) = σSF (R) and σSF+(N) = σSF (N). Using the fact that σSF (T ) = σSF+(T ) ⊆
σSF+(R) ∪ σSF+(N) = σSF (R) ∪ σSF (N) and intσSF (R) = intσSF (N) = ∅, we get that
intσSF (T ) ⊆ intσSF (R)∪ intσSF (N) = ∅, that is intσSF (T ) = ∅. If ρSF (T ) is not connected,
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then we can choose a bounded component Ω of ρSF (T ). Thus we can choose K ∈ K(H⊕H)
such that

T + K =

(
N3 + K1 B

0 A

)
: H1 ⊕H2 → H1 ⊕H2 = H ⊕H,

where N3 is normal, K1 is compact and σ(N3 + K1) = Ω. Let K =

(
K11 K12

K21 K22

)
, where

Kij is compact (i, j = 1, 2). Then

T + K =

(
N3 + K1 B

0 A

)
=

(
R + K11 S + K12

K21 N + K22

)

=

(
R + K11 S + K12

0 N + K22

)
+

(
0 0

K21 0

)
.

Since intσSF (R) = intσSF (N) = ∅, there exists λ1 ∈ Ω such that R − λ1I and N − λ1I are
semi-Fredholm. Using the fact that both ρSF (R) and ρSF (N) are connected, R + K11− λ1I

and N + K22 − λ1I are Browder (see [10], Corollary 3.5). Then T + K − λ1I is Weyl. By
σw(T + K) = σb(T + K), there exists λ2 ∈ Ω such that T + K − λ2I is invertible, this
means that N3 + K1 − λ2I is invertible. It is a contradiction again. So intσSF (T ) = ∅ and
ρSF (T ) is connected, which means that T + K has the single valued extension property for
all K ∈ K(H ⊕H).

Similar to the proof of Theorem 2.3, let T = (Tij) ∈ B(⊕n
k=1H) be an n × n upper

triangular operator matrix, then T + K has the single valued extension property for all
K ∈ K(⊕n

k=1H) if and only if Tii + Ki has the single valued extension property for all
Ki ∈ K(H) (i = 1, 2, · · · , n) and σw(T + K) = σb(T + K) for all K ∈ K(⊕n

k=1H).
If N ∈ B(H) is a Riesz operator, then intσSF (N) = ∅ and ρSF (N) is connected. This

means that N + K has the single valued extension property for all K ∈ K(H). Then

Corollary 2.5 Let T =

(
R S

0 N

)
∈ B(H ⊕H). If N ∈ B(H) is a Riesz operator,

then T+K has the single valued extension property for all K ∈ K(H⊕H) if and only if R+K1

has the single valued extension property for all K1 ∈ K(H) and σw(T + K) = σb(T + K) for
all K ∈ K(H ⊕H).

Let T =

(
R S

0 N

)
∈ B(H⊕H). If RS = SN , we claim that σa(T ) = σa(R)∪σa(N).

In fact, we only need to prove that σa(R)∪σa(N) ⊆ σa(T ). Let λ0 /∈ σa(T ), then λ0 /∈ σa(R).
First we will prove that N(N−λ0I) = {0}. If x0 ∈ N(N−λ0I), by (R−λ0I)S = S(N−λ0I),
then (R − λ0I)Sx0 = 0. This induces that Sx0 = 0 since R − λ0I is bounded from below.

We can find that

(
0
x0

)
∈ N(T − λ0I). But since N(T − λ0I) = {0}, it follows that

x0 = 0. So N(N − λ0I) = {0}. Second we will prove that R(N − λ0I) is closed. Let
(N−λ0I)yn → y0(n →∞), then S(N−λ0I)yn → Sy0(n →∞). By (R−λ0I)S = S(N−λ0I),
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(R − λ0I)Syn → Sy0(n → ∞). Since R − λ0I is bounded from below, there is k > 0 such
that ‖(R − λ0I)x‖ ≥ k‖x‖ for all x ∈ H. Then {Syn} is a Cauchy sequence. Suppose
Syn → y1(n →∞). Then

(T − λ0I)

(
0
yn

)
=

(
Syn

(N − λ0I)yn

)
→

(
y1

y0

)
(n →∞)).

From the fact that R(T − λ0I) is closed, there exists

(
x1

x2

)
such that

(T − λ0I)

(
x1

x2

)
=

(
y1

y0

)
.

Then (R − λ0I)x1 + Sx2 = y1 and (N − λ0I)x2 = y0. This implies that y0 ∈ R(N − λ0I),
which means that R(N − λ0I) is closed. So λ0 /∈ σa(N) and hence σa(T ) = σa(R) ∪ σa(N).

