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Abstract: In this paper, two dimensional linear linear ellliptic in a semi-disk are considered.

By using the effective approach by Fokas to solve the linear elliptic PDEs in convex polygonal

domain, we improve this method to study the boundary value problems for Laplace, Helmholtz

and modified Helmholtz equations in a semi-disk domain. The integral representations for the

solutions of these elliptic PDEs are derived. The generalized Dirichlet to Neumann map for the

Helmholtz equation is investigated.
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1 Introduction

In 1997 Fokas [1] introduced a novel flexible approach to solve initial or boundary value
problems for various two dimensional linear and integrable nonlinear PDE’s and then to deal
with multidimensional problems [2, 3]. In particular, this method was applied in [4] to treat
the Laplace equation in a convex polygon and in [5] to other linear two-dimensional PDEs,
including the modified Helmholtz and Helmholtz equations. The readers are also referred
to see [6–8] for a systematic exposition of the method, its various applications and more
references therein. The fundamental problems for the elliptic PDEs in nonpolygonal convex
regions remain open [6], which is our main motivation of the present investigation.

We observe that the implementation of Fokas transform method has two fundamental
steps. The first step is that Riemann-Hilbert technique is used to construct integral repre-
sentation of the solution in terms of spectral functions, which is base on the Lax pair or the
differential form of equation. The second one is known as a generalized Dirichlet to Neu-
mann map, which determines unknown functions including in the spectral functions. This
step is accomplished through so-called the global relation and some invariant properties.
In some particular cases, these unknown functions can be reduced to seek a solution of a
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system of algebraic equations or one of a Riemann-Hilbert problem. However, it is difficult
to determine these unknown functions in many cases.

The aim of this paper is to improve Fokas transform approach to study boundary value
problems for the following basic elliptic PDEs in a semi-disk domain Ω

∆q(z, z) + 4αq(z, z) = 0, z ∈ Ω, (1.1)

where

Ω = {(x, y) : x2 + y2 ≤ r2,−r ≤ x ≤ r, y ≥ 0}

and set

L1 = {(x, y) : y = 0,−r < x < r},
L2 = {(x, y) : x2 + y2 = r2,−r ≤ x ≤ r, y ≥ 0},
∂Ω = L1 ∪ L2

(see Figure 1).
Without loss of generality, we may assume r = 1. When α = 0, equation (1.1) becomes a

Laplace equation; when α = −β2, equation (1.1) is said to be a modified Helmholtz equation;
when α = β2, equation (1.1) is called a Helmholtz equation.

Figure 1 A domain Ω and its boundary ∂Ω = L1 ∪ L2

The rest of the paper is arranged as follows. In Section 2 we derive the integral rep-
resentations for the solutions of the elliptic PDEs above-metioned in terms of the spectral
functions using the differential forms of equations and the Riemann-Hilbert technique. In
Section 3 we discuss generalized Dirichlet to Neumann maps. As an illustration, the Dirichlet
boundary value problem for Helmholtz equation in a semi-disk domain is investigated. Using
the global relation and some symmetric properties, the unknown functions are determined
by the solution of a Fredholm’s integral equation of the first kind. A short summary of this
work is given in Section 4.

2 The Integral Representations of Solutions
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In this section, based on the differential form of equation and Riemann-Hilbert technique
we will derive the integral representations for the solutions of Laplace, modified Helmholtz
and Helmholtz equation in terms of spectral functions. That is, we have

Theorem 1 Let Ω be a semi-disk domain in the complex plane C (see Figure 1).
Assume that the modified Helmholtz equation has a solution q(z, z) in Ω such that it is
sufficiently smooth to ∂Ω. Then q(z, z) can be expressed by

q(x, y) =
1

4πi

4∑
j=1

∫

lj

eiβ(kz− z
k )ρj(x, y, k)

dk

k
, (2.1)

where

z = x + iy, z̄ = x− iy, k ∈ C,

ρ1(x, y, k) =
∫ 1

−1

e−iβ(k− 1
k )x[−iqy(x, 0) + iβ(k +

1
k
)q(x, 0)]dx, (2.2)

