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Abstract: In this paper, two dimensional linear linear ellliptic in a semi-disk are considered.
By using the effective approach by Fokas to solve the linear elliptic PDEs in convex polygonal
domain, we improve this method to study the boundary value problems for Laplace, Helmholtz
and modified Helmholtz equations in a semi-disk domain. The integral representations for the
solutions of these elliptic PDEs are derived. The generalized Dirichlet to Neumann map for the
Helmholtz equation is investigated.
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1 Introduction

In 1997 Fokas [1] introduced a novel flexible approach to solve initial or boundary value
problems for various two dimensional linear and integrable nonlinear PDE’s and then to deal
with multidimensional problems [2, 3|. In particular, this method was applied in [4] to treat
the Laplace equation in a convex polygon and in [5] to other linear two-dimensional PDEs,
including the modified Helmholtz and Helmholtz equations. The readers are also referred
to see [6-8] for a systematic exposition of the method, its various applications and more
references therein. The fundamental problems for the elliptic PDEs in nonpolygonal convex
regions remain open [6], which is our main motivation of the present investigation.

We observe that the implementation of Fokas transform method has two fundamental
steps. The first step is that Riemann-Hilbert technique is used to construct integral repre-
sentation of the solution in terms of spectral functions, which is base on the Lax pair or the
differential form of equation. The second one is known as a generalized Dirichlet to Neu-
mann map, which determines unknown functions including in the spectral functions. This
step is accomplished through so-called the global relation and some invariant properties.

In some particular cases, these unknown functions can be reduced to seek a solution of a
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system of algebraic equations or one of a Riemann-Hilbert problem. However, it is difficult
to determine these unknown functions in many cases.

The aim of this paper is to improve Fokas transform approach to study boundary value
problems for the following basic elliptic PDEs in a semi-disk domain 2

Aq(z,Z) +4aq(2,2) =0, z€Q, (1.1)

where

Q={(x,y):2? +y* <r®,—r <z <ry>0}

and set

Li={(z,y):y=0,—1 <z <1},
Ly ={(z,y) : 2* +y* =r*,—r <2 < r,y > 0},
0Q =L, UL,s

(see Figure 1).
Without loss of generality, we may assume r = 1. When o = 0, equation (1.1) becomes a
Laplace equation; when o = — 3%, equation (1.1) is said to be a modified Helmholtz equation;

when « = 3%, equation (1.1) is called a Helmholtz equation.

Figure 1 A domain 2 and its boundary 9Q = Ly U Lo

The rest of the paper is arranged as follows. In Section 2 we derive the integral rep-
resentations for the solutions of the elliptic PDEs above-metioned in terms of the spectral
functions using the differential forms of equations and the Riemann-Hilbert technique. In
Section 3 we discuss generalized Dirichlet to Neumann maps. As an illustration, the Dirichlet
boundary value problem for Helmholtz equation in a semi-disk domain is investigated. Using
the global relation and some symmetric properties, the unknown functions are determined
by the solution of a Fredholm’s integral equation of the first kind. A short summary of this

work is given in Section 4.

2 The Integral Representations of Solutions
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In this section, based on the differential form of equation and Riemann-Hilbert technique
we will derive the integral representations for the solutions of Laplace, modified Helmholtz
and Helmholtz equation in terms of spectral functions. That is, we have

Theorem 1 Let Q be a semi-disk domain in the complex plane C (see Figure 1).
Assume that the modified Helmholtz equation has a solution ¢(z,z) in Q such that it is
sufficiently smooth to Q. Then ¢(z,%) can be expressed by

1 < . dk
o) = 1> [ Dk (2.)
j=174

where

z=x+iy,z=x— 1y, k € C,

1
prley k) = [ D i (0,0) + B0k Do, 0 (22)

1

0
2 . 01 _—if ) 1 .
p2(z,y, k) = / e Bk =% ig,.(cos B, sin §) — B(ke? — %e*w)q(cos 0,sinf)]df,  (2.3)

0
2 . i 1 _—i ; 1 ;
p3(z,y, k) = / e iBke! —ge 9)[iqr(cos 0,sin ) — (ke — Ee_“g)q(cos 0,sin 6)]do, (2.4)

01
0
. 01 _—i0 . 1 .
pa(z,y, k) = / e iBhe —je )ig,(cos 0, sin 0) — B(ke? — %e*w)q(cos 6,sin 0)]d6, (2.5)

y'—(@=1)72 . 2y(1—x)

(x+1)2—y* . 2y(xz+1) .
I A P T

7
(x+1)2+y2  (z+1)2+y2
0<6,,6,<m

}7

]762 = arg[

01 = arg |

and the rays [; = {k € C : argk = @} for j = 1,2,3,4, and [; and I3 are oriented from

zero to infinity, while [ and I, are oriented from infinity to zero; see Figure 2.

