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1 Introduction

Let u : (Mm, g) → (Nn, h) be a smooth map between Riemannian manifolds (Mm, g)
and (Nn, h). Recently, Kawai and Nakauchi [1] introduced a functional related to the pull-
back metric u∗h as follows:

Φ(u) =
1
4

∫

M

||u∗h||2dvg

(see [2–5]), where u∗h is the symmetric 2-tensor defined by

(u∗h)(X, Y ) = h(du(X), du(Y ))

for any vector fields X, Y on M and ||u∗h|| is given by

||u∗h||2 =
m∑

i,j=1

[h(du(ei), du(ej))]2

with respect to a local orthonormal frame (e1, · · · , em) on (M, g). The map u is stationary
for Φ if it is a critical point of Φ(u) with respect to any compact supported variation of u.
Asserda [6] introduced the following functional ΦF by

ΦF (u) =
∫

M

F (
||u∗h||2

4
)dvg,
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where F : [0,∞) → [0,∞) is a C2 function such that F (0) = 0 and F ′(t) > 0 on [0,∞). The
map u is F -stationary for Φ if it is a critical point of Φ(u) with respect to any compact sup-
ported variation of u. Following [6], Han and Feng in [5] introduced the following functional
Φf by

Φf (u) =
∫

M

f(x)
||u∗h||2

4
dvg, (1.1)

where f : (M, g) → (0,+∞) is a smooth function. They derived the first variation formula
of Φf and introduced the f -stress energy tensor SΦf

associated to Φf . Then, by using the
f -stress energy tensor, they obtained the monotonicity formula and vanishing theorems for
stationary map for the functional Φf (u) under some conditions on f .

The theory of harmonic maps was developed by many researchers so far, and a lot
of results were obtained (see [7, 8]). Lichnerowicz in [9] (also see [7]) introduced the f -
harmonic maps, generalizing harmonic maps. Since then, there were many results for f -
harmonic maps such as [10–14]. Ara [15] introduced the notion of F -harmonic map, which is
a special f -harmonic map and also is a generalization of harmonic maps, p-harmonic maps
or exponentially harmonic maps. Since then, there were many results for F -harmonic maps
such as [16–19].

On the other hand, Fardon and Ratto in [20] introduced generalized harmonic maps
of a certain kind, harmonic maps with potential, which had its own mathematical and
physical background, for example, the static Landu-Lifschitz equation. They discovered
some properties quite different from those of ordinary harmonic maps due to the presence of
the potential. After this, there were many results for harmonic map with potential such as
[21, 22], p-harmonic map with potential such as [23], F -harmonic map with potential such
as [24], f -harmonic map with potential such as [25] and F -stationary maps with potential
such as [4].

In this paper, we generalize and unify the concept of critical point of the functional Φ.
For this, we define the functional Φf,H by

Φf,H(u) =
∫

M

[f(x)
||u∗h||2

4
−H ◦ u]dvg, (1.2)

where H is a smooth function on Nn. If H = 0, then we have Φf,H = Φf . If H = 0 and
f = 1, then we have Φf,H = Φ. Let

ut : (Mm, g) → (Nn, h) (−ε < t < ε)

be a variation of u, i.e., ut = Ψ(t, .) with u0 = u, where Ψ : (−ε, ε) ×M → N is a smooth
map. Let Γ0(u−1TN) be a subset of Γ(u−1TN) consisting of all elements with compact
supports contained in the interior of M . For each ψ ∈ Γ0(u−1TN), there exists a variation
ut(x) = expu(x)(tψ) (for t small enough) of u, which has the variational field ψ. Such a
variation is said to have a compact support. Let

DψΦf,H(u) =
dΦf,H(ut)

dt
|t=0.
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Definition 1.1 A smooth map u is called f -stationary map with potential H for the
functional Φf,H(u), if

DV Φf,H(u) =
dΦf,H(ut)

dt
|t=0 = 0

for V ∈ Γ0(u−1TN).
It is known that du(X) ∈ Γ(u−1TN) for any vector field X of M . If X has a compact

support which is contained in the interior of M , then du(X) ∈ Γ0(u−1TN).
Definition 1.2 A smooth map u is called weakly f -stationary map with potential H

for the functional Φf,H(u) if Ddu(X)Φf,H(u) = 0 for all X ∈ Γ0(TM).
Remark 1.1 From Definition 1.1 and Definition 1.2, we know that f -stationary maps

with potential H must be weakly f -stationary maps with potential H, that is, the weakly
f -stationary maps with potential H are the generalization of the f -stationary maps with
potential H.