ρ2(x, y, k) =
∫ θ2

π

e−iβ(keiθ− 1
k e−iθ)[iqr(cos θ, sin θ)− β(keiθ − 1

k
e−iθ)q(cos θ, sin θ)]dθ, (2.3)

ρ3(x, y, k) =
∫ θ2

θ1

e−iβ(keiθ− 1
k e−iθ)[iqr(cos θ, sin θ)− β(keiθ − 1

k
e−iθ)q(cos θ, sin θ)]dθ, (2.4)

ρ4(x, y, k) =
∫ 0

θ1

e−iβ(keiθ− 1
k e−iθ)[iqr(cos θ, sin θ)− β(keiθ − 1

k
e−iθ)q(cos θ, sin θ)]dθ, (2.5)

θ1 = arg [
(x + 1)2 − y2

(x + 1)2 + y2
+ i

2y(x + 1)
(x + 1)2 + y2

], θ2 = arg [
y2 − (x− 1)2

(x− 1)2 + y2
+ i

2y(1− x)
(x− 1)2 + y2

],

0 ≤ θ1, θ2 ≤ π

and the rays lj = {k ∈ C : arg k = (j−1)π
2

} for j = 1, 2, 3, 4, and l1 and l3 are oriented from
zero to infinity, while l2 and l4 are oriented from infinity to zero; see Figure 2.

Figure 2 The integral curves lj(j = 1, 2, 3, 4) for Laplace and modified
Helmholtz equation in the k-plane

Furthermore, the following global relation is valid:
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∫ 1

−1

e−iβ(k− 1
k )x[−iqy(x, 0) + iβ(k +

1
k
)q(x, 0)]dx

=
∫ 0

π

e−iβ(keiθ− 1
k e−iθ)[iqr(cos θ, sin θ)− β(keiθ − 1

k
e−iθ)q(cos θ, sin θ)]dθ. (2.6)

Proof First, it sees from [6] that function q(z, z) satisfies the modified Helmholtz
equation if and only if the following differential form is closed:

dW = e−iβ(kz− z
k )[(qz + ikβq)dz − (qz +

β

ik
q)dz], k ∈ C. (2.7)

This implies the associated global relation

∫

L1∪L2

e−iβ(kz− z
k )[(qz + ikβq)dz − (qz +

β

ik
q)dz] = 0, (2.8)

where L1 and L2 are shown as in Figure 1. Note that if z = x + iy, z = x− iy, then

∂z =
1
2
(∂x − i∂y), ∂z =

1
2
(∂x + i∂y);

if z = reiθ, z = re−iθ, then

∂z =
1
2
e−iθ(∂r +

1
ir

∂θ), ∂z =
1
2
eiθ(∂r − 1

ir
∂θ).

Hence we deduce from (2.8) that (2.6) holds.
Next, we will derive the integral representation (2.1). We perform the spectral analysis

of the differential form

d[e−iβ(kz− z
k )µ(z, z, k)] = dW (z, z, k). (2.9)

It can be derived directly from (2.7) and (2.9) that the modified Helmholtz equation has the
following Lax pair equations

µz − ikβµ = qz + ikβq, (2.10)

µz +
iβ

k
µ = −(qz +

β

ik
q). (2.11)

Integrating (2.9), we find that for all z ∈ Ω,

µj(z, z, k) =
∫ z

zj

eiβ[k(z−ζ)− 1
k (z−ζ)][(qζ + ikβq)dζ − (qζ +

β

ik
q)dζ],

here µj(z, z, k) depend only on point zj and are independent of the paths of integrations.
Meanwhile, µj(z, z, k) is also the particular solution of the Lax pair equations (2.10) and
(2.11).
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Figure 3 The points zj(j = 0, 1, 2, 3, 4) and the paths of integra-
tions µj(z, z, k)

