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Abstract: In this paper, we consider the interchanging relation between two weak Orlicz-
Hardy spaces associated concave functions of martingales. By the means of martingale transform,
we prove the result that the elements in weak Orlicz-Hardy space wHg, are none other than the
martingale transforms of those in wHe,, where ®; is a concave Young function, ®; is a concave
or a convex Young function and ®; < P, in some sense. It extends the corresponding results in
the literature from strong-type spaces to the setting of weak-type spaces, from norm inequalities
to quasi-norm inequalities as well.
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1 Introduction

In this paper, we extend some classical results of martingale transforms from the strong-
type spaces (normed space) to the setting of weak-type spaces (quasi-normed space). More
precisely, we are interested in the characterization about the interchanging between weak
Orlicz-Hardy space wHge, and wHg, in terms of Burkholder’s martingale transforms.

The first motivation in this paper comes from the classical results of Chao and Long
[2], as well as the similar results of Garsia [3] and Weisz [10]. The concept of martingale
transforms was first introduced by Burkholder [1]. It is shown that the martingale trans-

¢

forms are especially useful to study the relations between the “predictable” Hardy spaces
of martingales, such as H,, which is associated with the conditional quadratic variation of
martingales. The “characterization” of such spaces via martingale transforms were provided

in [2]: the elements in the space H,, are none other than the martingale transforms of those
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in ‘H,, for 0 < p; < p < co. All of those results can be found also in the monographs of
Long [7] and Weisz [11].

Generally, the similar conclusions were obtained also in the case of Orlicz-Hardy spaces
for martingales by Ishak and Mogyorddi [4], Meng and Yu [8] and Yu [14-15], according to
different situations, respectively.

On the other hand, we also note that in recent years, the weak spaces, including their
applications to harmonic analysis and martingale theory, have been got more and more
attention. See for example Jiao [5], Nakai [9], Weisz [12-13]. Particularly, Liu, Hou and Wang
[6] firstly introduced the weak Orlicz-Hardy spaces of martingales and discussed its basic
properties and some martingale inequalities. Jiao [5] investigated the embedding relations
between weak Orlicz martingale spaces.

This article will focus its attention on the relationship between the weak Orlicz-Hardy
spaces wHg, and wHe,, where ®; and ®, are two generalized Young functions (not need
to be convex) and ®; < ¥, in some sense (see Definition 2.1). It will be shown that the
elements in weak Orlicz-Hardy space wHg, are none other than the martingale transforms
of those in wHg,, which extend the corresponding results in Chao and Long [2] from strong-
type spaces to the setting of weak-type spaces. In this paper, we are interested in the case

&, is not convex.

2 Notations and Lemmas

Let (2, F,P) be a probability measure space, let (F,,n € N) be a sequence of nonde-
creasing sub-o-algebras of F such that F = \/ F,, and let f = (f,,n € N) be a martingale
adapted to (F,,n € N). Denote by df = (df,,n € N) the sequence of martingale differences
with df, = fn — fu_1, n > 1, and set fo = 0, Fo = {0,Q}. The conditional quadratic
variation of a martingale f is defined by

=

2

5ulf) = (iE(dfiIQIFm))é, S(f) = (iEudfﬂml)) ,

Then for 0 < p < oo, we define martingale Hardy space as below

Hy = {f = (fa,n € N) 2 5(f) € Ly and || fl3, == [[s(f)[l, < oo}

A non-decreasing function ®(x) is called a generalized Young function (convex or concave), if
O(z) = @(t)dt,z > 0, where () is a left-continuous, non-negative function on [0, +00).
0
When ®(z) is a convex Young function, we can define the inverse of ¢(t) by 1 (s) := inf{t :
o(t) > s}. Tt is well known that its integral ¥(z) = / Y (t)dt is a convex function and ¥(x)
0
is called the Young’s complementary function of ®. The upper index and lower index are
defined by
se@) e ool
) 0<z<oo (b(x)

by = Sup
0<x<oo q)(.’lﬁ
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If pp < +00, then the inverse function ®~* of ® exists and has the form

o Hz) = /OI me (t)dt.