In this paper, we investigate weakly f -stationary maps with potential H. By using the
stress-energy tensor, we obtain some Liouville type theorems for weakly f -stationary maps
with potential under some conditions on H.

2 Preliminaries

Let ∇ and N∇ always denote the Levi-Civita connections of M and N respectively. Let
∇̃ be the induced connection on u−1TN defined by ∇̃XW =N ∇du(X)W , where X ∈ Γ(TM)
and W ∈ Γ(u−1TN). We choose a local orthonormal frame field {ei} on M . We define the
tension field τΦf,H

(u) of u by

τΦf,H
(u) = −δ(fσu) +N ∇H ◦ u = τΦf

(u) +N ∇H ◦ u, (2.1)

where σu =
∑

j h(du(.), du(ej))du(ej), which was defined in [1].
Under the notation above we have the following:
Lemma 2.1 [5] (The first variation formula) Let u : M → N be a C2 map. Then

d

dt
Φf,H(ut)|t=0 = −

∫

M

h(τΦf,H
(u), V )dvg, (2.2)

where V = d
dt

ut|t=0.
Let u : M → N be a weakly f -stationary map with potential H and X ∈ Γ0(TM).

Then from Lemma 2.1 and the definition of weakly f -stationary maps with potential H, we
have

Ddu(X)Φf,H(u) = −
∫

M

h(τΦf,H
(u), du(X))dvg = 0. (2.3)

Recall that for a 2-tensor field T ∈ Γ (T ∗M ⊗ T ∗M), its divergence divT ∈ Γ (T ∗M) is
defined by

(divT )(X) =
m∑

i=1

(∇ei
T )(ei, X), (2.4)
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where X is any smooth vector field on M . For two 2-tensors T1, T2 ∈ Γ(T ∗M ⊗T ∗M), their
inner product is defined as follows:

〈T1, T2〉 =
m∑

i,j=1

T (ei, ej)T2(ei, ej), (2.5)

where {ei} is an orthonormal basis with respect to g. For a vector field X ∈ Γ(TM), we
denote by θX its dual one form, i.e., θX(Y ) = g(X, Y ), where Y ∈ Γ(TM). The covariant
derivative of θX gives a 2-tensor field ∇θX :

(∇θX)(Y, Z) = (∇Y θX)(Z) = g(∇Y X, Z). (2.6)

If X = ∇ϕ is the gradient field of some C2 function ϕ on M , then θX = dϕ and∇θX = Hessϕ.
Lemma 2.2 (see [26, 27]) Let T be a symmetric (0, 2)-type tensor field and let X be

a vector field, then

div(iXT ) = (divT )(X) + 〈T,∇θX〉 = (divT )(X) +
1
2
〈T,LXg〉, (2.7)

where LX is the Lie derivative of the metric g in the direction of X. Indeed, let {e1, · · · , em}
be a local orthonormal frame field on M . Then

1
2
〈T, LXg〉 =

m∑
i,j=1

1
2
〈T (ei, ej), LXg(ei, ej)〉

=
m∑

i,j=1

T (ei, ej)g(∇ei
X, ej) = 〈T,∇θX〉.

Let D be any bounded domain of M with C1 boundary. By using the Stokes’ theorem,
we immediately have the following integral formula

∫

∂D

T (X, ν)dsg =
∫

D

[〈T,
1
2
LXg〉+ div(T )(X)]dvg, (2.8)

where ν is the unit outward normal vector field along ∂D.
From equation (2.8), we have
Lemma 2.3 If X is a smooth vector field with a compact support contained in the

interior of M , then ∫

M

[〈T,
1
2
LXg〉+ div(T )(X)]dvg = 0. (2.9)

Han and Feng in [5] introduced a symmetric 2-tensor SΦf
to the functional Φf (u) by

SΦf
= f [

||u∗h||2
4

g − h(σu(.), du(.))], (2.10)

which is called the f -stress-energy tensor.