We now choose the point zj and a suitable path such that we can define a piecewise
analytic function µj(z, z, k) in the k-plane. Set

z0 = 1 + i, z1 = −1, z2 = 1,

z3 =
(x + 1)2 − y2

(x + 1)2 + y2
+ i

2y(x + 1)
(x + 1)2 + y2

, z4 =
y2 − (x− 1)2

(x− 1)2 + y2
+ i

2y(1− x)
(x− 1)2 + y2

,

where z3 is a intersection point of straight line through z1, z with the semicircle L2 and z4

is one of straight line through the point z2, z with L2, which are uniquely determined by
z ∈ Ω; see Figure 3. We define µj(z, z, k)(j = 1, 2, 3, 4) by

µj(z, z, k) =
∫ z

zj

eiβ[k(z−ζ)− 1
k (z−ζ)][(qζ + ikβq)dζ − (qζ +

β

ik
q)dζ] (j = 1, 2),

µj(z, z, k) =
∫

ẑ0zjz

eiβ[k(z−ζ)− 1
k (z−ζ)][(qζ + ikβq)dζ − (qζ +

β

ik
q)dζ] (j = 3, 4),

where the paths of integrations µj(z, z, k)(j = 1, 2) are taken as the straight-line segment
and the paths of integration µj(z, z, k)(j = 3, 4) is chosen as the sum of the circular arc ẑ0zj

and the straight-line segment zjz, as shown in Figure 3. Let

µ0
j(z, z, k) =

∫

ẑ0zj

eiβ[k(z−ζ)− 1
k (z−ζ)][(qζ + ikβq)dζ − (qζ +

β

ik
q)dζ],

µ∗j (z, z, k) =
∫

zjz

eiβ[k(z−ζ)− 1
k (z−ζ)][(qζ + ikβq)dζ − (qζ +

β

ik
q)dζ]

for j = 3, 4. Then we have

µj(z, z, k) = µ0
j(z, z, k) + µ∗j (z, z, k) (j = 3, 4).

It is easy to see the boundedness and analytic domains of the functions µ1, µ2, µ
∗
3, µ

∗
4 in

the k-plane are Dj(j = 1, 2, 3, 4), respectively, which are defined by

D1 = {k ∈ C : 0 ≤ arg k ≤ π

2
}, D2 = {k ∈ C :

3π

2
≤ arg k ≤ 2π},

D3 = {k ∈ C : π ≤ arg k ≤ 3π

2
}, D4 = {k ∈ C :

π

2
≤ arg k ≤ π};
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see Figure 4. Indeed, put k = |k|eiϕ, ζ = ξ + iη, then we find

Re[ik(z − ζ)− i

k
(z − ζ)] = −(|k|+ 1

|k|)[(x− ξ) sin ϕ + (y − η) cos ϕ].

Consider first the function µ1(z, z, k). Notice that x− ξ ≥ 0, y − η ≥ 0, so the exponential
associated with µ1(z, z, k) is bounded if and only if sinϕ ≥ 0 and cos ϕ ≥ 0. This gives the
domain of µ1(z, z, k) is equal to D1. Similarly, we obtain that the domains of µ2, µ

∗
3, µ

∗
4 are

equal to Dj(j = 2, 3, 4), respectively.
The Lax pair equation (2.10) gives

µ = −q + O(
1
k
), k →∞, (2.12)

which can be verified directly for each of the functions µ1, µ2, µ
∗
3, µ

∗
4. Thus we are able to

formulate a Riemann-Hilbert problem for the sectionally analytic function µ which is defined
by

µ =





µ1(z, z, k), k ∈ D1,

µ2(z, z, k), k ∈ D2,

µ∗3(z, z, k), k ∈ D3,

µ∗4(z, z, k), k ∈ D4

for z ∈ Ω. The relevant jumps are given by

µ+ − µ− = ρ(x, y, k)eiβ(kz− z
k ), k ∈ L, (2.13)

where L =
4∑

j=1

lj depicted in Figure 2, and ρ(x, y, k) = ρj(x, y, k)(j = 1, 2, 3, 4) will be

determined below.