If @ is convex then mg(t) is a decreasing function and we can easily see that (see Ishak and
Mogyorddi [4])
1
me(t) = ———, t>0.
p(®-1(1))

A function ®(x) is said to satisfy the A, condition (denote ® € A,) if there is a constant
C' such that ®(2t) < C®(t) for all ¢ > 0. It is well known that if ®(z) is a convex function
with ps < 400 then & € A, and if ®(x) is a concave function with gg > 0 then & € A,.

Let ®(x) be a generalized Young function. We say that the random variable f belongs
to the weak Orlicz space wLe = wLe(Q, F,P) if there exists an ¢ > 0 such that ®(£)P(|f] >
t) < 4oc for all ¢t > 0. In this case we put

Uf lors = inf{c >0 (I)(E)IP’(W S <1, VS o}.

The class wLg is said to be a weak Orlicz space. Some basic facts on weak Orlicz spaces
were discussed in Liu, Hou and Wang [6]. For example, | - ||wL, 1S & quasi-norm, wlLg is a

quasi-Banach space, and Ly < wLg. If || f|lwr, < 400, then

sup<b(#)uv(|f| S <l

>0 N fllwee

We define the weak Orlicz-Hardy spaces of martingales as below

wHe == {f = (fu,n €N) : s(f) € wLo and || fllwre = [5(f)lwre < o0}

A new type of partial ordering between pairs of Young functions was introduced by
[14-15] as below.

Definition 2.1 [14-15] Let ®;, ®5 be two generalized Young functions. We call that
®, is more convex than ®;, &5 = &; or &; <X $, in symbols, if the composition <I>f1 o ®, is
a convex function.

Lemma 2.1 (see [16]) Let ®; < &5 be two generalized Young functions having lower
index gg, > 0 and upper index pg, < co. Then gg, , > 0 and ps, , < co. More exactly, we
have that

(i) 522 < go,, < 3225

<

pz‘)f’l 1‘5’1 ’
.o P P
(11) i < Po,, ﬁ'
Remark 2.1 Since @4 »(x) is a convex Young function, we denote by o1 2(z) and ¢ 2(z)

the density functions such that ®; »(z) = / ¢1,2(t)dt and its Young’s complementary func-
0

tion Wy o(x) = / 1,2(t)dt, respectively.
0
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Remark 2.2 It is shown in Lemma 2.1 that @, 5(z) = ®;' o ®y(z) has finite upper

index, then the inverse function ®; 2( )= ®," 0 ®,(x) of ®;5(z) exists and it has the form

mae, ,(t)dt, x> 0.
0
Since @4 o(x) is convex, then its inverse function @f%(w) is concave, therefore mg, ,(z) is a

decreasing function and we also have that

1

ma, ,(r) = ——————.
' $1,2 0 q)l,é(z)

Lemma 2.2 (sce [6]) Let ® € A,, then there exists a constant K¢ > 1 depending only
on @, such that

1f + gllwee < Kol fllwes + 9llwrs), Vf,g € Wle.

Let v = (v,,n € N) be a process adapted to (F,,,n € N), the martingale transform 7,
for a given martingale f is defined by T, f = (T}, fn,n € N) where T, f,, := > v;_1 - df;. It

can easily be seen that T, f is still a martingale.
The Lemma below is well known and can be found in Long [7] and Weisz [11].
Lemma 2.3 (see [7, 13]) Let f = (fn,n € N) be a martingale. Then f,, converges a.s.
on the set of {w: s(f) < co}.

3 Main Results and Their Proofs

At first, we prove a necessary lemma, which can be seen as a weak version of the
generalized Holder’s inequality and has an independent existence value.