No. 2 Some results of weakly f -stationary maps with potential 305

Lemma 2.4 [5] Let u : (M, g) → (N, h) be a smooth map, then for all x ∈ M and for
each vector X ∈ TxM ,

(divSΦf
)(X) = −h(τΦf

(u), du(X)) +
||u∗h||2

4
df(X), (2.11)

where
τΦf

(u) = fdivσu + σu(gradf).

By using equations (2.3), (2.9) and (2.11), we know that if u : M → N is a weakly
f -stationary map with potential H, then we have

0 =
∫

M

〈SΦf
,
1
2
LXg〉dvg −

∫

M

h(τΦf
(u) +N ∇H ◦ u−N ∇H ◦ u, du(X))dvg

+
∫

M

||u∗h||2
4

df(X)dvg

=
∫

M

〈SΦf
,
1
2
LXg〉dvg +

∫

M

h(N∇H ◦ u, du(X))dvg +
∫

M

||u∗h||2
4

df(X)dvg,

i.e.,

0 =
∫

M

〈SΦf
,
1
2
LXg〉dvg +

∫

M

h(N∇H ◦ u, du(X))dvg +
∫

M

||u∗h||2
4

df(X)dvg (2.12)

for any X ∈ Γ0(TM).
On the other hand, we may introduce the stress-energy tensor with potential SΦf,H

by
the following

SΦf,H
= SΦf

−H ◦ ug = [f
||u∗h||2

4
−H ◦ u]g − fh(σu(.), du(.)). (2.13)

Then

(divSΦf,H
)(X) = (divSΦf

)(X)− (div(H ◦ ug))(X)

= −h(τΦf
(u), du(X)) +

||u∗h||2
4

df(X)−
∑

i

(∇ei
(Hg))(ei, X)

= −h(τΦf
(u), du(X)) +

||u∗h||2
4

df(X)−N ∇XH ◦ u (2.14)

= −h(τΦf
(u), du(X)) +

||u∗h||2
4

df(X)− h(N∇H, du(X))

= −h(τΦf,H
(u), du(X)) +

||u∗h||2
4

df(X).

By using equations (2.3), (2.9) and (2.14), we know that if u : M → N is a weakly f -
stationary map with potential H, then we have

∫

M

[〈SΦf,H
,
1
2
LXg〉+

||u∗h||2
4

df(X)]dvg = 0 (2.15)
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for any X ∈ Γ0(TM).

3 Liouville Type Theorems

Let (M, g0) be a complete Riemannian manifold with a pole x0. Denote by r(x) the
g0-distance function relative to the pole x0, that is r(x) = distg0(x, x0). Set

B(r) = {x ∈ Mm : r(x) ≤ r}.

It is known that ∂
∂r

is always an eigenvector of Hessg0(r2) associated to eigenvalue 2. Denote
by λmax (resp. λmin) the maximum (resp. minimal) eigenvalues of Hessg0(r2)− 2dr ⊗ dr at
each point of M−{x0}. Let (Nn, h) be a Riemannian manifold, and H be a smooth function
on N .

From now on, we suppose that u : (Mm, g) → (N, h) is an f -stationary map with
potential H, where

g = ϕ2g0, 0 < ϕ ∈ C∞(M).

Clearly the vector field ν = ϕ−1 ∂
∂r

is an outer normal vector field along ∂B(r) ⊂ (M, g).
The following conditions that we will assume for ϕ are as follows:

(ϕ1)

∂ log ϕ

∂r
≥ 0.

(ϕ2) There is a constant C0 > 0 such that

(m− 4)r
∂ log ϕ

∂r
+

m− 1
2

λmin + 1− 2max{2, λmax} ≥ C0.