Figure 2 The integral curves [j(j = 1,2,3,4) for Laplace and modified

Helmholtz equation in the k-plane

Furthermore, the following global relation is valid:
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1
/ e~ P17 [—ig, (x,0) + iB(k + %M(% 0)ldz

1

0
. 01 _—i ; 1 ;
:/ e iBke’ —ge 9)[iqr(cos 0,sin ) — (ke — Ee_’e)q(cos 6,sin 0)]d6. (2.6)

Proof First, it sees from [6] that function ¢(z,Z) satisfies the modified Helmholtz

equation if and only if the following differential form is closed:

AW = e~ P*==D)[(q, 4+ ikBq)dz — (¢= + %q)dz], kecC. (2.7)
1

This implies the associated global relation

/ =01 [(q. + ikfq)dz — (g=+ L-g)dz] = 0, (2.8)
L,1UL> Zk

where L; and L, are shown as in Figure 1. Note that if z =z + iy,Z = © — iy, then

9. = %(aw _id,), 0= = %(aw +id,);

if z=re",Z =re ", then

-

1 .
26 i0

, 1 1
—1i0 - _ -
(Or + =-00), 0= = 3¢ (D, — =-0%).

Hence we deduce from (2.8) that (2.6) holds.
Next, we will derive the integral representation (2.1). We perform the spectral analysis

of the differential form

dle= =0 (2,7, k)] = dW (2, %, k). (2.9)

It can be derived directly from (2.7) and (2.9) that the modified Helmholtz equation has the

following Lax pair equations

. —ikBu = q, +ikBq, (2.10)
_ = (et 2o 2.11
prt =g+ q) (2.11)

Integrating (2.9), we find that for all z € Q,

i, 7, k) = / O HE (g + ika)dC — (g + 7 a)dl,
here p;(z,%, k) depend only on point z; and are independent of the paths of integrations.
Meanwhile, p;(2,%, k) is also the particular solution of the Lax pair equations (2.10) and

(2.11).
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%

Z4 0 zy

Figure 3 The points z;(j = 0,1,2,3,4) and the paths of integra-
tions u;(2,%, k)
We now choose the point z; and a suitable path such that we can define a piecewise

analytic function f;(z, %, k) in the k-plane. Set

20:14-7;,21:—1,22:1,
B :(x+1)2—y2 ; 2y(z + 1) B :yz—(:v—l)2 . 2y(1 — )
T4 @124y @124y (- 124y

where z3 is a intersection point of straight line through z1, z with the semicircle L, and z4
is one of straight line through the point zy,z with L, which are uniquely determined by
z € Q; see Figure 3. We define u,(z,%,k)(j = 1,2,3,4) by

iz, %, k) = / === =0l (g, + ikpg)dC — (gz + %Q)dé] (j=1,2),

J

ni(2,2,k) = / O HE (g 4 ikGa)dC — (g + a)dl] (G = 3,9),

where the paths of integrations p;(z,%,k)(j = 1,2) are taken as the straight-line segment
and the paths of integration p;(z,%, k)(j = 3,4) is chosen as the sum of the circular arc zoz;

and the straight-line segment z;z, as shown in Figure 3. Let
— i 2—O)=L(z=¢ . /6 a
THEENOE /A e MmO ETN (g + ik Pq)dC — (4 + -9)dC],
Z0Zj

(27 k) = / =D (g 4 ikBa)C — (g + 7 q)d]

J

for j = 3,4. Then we have
wi(z,z, k) = ,u?(z,f, k) +ui(z,z,k) (j = 3,4).

It is easy to see the boundedness and analytic domains of the functions pq, po, 13, p) in
the k-plane are D;(j = 1,2, 3,4), respectively, which are defined by

Dlz{kG(C:Ogargkgg}, DQ:{keC:%ﬂgargkgzw},

DS:{kEC:WSarng?%T}, Dy={keC <argk < 7};

o
© 2
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see Figure 4. Indeed, put k = |k|e®?, ( = £ + in, then we find

Relik(z — ) = 2= 0 = ~(K| + )l = O sing + (y = m)cos ]

1
|
Consider first the function p4(z,z, k). Notice that x — & > 0,y —n > 0, so the exponential
associated with 4 (z,%, k) is bounded if and only if sin ¢ > 0 and cos ¢ > 0. This gives the
domain of p;(z,7%, k) is equal to D;. Similarly, we obtain that the domains of ps, u3, i are
equal to D;(j = 2,3,4), respectively.
The Lax pair equation (2.10) gives