Figure 4 The domains Dj(j = 1, 2, 3, 4) in the k-plane

In the following we will derive ρ(x, y, k). Since µj(x, y, k) satisfy Lax pair equations
(2.10) and (2.11) for j = 1, 2, 3, 4, the difference of any two solutions of (2.10) and (2.11)
satisfies p(k)eiβ(kz− z

k ). Hence, when k ∈ l1, we have

µ+ − µ− = µ1 − µ2 = p12(k)eiβ(kz− z
k ),
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which implies that

p12(k) =
∫ z2

z1

e−iβ(kz− z
k )[(qz + ikβq)dz − (qz +

β

ik
q)dz]

=
∫ 1

−1

e−iβ(k− 1
k )x[−iqy(x, 0) + iβ(k +

1
k
)q(x, 0)]dx = ρ1(x, y, k),

that is, the equality (2.2) holds; when k ∈ l2, we get

µ+ − µ− = µ1 − µ∗4 = µ1 − (µ4 − µ0
4) = (µ1 − µ4) + µ0

4 = p14(k)eiβ(kz− z
k ) + µ0

4,

which gives

p14(k)eiβ(kz− z
k ) + µ0

4 =eiβ(kz− z
k )

∫

ẑ1z4

e−iβ(kζ− ζ
k )[(qζ + ikβq)dζ − (qζ +

β

ik
q)dζ]

=eiβ(kz− z
k )

∫ θ2

π

e−iβ(keiθ− 1
k e−iθ)[iqr(cos θ, sin θ)

− β(keiθ − 1
k
e−iθ)q(cos θ, sin θ)]dθ

=ρ2(x, y, k)eiβ(kz− z
k ),

which yields that (2.3) holds; similarly, we can conclude that spectral functions ρ3 and ρ4

possess the expressions (2.4) and (2.5), respectively.
The solution of the Riemann-Hilbert problem with the estimate (2.12) and the jump

(2.13) along L can be expressed by

µ = −q +
1

2πi

∫

L

ρ(x, y, k)eiβ(sz− z
s ) ds

s− k
, k ∈ C \ L. (2.14)

Thus the Lax pair (2.11) where µ is replaced by (2.14) implies that (2.1) holds. This
completes the proof of Theorem 1.

Similar to the proof of Theorem 1, we easily obtain
Corollary 1 Under the conditions of Theorem 1, the solution q(z, z) of Laplace equa-

tion (see (1.1) with α = 0) can be expressed by

∂q

∂z
=

1
2π

4∑
j=1

∫

lj

eikzρj(x, y, k)dk,

where

ρ1(x, y, k) =
1
2
[q(1, 0)e−ik − q(−1, 0)eik] +

i

2

∫ 1

−1

e−ikx[kq(x, 0)− iqy(x, 0)]dx,

ρ2(x, y, k) =
1
2
[q(cos θ2, sin θ2)e−ikeiθ2 − q(−1, 0)eik]

+
1
2

∫ θ2

π

e−ikeiθ

[iqr(cos θ, sin θ)− keiθq(cos θ, sin θ)]dθ,
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ρ3(x, y, k) =
1
2
[q(cos θ2, sin θ2)e−ikeiθ2 − q(cos θ1, sin θ1)e−ikeiθ1 ]

+
1
2

∫ θ2

θ1

e−ikeiθ

[iqr(cos θ, sin θ)− keiθq(cos θ, sin θ)]dθ,

ρ4(x, y, k) =
1
2
[q(1, 0)e−ik − q(cos θ1, sin θ1)e−ikeiθ1 ]

+
1
2

∫ 0

θ1

e−ikeiθ

[iqr(cos θ, sin θ)− keiθq(cos θ, sin θ)]dθ

and θ1, θ2 , lj(j = 1, 2, 3, 4) are defined as in Theorem 1. Moreover, the following global
relation holds

i

∫ 1

−1

e−ikx[kq(x, 0)− iqy(x, 0)]dx =
∫ 0

π

e−ikeiθ

[iqr(cos θ, sin θ)− keiθq(cos θ, sin θ)]dθ.