Remark If ϕ(r) = r
1
4 , conditions (ϕ1) and (ϕ2) turn into the following

(m− 4)
1
4

+
m− 1

2
λmin + 1− 2max{2, λmax} ≥ C0. (3.1)

Now we set

µ = sup
M

r|∂ log f

∂r
| < +∞.

Theorem 3.1 Let u : (M, ϕ2g0) → (N, h) be a weakly f -stationary map with potential
H where 0 < ϕ ∈ C∞(M). If ϕ satisfies (ϕ1)(ϕ2), H ≤ 0 (or Hu(M) ≤ 0), C0 − µ > 0 and

∫

M

[f
||u∗h||2

4
−H ◦ u]dvg < ∞,

then u is constant.
Proof We take

X = φ(r)r
∂

∂r
=

1
2
φ(r)∇0r2,
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where ∇0 denotes the covariant derivative determined by g0 and φ(r) is a nonnegative func-
tion determined later. By a direct computation, we have

〈SΦf,H
,
1
2
LXg〉 = φ(r)r

∂ log ϕ

∂r
〈SΦf,H

, g〉+
1
2
ϕ2〈SΦf,H

, Lφ(r)r ∂
∂r

g0〉. (3.2)

Let {ei}m
i=1 be an orthonormal basis with respect to g0 and em = ∂

∂r
. We may assume that

Hessg0(r2) becomes a diagonal matrix with respect to {ei}m
i=1. Then {ẽi = ϕ−1ei} is an

orthonormal basis with respect to g.
Now we compute

ϕ2〈SΦf,H
, Lφ(r)r ∂

∂r
g0〉

= ϕ2
∑
i,j

SΦf,H
(ẽi, ẽj)(Lφ(r)r ∂

∂r
g0)(ẽi, ẽj)

= ϕ2{
∑
i,j

[f
||u∗h||2

4
−H ◦ u]g(ẽi, ẽj)(Lφ(r)r ∂

∂r
g0)(ẽi, ẽj)

−
∑
i,j

fh(σu(ẽi), du(ẽj))(Lφ(r)r ∂
∂r

g0)(ẽi, ẽj)} (3.3)

=
∑

i

[f
||u∗h||2

4
−H ◦ u](Lφ(r)r ∂

∂r
g0)(ei, ei)−

∑
i,j

fh(σu(ẽi), du(ẽj))(Lφ(r)r ∂
∂r

g0)(ei, ej)}

= φ(r)
∑

i

[f
||u∗h||2

4
−H ◦ u]Hessg0(r

2)(ei, ei) + 2[f
||u∗h||2

4
−H ◦ u]rφ′(r)

−φ(r)
∑
i,j

fh(σu(ẽi), du(ẽj))Hessg0(r
2)(ei, ej)− 2frφ′(r)h(σu(ẽm), du(ẽm))

≥ φ(r)[f
||u∗h||2

4
−H ◦ u][2 + (m− 1)λmin]− φ(r)f max{2, λmax}

∑
i

h(σu(ẽi), du(ẽi))

+2[f
||u∗h||2

4
−H ◦ u]rφ′(r)− 2frφ′(r)h(σu(ẽm), du(ẽm))

= φ(r)[f
||u∗h||2

4
−H ◦ u][2 + (m− 1)λmin]− φ(r)f max{2, λmax}||u∗h||2

+2[f
||u∗h||2

4
−H ◦ u]rφ′(r)− 2frφ′(r)h(σu(ẽm), du(ẽm))

≥ φ(r)[f
||u∗h||2

4
−H ◦ u][2 + (m− 1)λmin]− 4φ(r)[f

||u∗h||2
4

−H ◦ u]max{2, λmax}

+2[f
||u∗h||2

4
−H ◦ u]rφ′(r)− 2frφ′(r)h(σu(ẽm), du(ẽm))

≥ φ(r)[f
||u∗h||2

4
−H ◦ u][2 + (m− 1)λmin − 4max{2, λmax}]

+2[f
||u∗h||2

4
−H ◦ u]rφ′(r)− 2frφ′(r)h(σu(ẽm), du(ẽm)).