Lemma 3.1 Let ®; be a concave Young function with ¢¢, > 0, &5 a concave Young
function with ¢4, > 0 or a convex Young function with pgs, < +00, and let &1 =X P,
@, 5(x) = @] o ®y(x) with Young’s complementary function ¥y »(z). If f € wLa,, g €

wLg 0w, ,, then f-g € wLg, and we have

||f ’ g||wL<1>1 < 2K’1’1 ||f||WL<1>2 : ||9HWL<I’10\I/1'2' (31>

Proof For any f € wlg, and g € WLa, 0w, ,, if || fllwLa, - ||g|\qu>1wL2 =0, then (3.1)
is obvious. Now we assume that ||f|lwrs, - [|9llwis 0w, , > 0- For the sake of convenience,
denote || fllwrs, = A and ||gllwLe, .0, , = B- Because (@12, ¥, ) is a pair of conjugate Young

functions, by Young’s inequality, we have that

If gl <o lo (If!>+q,12<\gl>

Since ¢, > 0 and 0 < qg, < pgp, < +00, &1, Py € Ay. Applying Lemma 2.2, we obtain

I 9llwrs . |/] lg]
1 < - RN . .
A-B Ke, Hq)l °®2<A)‘WL(I +H\Pl (B)’WL% (32)
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Because 0 < A = || f|lwra, < +00, so @, (%)IF’(W >t) <1 for all ¢ > 0. Since both &,
and @, are continuous and bijective from [0, +00) to itself, then for any s > 0, there exists
a t > 0 such that ®,(s) = ®5(t/A). Moreover, for any s > 0, we have

D1 (s)P(P7 " 0 Bo(|f]/A) > 5) = ®1(s)P(D2(| f]/A) > Pi(s))
= Qu(s)P(D2(|f]/A) > Pa2(t/A)) = ©2(t/A)P(f] > 1) < 1.
This implies that H<I>1_10<I>2 (%) Hqu, < 1. Similarly, we can prove that H\IILQ (%)

Substituting these to (3.2), then (3.1) is proved.

Theorem 3.1 Let ®; be a concave Young function with ¢g, > 0, @3 a concave Young

||WL[>1 S L.

function with ¢, > 0 or a convex Young function with pg, < +oo, and ®; X P5. Let
f=(fn,n € N) € wHs,, and define the martingale transform 7'(f) by

Tfo=0, a.s., Tf, = Zmpm ) - dfs, n>1.

Then the martingale T'(f) = (T f,.,n € N) belongs to wHge, and

1T () llwrta, < 11®27 0 Po(s()llwra, < IS llwrta, (3.3)

Additionally, {T'f,,}n>1 converges a.s. to a limit 7' f.
Proof Setting so(f) = 0, for all i > 1, we have E(|dfi|?|Fi_1) = s?(f) — s?_,(f), and

E(|d(T f)*|Fi-1) = E(ma, ,(si(H)ldfi*| Fir) = ma, ,(si(f)) - E(|dfil*| Fi-1)-

Then for all n > 1, we have

su(T(f)) ZE\dTﬁHE o-mesz (57(f) = s7_4(f))-

The sequence {s,(f)}n>1 is non-negative and non-decreasing, the function mg, ,(z) is non-

negative and decreasing, so for all ¢ > 1, we have

m, ,(s:(F)(s7(f) = si-1(f))
[ma, , (si(f))(si(f) = si1 ()] - [ma o (s:(f)(s:(f) + si-1(f))]
[ma, , (si(f))(5i(f) = sic1 ()] - [ma, o (s:(f)s:(f) +ma, , (si1(f))si—1(f)]

si(f) si(f) si—1(f)
/ mq>1‘2 (t)dt . (/ mq>112 (t)dt + / 7’7’Z<I>112 (t)dt)
si—1(f) 0 0