Figure 5 The integral curves lj(j = 1, 2, . . . , 12) for the Helmholtz
equation in the k-plane

Corollary 2 Under the conditions of Theorem 1, the solution q(z, z) of Helmholtz
equation (see (1.1) with α = β2) can be expressed as

q(x, y) =
1

4πi

12∑
j=1

∫

lj

eiβ(kz+ z
k )ρj(x, y, k)

dk

k
, (2.15)

where

ρ1(x, y, k) =
∫ 1

−1

e−iβ(k+ 1
k )x[−iqy(x, 0) + iβ(k − 1

k
)q(x, 0)]dx,

ρ2(x, y, k) =
∫ θ2

π

e−iβ(keiθ+ 1
k e−iθ)[iqr(cos θ, sin θ)− β(keiθ +

1
k
e−iθ)q(cos θ, sin θ)]dθ,

ρ3(x, y, k) =
∫ θ2

θ1

e−iβ(keiθ+ 1
k e−iθ)[iqr(cos θ, sin θ)− β(keiθ +

1
k
e−iθ)q(cos θ, sin θ)]dθ,

ρ4(x, y, k) =
∫ 0

θ1

e−iβ(keiθ+ 1
k e−iθ)[iqr(cos θ, sin θ)− β(keiθ +

1
k
e−iθ)q(cos θ, sin θ)]dθ,
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ρ9(x, y, k) =
∫ θ1

π

e−iβ(keiθ+ 1
k e−iθ)[iqr(cos θ, sin θ)− β(keiθ +

1
k
e−iθ)q(cos θ, sin θ)]dθ,

ρ10(x, y, k) =
∫ θ2

0

e−iβ(keiθ+ 1
k e−iθ)[iqr(cos θ, sin θ)− β(keiθ +

1
k
e−iθ)q(cos θ, sin θ)]dθ,

ρ5(x, y, k) =− ρ3(x, y, k), ρ6(x, y, k) = −ρ4(x, y, k), ρ7(x, y, k) = −ρ1(x, y, k),

ρ8(x, y, k) =− ρ2(x, y, k), ρ11(x, y, k) = −ρ9(x, y, k), ρ12(x, y, k) = −ρ10(x, y, k),

and θ1, θ2 are defined as in Theorem 1, and lj (j = 1, 2, . . . , 12) are shown as in Figure 5.
Moreover, there exists the following global relation

∫ 1

−1

e−iβ(k+ 1
k )x[−iqy(x, 0) + iβ(k − 1

k
)q(x, 0)]dx

=
∫ 0

π

e−iβ(keiθ+ 1
k e−iθ)[iqr(cos θ, sin θ)− β(keiθ +

1
k
e−iθ)q(cos θ, sin θ)]dθ. (2.16)

3 The Generalized Dirichlet to Neumann Map

In Section 2, we see that the integral representations of the solutions for basic linear
elliptic PDEs can be expressed in terms of spectral functions ρj(x, y, k). However, ρj(x, y, k)
are determined by boundary values q(x, 0), qy(x, 0) and q(cos θ, sin θ), qr(cos θ, sin θ). For
some boundary conditions such as Dirichlet boundary conditions, boundary values qy(x, 0)
and qr(cos θ, sin θ) are unknown. The goal of generalized Dirichlet to Neumann map is to
determine these unknown boundary values, which can be accomplished through the global
relation and some symmetric properties.