From (3.2), (2.14), (3.3), (ϕ1) and (ϕ2), we have

〈SΦf,H
,
1
2
LXg〉 ≥ φ(r)[f

||u∗h||2
4

−H ◦ u]C0 + [f
||u∗h||2

4
−H ◦ u]rφ′(r)

− frφ′(r)h(σu(ẽm), du(ẽm)). (3.4)
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From (3.4), we have

〈SΦf,H
,
1
2
LXg〉+

||u∗h||2
4

df(X)

≥ φ(r)[f
||u∗h||2

4
−H ◦ u]C0 + [f

||u∗h||2
4

)−H ◦ u]rφ′(r)

− frφ′(r)h(σu(ẽm), du(ẽm)) + f
||u∗h||2

4
φ(r)r

∂logf

∂r

≥ φ(r)[f
||u∗h||2

4
−H ◦ u]C0 + 2[f

||u∗h||2
4

)−H ◦ u]rφ′(r)

− frφ′(r)h(σu(ẽm), du(ẽm))− φ(r)[f
||u∗h||2

4
)−H ◦ u]µ (3.5)

= φ(r)[f
||u∗h||2

4
−H ◦ u](C0 − µ) + [f

||u∗h||2
4

−H ◦ u]rφ′(r)

− frφ′(r)h(σu(ẽm), du(ẽm)).

For any fixed R > 0, we take a smooth function φ(r) which takes value 1 on B(R
2
), 0 outside

B(R) and 0 ≤ φ(r) ≤ 1 on T (R) = B(R) − B(R
2
). And φ(r) also satisfies the condition

|φ′(r)| ≤ C1
r

on M , where C1 is a positive constant.

From (2.15) and (3.5), we have

0 ≥
∫

M

[φ(r)[f
||u∗h||2

4
−H ◦ u](C0 − µ) + [f

||u∗h||2
4

−H ◦ u]rφ′(r)]dvg

−
∫

M

frφ′(r)h(σu(ẽm), du(ẽm))dvg

≥
∫

B( R
2 )

[f
||u∗h||2

4
−H ◦ u](C0 − µ)dvg +

∫

T (R)

[f
||u∗h||2

4
−H ◦ u]rφ′(r)dvg

−
∫

T (R)

frφ′(r)h(σu(ẽm), du(ẽm))dvg

≥
∫

B( R
2 )

[f
||u∗h||2

4
−H ◦ u](C0 − µ)dvg − C1

∫

T (R)

[f
||u∗h||2

4
−H ◦ u]dvg

−C1

∫

T (R)

f ||u∗h||2dvg

≥
∫

B( R
2 )

[f
||u∗h||2

4
−H ◦ u](C0 − µ)dvg − C1(1 + 4)

∫

T (R)

[f
||u∗h||2

4
−H ◦ u]dvg

=
∫

B( R
2 )

[f
||u∗h||2

4
−H ◦ u](C0 − µ)dvg − 5C1

∫

T (R)

[f
||u∗h||2

4
−H ◦ u]dvg. (3.6)

From
∫

M

[f
||u∗h||2

4
−H ◦ u]dvg < ∞, we have

lim
R→∞

∫

T (R)

[f
||u∗h||2

4
−H ◦ u]dvg = 0. (3.7)
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From (3.6) and (3.7), we have we have

0 ≥ [C0 − µ]
∫

M

[f
||u∗h||2

4
−H ◦ u]dvg ≥ [C0 − µ]

∫

M

f
||u∗h||2

4
dvg.

So we know that u is a constant.
Remark Let (Mm, g) be a complete Riemannian manifold with a pole x0. Assume

that the radial curvature Kr of M satisfies the following conditions: −α2 ≤ Kr ≤ −β2

with α ≥ β and (m − 1)β − 4α ≥ 0. From the equation (3.1) and Lemma 4.4 in [5],
we have (m − 4) 1

4
+ m−1

2
λmin + 1 − 2max{2, λmax} ≥ (m − 4) 1

4
+ m − 4α

β
≥ m

4
= C0. Let

f(x) = f(r(x)) = r
m
8 be a smooth function on (Mm, g), we have µ = m

8
and C0−µ = m

8
> 0.