Corollary 2.6 Let T =

(
R S

0 N

)
∈ B(H ⊕H) and RS = SN , then T + K has the

single valued extension property for all K ∈ K(H ⊕H) if and only if
(1) Both R and N have the single valued extension property;
(2) intσSF (T ) = ∅;

(3) For any K =

(
K1 K12

K21 K2

)
∈ K(H ⊕H), σb(T +K) = σSF+(R +K1)∪σSF+(N +

K2).
Proof Suppose T+K has the single valued extension property for all K ∈ K(H⊕H). By

Theorem 2.3, ρSF (T ), ρSF (R) and ρSF (N) are connected. Then σSF+(R+K1) = σb(R+K1)
and σSF+(N + K2) = σb(N + K2) for any K1,K2 ∈ K(H). Since

T + K =

(
R + K1 K12

0 N + K2

)
+

(
0 0

K21 0

)

and

(
0 0

K21 0

)
is compact for any K =

(
K1 K12

K21 K2

)
∈ K(H ⊕ H), it follows that

σb(T + K) = σSF+(T + K) ⊆ σSF+(R + K1) ∪ σSF+(N + K2). Let λ0 /∈ σb(T + K), then
λ0 /∈ σSF+(R + K1). But since ρSF (R) is connected, we know that R + K1 − λ0I is a
Weyl operator. Then N + K2 − λ0I is Weyl, which means that λ0 /∈ σSF+(N + K2). So

σb(T + K) = σSF+(R + K1) ∪ σSF+(N + K2) for any K =

(
K1 K12

K21 K2

)
∈ K(H ⊕H).

For the converse, we only need to prove that ρSF (T ) is connected. If ρSF (T ) is not
connected, then we can choose a bounded component Ω of ρSF (T ). Then we can choose

K ∈ K(H ⊕H) such that T + K =

(
N3 + K ′

1 B

0 A

)
, where N3 is normal, K ′

1 is compact
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and σ(N3 + K ′
1) = Ω. Similar to the proof in Theorem 2.3, we know that T has the single

valued extension property and

T + K =

(
N3 + K ′

1 B

0 A

)
=

(
R + K1 S + K12

K21 N + K2

)
.

Since intσSF (T ) = ∅ and T has the single valued extension property, there exists λ0 ∈ Ω such
that T − λ0I is bounded from below. Then R − λ0I and N − λ0I are bounded from below
because σa(T ) = σa(R)∪σa(N). This implies that λ0 /∈ σSF+(R+K1)∪σSF+(N +K2), thus
λ0 /∈ σb(T + K). Then there exists λ1 ∈ Ω such that T + K − λ1I is invertible. It follows
that N3 + K ′

1 − λ1I is invertible, a contradiction.

Let T =

(
R S

0 N

)
∈ B(H ⊕ H) and N ∈ Heltonk(R). If σSF+(N) = σSF−(N) and

R+K1 has the single valued extension property for all K1 ∈ K(H), then ρSF (R) = ρSF (N).
Thus ρSF (T ) = ρSF (R) ∩ ρSF (N) = ρSF (R) is connected. If R ∈ Heltonk(N), ρSF (R) is
connected and N + K2 has the single valued extension property for all K2 ∈ K(H), also
we have that ρSF (T ) = ρSF (R) ∩ ρSF (N) is connected. By Lemma 2.1, Theorem 2.2 and
Theorem 2.3, we have

Corollary 2.7 (1) Let T =

(
R S

0 N

)
∈ B(H⊕H) and N ∈ Heltonk(R), then T +K

has the single valued extension property for all K ∈ K(H ⊕ H) if and only if σSF+(N) =
σSF−(N) and R + K1 has the single valued extension property for all K1 ∈ K(H);

(2) Let T =

(
R S

0 N

)
∈ B(H ⊕H) and R ∈ Heltonk(N), then T + K has the single

valued extension property for all K ∈ K(H ⊕ H) if and only if ρSF (R) is connected and
N + K2 has the single valued extension property for all K2 ∈ K(H).
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Helton类算子及单值扩张性质

董志清1 ,曹小红2, 赵海燕2

(1. 重庆交通大学理学部, 重庆 400074)

(2. 陕西师范大学数学与信息科学学院, 陕西西安 710062)

摘要: 本文研究了Helton类算子在紧摄动下单值扩张性质的稳定性, 同时研究了2× 2上三角算子矩阵

在紧摄动下单值扩张性质的稳定性. 利用半Fredholm域的特点, 获得了2 × 2上三角算子矩阵具有单值扩张

性质的稳定性的充分必要条件.
关键词: 单值扩张性质; 紧摄动; Helton类
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