1
p=-q+0(;), k—oo (2.12)

which can be verified directly for each of the functions g1, po, u3, ;. Thus we are able to
formulate a Riemann-Hilbert problem for the sectionally analytic function g which is defined
by

wi(z,z, k), k € Dy,
) me(z,7k), k € Do,
h= wi(z,z, k), k € Ds,
wi(z,z, k), k€ Dy
for z € Q. The relevant jumps are given by
pt —p= = p(z,y, k:)ew(]”*%), kel, (2.13)

4
where L = ) l; depicted in Figure 2, and p(z,y,k) = pj(z,y,k)(j = 1,2,3,4) will be
j=1
determined below.

Dy \ Dy
I3 0 Iy
D3 Do

Figure 4 The domains D;(j = 1,2,3,4) in the k-plane

In the following we will derive p(x,y, k). Since p;(x,y, k) satisfy Lax pair equations
(2.10) and (2.11) for j = 1,2,3,4, the difference of any two solutions of (2.10) and (2.11)

satisfies p(k)e’?##~ 7). Hence, when k € I;, we have

pt — T =y — g = pra(k)ePEE )]
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which implies that

palh) = [ e D . + ks — (g=-+ S

21

1
, 1 1
= [ b g o, 0) + B0k + Date. 0dz = paa. ),
1

that is, the equality (2.2) holds; when k € [5, we get
Pt =T = — =g — (g — ) = (1 — pa) + p§ = pra(k)e®F R 4l

which gives

iB(kz—Z iBkza—Z —if(k¢—$ : p
PR D 4l =0 D) [ D g+ ko) - (g + L))

Z124

- 92 . i —1
:eig(kz—;)/ o—iBke’—Le 9)[iqr(cosé,sin9)

— B(ke™ — %e_w)q(cos 0,sin§)]df

=p2 (I7 Y, k)elﬂ(kZ7%))
which yields that (2.3) holds; similarly, we can conclude that spectral functions p3 and py4

possess the expressions (2.4) and (2.5), respectively.
The solution of the Riemann-Hilbert problem with the estimate (2.12) and the jump

(2.13) along L can be expressed by

1 : z ds
=—q+— ke)e'Ps==3) k L. 2.14
p= =0+ 5 [ e e DL pe e (214)

Thus the Lax pair (2.11) where u is replaced by (2.14) implies that (2.1) holds. This
completes the proof of Theorem 1.

Similar to the proof of Theorem 1, we easily obtain

Corollary 1 Under the conditions of Theorem 1, the solution ¢(z,z) of Laplace equa-

tion (see (1.1) with @ = 0) can be expressed by

94 = 124: e pi(x,y, k)dk
82 277].:1 L pJ o ’

2

where
1 —ik P .
p1<$7ya k) 25[(](1,0)6 _Q(_lao)e } + 5 € [kQ([Ea 0) —qu(l',O)]dZL‘,
—1
1 _— .
pa(z,y, k) :§[q(cos 0y, sin 0)e ke " q(—1,0)e*]
1% e ,
+ / e~ %" [ig.(cos 0, sin 0) — ke q(cos 0, sin 0)]d6,
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1 iketf2 . kel
p3(x,y, k) :§[q(cos 0y, sin By )e ke - q(cos By, sin 6 )e = ’ ]
1 (% e :
+ 2/ e~ %" ig,(cos 0, sin 0) — ke'q(cos 0, sin )]d6,
01

—ike'®1 ]

1 .
pa(z,y, k) :§[q(1, 0)e™* — g(cos fy,sin b )e

1/ ,
+ 2/ e the” [iq,(cos 0, sin §) — ke q(cos 0, sin 0)]dO

01
and 64, 6, , 1;(j = 1,2,3,4) are defined as in Theorem 1. Moreover, the following global
relation holds

1 0 _ ‘
z/ e~ kq(z,0) — ig,(x,0)]dr = / g~ ike" [ig.(cos 0, sin §) — ke q(cos 0, sin 0)]d6.