Theorem 3.2 Let u : (M, ϕ2g0) → (N, h) be a weakly f -stationary map with potential
H where 0 < ϕ ∈ C∞(M). If ϕ satisfies (ϕ1)(ϕ2), ∂H◦u

∂r
≥ 0, C0−µ > 0 and

∫
M

f ||u
∗h||2
4

dvg <

∞, then u is constant.
Proof By using the similar method in the proof in Theorem 3.1, we can obtain the

following

〈SΦf
,
1
2
LXg〉 ≥ φ(r)f

||u∗h||2
4

C0 + f
||u∗h||2

4
rφ′(r)− frφ′(r)h(σu(ẽm), du(ẽm)). (3.8)

From ∂H◦u
∂r

≥ 0 and (3.8), we have

〈SΦf
,
1
2
LXg〉+

||u∗h||2
4

df(X) + h(N∇H ◦ u, du(X))

≥ φ(r)f
||u∗h||2

4
C0 + f

||u∗h||2
4

rφ′(r)− frφ′(r)h(σu(ẽm), du(ẽm)) +
||u∗h||2

4
df(X)

≥ φ(r)f
||u∗h||2

4
(C0 − µ) + f

||u∗h||2
4

rφ′(r)− frφ′(r)h(σu(ẽm), du(ẽm)). (3.9)

For any fixed R > 0, we take a smooth function φ(r) which takes value 1 on B(R
2
), 0 outside

B(R) and 0 ≤ φ(r) ≤ 1 on T (R) = B(R) − B(R
2
). And φ(r) also satisfies the condition:

|φ′(r)| ≤ C1
r

on M , where C1 is a positive constant.
From (2.12) and (3.9), we have

0 ≥
∫

M

φ(r)[f
||u∗h||2

4
(C0 − µ) + f

||u∗h||2
4

rφ′(r)]dvg

−
∫

M

frφ′(r)h(σu(ẽm), du(ẽm))dvg

≥
∫

B( R
2 )

f
||u∗h||2

4
(C0 − µ)dvg +

∫

T (R)

f
||u∗h||2

4
rφ′(r)dvg

−
∫

T (R)

frφ′(r)h(σu(ẽm), du(ẽm))dvg

≥
∫

B( R
2 )

f
||u∗h||2

4
(C0 − µ)dvg − C2

∫

T (R)

f
||u∗h||2

4
dvg − C2

∫

T (R)

f ||u∗h||2dvg

= (C0 − µ)
∫

B( R
2 )

f
||u∗h||2

4
dvg − 5C2

∫

T (R)

f
||u∗h||2

4
dvg. (3.10)
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From
∫

M

f
||u∗h||2

4
dvg < ∞, we have

lim
R→∞

∫

T (R)

f
||u∗h||2

4
dvg = 0. (3.11)

From (3.10) and (3.11), we have

0 ≥ [C0 − µ]
∫

M

f
||u∗h||2

4
dvg.

So we know that u is a constant.
We say the functional Φf,H(u) (or Φf (u)) of u is slowly divergent if there exists a positive

function ψ(r) with
∫ ∞

R0

dr

rψ(r)
= +∞ (R0 > 0), such that

lim
R→∞

∫

B(R)

[f ||u
∗h||2
4

−H ◦ u]
ψ(r(x))

dvg < ∞ (or lim
R→∞

∫

B(R)

f ||u
∗h||2
4

ψ(r(x))
dvg < ∞). (3.12)

Theorem 3.3 Suppose u : (M, ϕ2g0) → (N, h) is a smooth map which satisfies the
following

∫

M

(divSΦf,H
)(X)dvg =

∫

M

||u∗h||2
4

df(X)dvg (3.13)

for any X ∈ Γ(TM). If ϕ satisfies (ϕ1)(ϕ2), H ≤ 0 (or Hu(M) ≤ 0), C0 − µ > 0 and Φf,H(u)
of u is slowly divergent, then u is constant.