For illustration, we now discuss the Helmholtz equation in a semi-disk domain Ω with
the following Dirichlet boundary condition

q(x, y) = f(x, y), (x, y) ∈ ∂Ω = L1 ∪ L2,

where function f(x, y) has appropriate smoothness.

Theorem 2 Let Ω be a semi-disk domain in the complex plane C described in Figure 1.
Assume that the boundary value f(x, y) has appropriate smoothness and that the Dirichlet
boundary problem of the Helmholtz equation (see (2.1) with α = β2) has the solution with
form (2.15). Then all spectral function ρj(x, y, k)(j = 1, 2, 3, 4) can be determined by the
boundary value f(x, y).

Proof It follows from the global relation (2.16) that

G1(k)−G2(k) = F (k), k ∈ C, (3.1)
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where

G1(k) =
∫ 1

−1

qy(x, 0)e−iβ(k+ 1
k )xdx, G2(k) =

∫ π

0

qr(cos θ, sin θ)e−iβ(keiθ+ 1
k e−iθ)dθ,

F (k) =β(k − 1
k
)
∫ 1

−1

f(x, 0)e−iβ(k+ 1
k )xdx

+ iβ

∫ π

0

fr(cos θ, sin θ)(keiθ +
1
k
e−iθ)e−iβ(keiθ+ 1

k e−iθ)dθ.

It can be verified directly that G1(k), G2(k) have following symmetric relation

G1(k) = G1(−k), G2(k) = G2(−ke−2iθ), k ∈ C. (3.2)

We can deduce from (3.1) and (3.2) that

G2(k)−G2(ke−2iθ) = F (−k)− F (k),

that is, ∫ π

0

qr(cos θ, sin θ) ·K1(θ, k)dθ = F (−k)− F (k), (3.3)

where

K1(θ, k) = 2 sinh[β(k − 1
k
) sin θ)]e−iβ(k+ 1

k ) cos θ.

This is the first kind of Fredholm integral equation. So by (3.1) and (3.3), we may
determine the functions G1(k) and qr(cos θ, sin θ), which implies that all spectral functions
ρj(x, y, k) can be characterized by a given boundary value f(x, y).

We remark that spectral functions ρj(x, y, k) can be expressed by G1(k) and qr(cos θ, sin θ),
so we only determine qr(cos θ, sin θ) from equation (3.3), which results in G2(k), and hence
determine G1(k) from equation (3.1) and needn’t calculate qy(x, 0).

4 Conclusions

We improve Fokas method to study the Laplace, modified Helmholtz and Helmholtz
equations in a semi-disk region Ω. The integral representations of the solutions for these
basic linear elliptic PDEs are derived in terms of spectral functions ρj(x, y, k), where the
spectral functions ρj(x, y, k) depend on the boundary values q(x, 0), q(cos θ, sin θ) and its
derivatives qy(x, 0), qr(cos θ, sin θ). For some specific boundary value problems, using the
global relation and symmetric properties, all spectral functions ρj(x, y, k) can be determined
through the solution to a Fredholm integral equation of the first kind. The results here can
be further applied to discuss numerical solutions or asymptotic analysis.

The method here can also be used to solve boundary value problems for linear elliptic
PDEs on sector domains or disk ones.
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半圆域内的二维线性椭圆偏微分方程

陈向阳,蓝师义

(广西民族大学理学院, 广西南宁 530006)

摘要: 本文研究了半圆域内的二维线性椭圆偏微分方程. 利用Fokas提出的求解凸多边形

区域内的线性椭圆偏微分方程的变换方法, 我们改进了这个方法来研究半圆域内Laplace方程, 修

改Helmholtz方程和Helmholtz方程的解, 并且导出了这些方程解的积分表达式, 讨论了Helmholtz方程

的广义Dirichlet到Neumann映射.
关键词: 边值问题; Fokas变换方法; Riemann-Hilbert技术; 广义Dirichlet 到Neumann映射
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