[(I)l_é(si(f)) - (I)l_é(Sifl(f))] : [‘I)l_é(&(f)) + éi;(sifl(f))]
= [eTi(s(M)]” — [@Tasia ()]

Consequently, for any n > 1, we get

IN

IN

20 = 3 ([#3600)° - (B3] = [#33a0)]"
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In other words, we have that s(T(f)) < @fé(s(f)) a.s.. Given f € wHg,, then [[s(f)|lwr,, =
[ fllwrs, < +oco. By the homogeneity of quasi-norm, we may assume that |[s(f)|lwrs, = 1

for simplicity. Then

sup @, (O)P(s(f) > t) = sup<I>1<” 7 )t )P(s(f) >t) <1.

t>0 t>0 ||va1>1

Since both ®; and ®, are bijective from [0, +00) to itself, for any s € (0, +00), there exists
at € (0,+00), such that ®;(t) = ®5(s). For any s > 0, we have that

Dy (s)P(R15(s(f) > 5) = Da(s)P(R5" 0 i(s(f)) > 5) = Pa(s)P(P1(5(f)) > Pa(s))
= O (OP(P1(s(f)) > @1(t)) = P1(H)P(s(f) > ) < 1.
This means that ®;5(s(f)) € WLe, and [|®73(5(f))llwre, < I5(f)llwLs, - Since

t t

(i) T > 0 < () e > 0 <1

then [[s(T(f))llwza, < IPT2(8(Nlwea, < I5(f)llwra, - This means that T(f) € wHa, and

1T () llwrta, < 1927 0 Po(s()llwra, < 1f llwrta,

The inequality (3.3) is proved.
Moreover, if we denote ||®," o 1 (s(f)llwre, = A, then

. 1
P(®5" 0 @1(s(f)) >t) < By (t/A) vt > 0.

Note that tliin Dy(t/A) = 400, so

P(®;1 0 ®,(s(f)) = +00) = lim P(ﬂ{@ 0@, (s(f ))>k})

1
< Jm P@Temel) > m < Jim gy = O

On the other hand, since s(T'(f)) < ®;* o ®,(s(f)), then {s(T(f)) < +oo} D {®;*
®,(s(f)) < +o0}. Hence, we have that

1>P(s(T(f)) < +o0) > P(;' 0 ®y(s(f)) < +00)
= 1-P(®;' 0 ®,(s(f)) = +o0) = 1.

This means that s(T'(f)) < +oo a.s.. Consequently, by Lemma 2.3, {T'f,,},>1 converges a.s.

to a limit T'f.,. The proof is completed.
Theorem 3.2 Let the generalized Young functions ®; and ®,, the martingales f and

T(f) be as in Theorem 3.1. Then

1Fllwre, < 2V2Ka, llpr2 0 @1a(s(llwtaon, ,  IT() wrta, -
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Proof With so(T(f)) =0, we have

E(ldT fi*| Fie1) = si(T(f)) = s; 1 (T(f))

for all ¢ > 1. From the representation of T'f, figuring in the statement of Theorem 3.1, we

have AT |
dfy| = — 5
U e )
(if me, ,(si(f)) = 0, then we can add an € > 0 to each s;(f) and at the end let ¢ — 0).
Therefore, by Abel’s rearrangement, we have
]

S2(f) = iE(|dez’|2|-7:i 1) ZE[<mq>|1dQTfl(|f)))2

"L SH(T(f) - s (T(f)
2 )

n

= ) [SHT() = s (T(F)] - 21 (@ (si(F)))

=1

= (T(f)) 901 2( 12(5n(f)))
- Z ST ]2 2( @145 () — FEa(@T3(s:(1)].