Proof From the inequality (3.5) for φ(r) = 1, we have

〈SΦf,H
,
1
2
LXg〉+

||u∗h||2
4

df(X) ≥ (C0 − µ)[f
||u∗h||2

4
−H ◦ u]. (3.14)

On the other hand, taking D = B(r) and T = SΦf,H
in (2.8), we have

∫

B(r)

〈SΦf,H
,
1
2
LXg〉dvg +

∫

B(r)

(divSΦf,H
)(X)dvg =

∫

∂B(r)

SΦf,H
(X, ν)dsg

=
∫

∂B(r)

[f
||u∗h||2

4
−H ◦ u]g(X, ν)dvg −

∫

∂B(r)

fh(du(X), σu(ν))dvg

=
∫

∂B(r)

[f
||u∗h||2

4
−H ◦ u]ϕ2g0(r

∂

∂r
, ϕ−1 ∂

∂r
)dvg −

∫

∂B(r)

fϕ−1rh(du(
∂

∂r
), σu(

∂

∂r
))dvg

= r

∫

∂B(r)

[f
||u∗h||2

4
−H ◦ u]ϕdvg −

∫

∂B(r)

fϕ−1r
∑

i

h(du(ẽi), du(
∂

∂r
))2dvg

≤ r

∫

∂B(r)

[f
||u∗h||2

4
−H ◦ u]ϕdvg. (3.15)

Now suppose that u is a nonconstant map, so there exists a constant R1 > 0 such that for
R ≥ R1,

∫

B(R)

[f
||u∗h||2

4
−H ◦ u]dvg ≥

∫

B(R)

f
||u∗h||2

4
dvg ≥ C3, (3.16)
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where C3 is a positive constant.
From (3.13), we have

lim
R→∞

∫

B(R)

(divSΦf,H
)(X)dvg = lim

R→∞

∫

B(R)

||u∗h||2
4

df(X)dvg, (3.17)

so we know that there exists a positive constant R2 > R1 such that for R ≥ R2, we have

−(C0 − µ)C3

2
≤

∫

B(R)

(divSΦf,H
)(X)dvg −

∫

B(R)

||u∗h||2
4

df(X)dvg ≤ (C0 − µ)C3

2
. (3.18)

From (3.14) (3.15) and (3.18), we have for R > R2,

R

∫

∂B(R)

[f
||u∗h||2

4
−H ◦ u]ϕdvg

≥
∫

B(R)

< SΦf,H
,
1
2
LXg > dvg +

∫

B(R)

(divSΦf,H
)(X)dvg

≥
∫

B(R)

[< SΦf,H
,
1
2
LXg > +

||u∗h||2
4

df(X)]dvg − (C0 − µ)C3

2

≥ (C0 − µ)
∫

B(R)

[f
||u∗h||2

4
−H ◦ u]dvg − (C0 − µ)C3

2

≥ (C0 − µ)C3

2
. (3.19)

From (3.19) and |∇r| = ϕ−1, we have

lim
R→∞

∫

B(R)

[f ||u
∗h||2
4

−H ◦ u]
ϕ(r(x))

dvg =
∫ ∞

0

dR

ϕ(R)

∫

∂B(R)

[f
||u∗h||2

4
−H ◦ u]/|∇r|dsg

=
∫ ∞

0

dR

ϕ(R)

∫

∂B(R)

[f
||u∗h||2

4
−H ◦ u]ϕdsg

≥
∫ ∞

R2

dR

ϕ(R)

∫

∂B(R)

[f
||u∗h||2

4
−H ◦ u]ϕdsg

≥
∫ ∞

R2

(C0 − µ)C3dR

2Rϕ(R)
= +∞. (3.20)

This contradicts (3.12), therefore u is a constant.
Theorem 3.4 Suppose u : (M, ϕ2g0) → (N, h) is a smooth map which satisfies the

following
∫

M

(divSΦf
)(X)dvg =

∫

M

||u∗h||2
4

df(X)dvg +
∫

M

h(N∇H ◦ u, du(X))dvg (3.21)

for any X ∈ Γ(TM). If ϕ satisfies (ϕ1)(ϕ2), ∂H◦u
∂r

≥ 0 C0 − µ > 0 and Φf (u) of u is slowly
divergent (see (3.12)), then u is constant.