Noticing that both the sequences {s,(T(f))}n>0 and {¢120®7 3(sn(f))}nz0 are nonnegative
and nondecreasing, then we get that

s2(f) < 255(T(f)) - 3 2(®15(5a(f)), n>0.
Therefore
s(f) < V2(T(f)) - p12(D73(s(1)))-

Thus applying Lemma 3.1, we have that

V2|[s(T(f)) - o12(@12(5())) i,
2V2Ka, |s(T(F)llwza, - [P12(@12(5(N)vLa,on, ,
2V2Ka, | T(f)lwra, - l12(PT2(s(P)lwtayo, -

IN

1 e,

IN

This proves the assertion.

Now, combining Theorem 3.1 and 3.2, we obtain the following corollary, one of the main
results of the present article.

Corollary 3.1 Let ®; be a concave Young function with gg, > 0, ®5 a concave Young
function with ¢g, > 0 or a convex Young function with pe, < +o00, and ®; <X ®,. Then for
any martingale f = (f,,n € N) € wHg,, there exists a martingale g = (g,,n € N) € wHag,,
such that f is the martingale transform of g. Namely, we have

n

fo=0,as., f,= Zvi_l ~dg;, n>1,

i=1



8 Journal of Mathematics Vol. 37

where v; = 120 @f%(sl(f)) (1=0,1,2,3,---). We have

HUOOHWL@]o\I/LQ < max{l, (p¢’1,2 - 1)||f||WH<I>1} (34)

and
I9llwrta, < 1957 0 P1(s(F)llwra, < f lwrt, -

Proof From Theorem 3.1 and 3.2, only the inequality (3.4) needs to be proved. In

fact, since (®; 2, ¥y 2) is a pair of conjugate Young functions, so
upr2(u) = @1 2(u) + Uy 2(p12(n)), Yu > 0. (3.5)
Because pg, , = ilil?) %, then
Doy 5 P12(w) > upro(u), Vu>0. (3.6)
By (3.5) and (3.6), we get
Pa, ,Pr2(u) > @1 o(u) + Vi a(p12(u), Yu>0,
and then
U1 2(p1,2(w) < (po,, — 1)P12(u), Yu>0. (3.7)
Substituted u in (3.7) by ®13(s(f)), we have
U1 (012 0 @1o(5())) < (P, . — 1)P1a(P15(s(f))) < (pay . — 1) - s(f). (3.8)
Employing (3.8), on the one hand, by the convexity of ¥, 5, for all ¢ > 0, we have

t Uy 5(t)
maX{L (p‘bll - ]‘)Hs(f)HWL<1>1 }> =M (max{l? (p@l,z - 1)||S(f)||WL<I>1}>

Uy 5(t)
o <<p¢1,2 =GN ) 3.9)

®, 0 ‘1/1,2 <

On the other hand, for any ¢t > 0, we have

P(pr20®@75(s(f)) >1) = P(T1a(pr20@75(s(f)) > ¥ia(t))
< P((I)‘I’l,z - 1)S(f) > \IJI,Q(t))~ (310)

Since f € wHg,, we have s(f) € wLg,, furthermore, we have (pg, , — 1)s(f) € wlag,

t00, and [|(pe, » — 1)s()llwze, = Bars = DIs(Hllwze, = (o, = 1)l Fllwrea, - Therefore for
any u > 0, we have

u

CI’l(n(p@l,Z “sDllre,

>]P’(<pq>m —1)s(f)>u) <1 (3.11)
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From (3.9), (3.10) and (3.11), for any ¢ > 0, we have that

t
max{l, (pqh,z -

e q’( )||f||wH<p1}>P( ° Bl > 1)

t
= ®,00T P od s
! 1’2<max{1,<p¢1,2—1>|| Pllwra.} (120 @12(s(£)) > 1)

\11172(15) — s
S ®1<||( ) ((p<1>12 ) (f) > \Ill 2(t>)

Po,, — 1)S(f>||WL<1>1

This implies that

H/UOOHWL&lo\I/LZ = ||901,2 o (I)l_é(s(f))”Wchlo\pLz

> maX{L (p¢’1,2 - 1)HfHWHq>1}'

A
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