Proof From inequality (3.9) for φ(r) = 1, we have

〈SΦf
,
1
2
LXg〉+

||u∗h||2
4

df(X) + h(N∇H ◦ u, du(X)) ≥ (C0 − µ)f
||u∗h||2

4
. (3.22)
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On the other hand, taking D = B(r) and T = SΦf
in (2.8), we have

∫

B(r)

〈SΦf
,
1
2
LXg〉dvg +

∫

B(r)

(divSΦf
)(X)dvg =

∫

∂B(r)

SΦf
(X, ν)dsg

=
∫

∂B(r)

f
||u∗h||2

4
g(X, ν)dvg −

∫

∂B(r)

fh(du(X), σu(ν))dvg

=
∫

∂B(r)

f
||u∗h||2

4
ϕ2g0(r

∂

∂r
, ϕ−1 ∂

∂r
)dvg −

∫

∂B(r)

fϕ−1rh(du(
∂

∂r
), σu(

∂

∂r
))dvg

= r

∫

∂B(r)

f
||u∗h||2

4
ϕdvg −

∫

∂B(r)

fϕ−1r
∑

i

h(du(ẽi), du(
∂

∂r
))2dvg

≤ r

∫

∂B(r)

f
||u∗h||2

4
ϕdvg. (3.23)

Now suppose that u is a nonconstant map, so there exists a constant R3 > 0 such that for
R ≥ R3,

∫

B(R)

f
||u∗h||2

4
dvg ≥ C4, (3.24)

where C4 is a positive constant.
From (3.21), we have

lim
R→∞

∫

B(R)

(divSΦf,H
)(X)dvg = lim

R→∞

∫

B(R)

[
||u∗h||2

4
df(X) + h(N∇H ◦ u, du(X))]dvg, (3.25)

so we know that there exists a positive constant R4 > R3 such that for R ≥ R4, we have

−(C0 − µ)C4

2
≤

∫

B(R)

(divSΦf,H
)(X)dvg −

∫

B(R)

[
||u∗h||2

4
df(X) + h(N∇H ◦ u, du(X))]dvg

≤ (C0 − µ)C4

2
. (3.26)

From (3.22), (3.23) and (3.26), we have for R > R4,

R

∫

∂B(R)

f
||u∗h||2

4
ϕdvg ≥

∫

B(R)

〈SΦf
,
1
2
LXg〉dvg +

∫

B(R)

(divSΦf
)(X)dvg

≥
∫

B(R)

[〈SΦf,H
,
1
2
LXg〉+

||u∗h||2
4

df(X) + h(N∇H ◦ u, du(X))]dvg

−(C0 − µ)C4

2

≥ (C0 − µ)
∫

B(R)

f
||u∗h||2

4
dvg − (C0 − µ)C4

2

≥ (C0 − µ)C4

2
. (3.27)
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From (3.27) and |∇r| = ϕ−1, we have

lim
R→∞

∫

B(R)

f ||u
∗h||2
4

ϕ(r(x))
dvg =

∫ ∞

0

dR

ϕ(R)

∫

∂B(R)

f
||u∗h||2

4
/|∇r|dsg

=
∫ ∞

0

dR

ϕ(R)

∫

∂B(R)

f
||u∗h||2

4
ϕdsg

≥
∫ ∞

R4

dR

ϕ(R)

∫

∂B(R)

f
||u∗h||2

4
ϕdsg

≥
∫ ∞

R4

(C0 − µ)C4dR

2Rϕ(R)
= +∞.

This contradicts (3.12), therefore u is a constant.
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具有势函数的弱f-稳态映射的若干结果

韩英波, 冯书香

(信阳师范学院数学与信息科学学院, 河南信阳 464000)

摘要: 本文研究了与拉回度量有关广义泛函Φf,H . 利用应力能量张量的方法, 得到具有势函数的

弱f -稳态映射的一些刘维尔型定理.
关键词: 具有势函数的弱f -稳态映射; 应力能量张量; 刘维尔型定理
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