1 T

Figure 5 The integral curves [;(j = 1,2,...,12) for the Helmholtz

equation in the k-plane
Corollary 2 Under the conditions of Theorem 1, the solution ¢(z,Z) of Helmholtz

equation (see (1.1) with o = 3%) can be expressed as

1 & . dk
o) = 33 [ D) (215)
j=11

where

1
. 1 1
) = [ e i (2,0) 4 850k~ a0
-1

0
2 ) 0, 1 _—i ; 1 ;
pa(x,y, k) :/ e iBke! e 9)[iqr(cos 0,sin @) — B(ke” + %e_ze)q(cos 6,sin )]do,

02

. 2 1,—1 ; 1 .
ps(z,y, k) = [ e ke e 9)[iqr(cos 0,sin @) — B(ke™ + %e*’(’)q(cos 6,sin 0)]de,
01

0
. 0, 1 _—i . 1 .
pa(T,y, k) :/ e~ iBke’+ e 9)[iqr(cos 0,sin ) — B(ke + Ee_“g)q(cos 6,sin0)|do,
01
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6

! . 01 ,—i . 1 .
po(x,y, k) —/ e iBke " +e 9)[iqT(cos 0,sin ) — B(ke™ + %e_lg)q(cos 6,sin0)|do,
1 . ,
e *“q(cos b, sin 6)]db,
pS(xayak) :_,03(33,3/,]{3)7 pG(l‘?yak):_pﬁl(ajayvk}a m(m,y,k‘) :_pl(l‘vyak)v
Ps(l'ay, k) :_pQ(xazh k)a pll(xayak) = —/’9(%1/; k)a plQ(xayvk) = _plo(xuy7k)a

62 ) . )
p1o(x,y, k) :/ e iBlhe’ e e)[iq,«(cos 0,sin0) — B(ke' +
0

and 6, 0, are defined as in Theorem 1, and I; (j = 1,2,...,12) are shown as in Figure 5.

Moreover, there exists the following global relation

1

1

0 i 1 —1i6 . .
:/ e~ Pk +5e i, (cos 0, sin 0) — B(ke'® + %e"e)q(cos 0, sin 0)]d6. (2.16)

3 The Generalized Dirichlet to Neumann Map

In Section 2, we see that the integral representations of the solutions for basic linear
elliptic PDEs can be expressed in terms of spectral functions p;(z,y, k). However, p;(z,y, k)
are determined by boundary values ¢(z,0),¢,(x,0) and g(cos#,sin®),q,(cosf,sinf). For
some boundary conditions such as Dirichlet boundary conditions, boundary values g,(z,0)
and g, (cosf,sinf) are unknown. The goal of generalized Dirichlet to Neumann map is to
determine these unknown boundary values, which can be accomplished through the global

relation and some symmetric properties.

For illustration, we now discuss the Helmholtz equation in a semi-disk domain €} with

the following Dirichlet boundary condition

q(a:,y) = f(a:vy)a (iU,y) €00 = LU L27

where function f(z,y) has appropriate smoothness.

Theorem 2 Let €2 be a semi-disk domain in the complex plane C described in Figure 1.
Assume that the boundary value f(z,y) has appropriate smoothness and that the Dirichlet
boundary problem of the Helmholtz equation (see (2.1) with o = %) has the solution with
form (2.15). Then all spectral function p;(z,y,k)(j = 1,2,3,4) can be determined by the
boundary value f(x,y).

Proof It follows from the global relation (2.16) that

Gi(k) — Go(k) = F(k),  keC, (3.1)
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where
! . 1 B . 0,1 —if
G4 (k) :/ qy(z,0)e"PErDTge Gy (k) :/ gr(cos B, sin f)e" PR+ g,
-1 0
1 /! N
F() =06 = ) [ w,0)e b
-1
T : 1 . . 0,1 —i
+iB / fr(cose,sina)(keluEe—w)e—fﬁ““ e g
0

It can be verified directly that G;(k), G2(k) have following symmetric relation

Gl(E) = Gl(—k), GQ(E) = Gg(—kze*zm), ke C. (32)

We can deduce from (3.1) and (3.2) that

Go(k) — Go(ke ™) = F(—k) — F(k),

that is,

/qu(cos 0,sin0) - K,(0,k)d0 = F(—k) — F(k), (3.3)

where

K1(0,k) = 2sinh[3(k — %) sin §)]e iU+ 1) cost,

This is the first kind of Fredholm integral equation. So by (3.1) and (3.3), we may
determine the functions G;(k) and g, (cos#,sin @), which implies that all spectral functions
p;(x,y, k) can be characterized by a given boundary value f(z,y).

We remark that spectral functions p;(x, y, k) can be expressed by G (k) and g, (cos 6, sin §),
so we only determine g,(cos6,sin ) from equation (3.3), which results in G5(k), and hence

determine G (k) from equation (3.1) and needn’t calculate g,(x,0).

4 Conclusions

We improve Fokas method to study the Laplace, modified Helmholtz and Helmholtz
equations in a semi-disk region 2. The integral representations of the solutions for these
basic linear elliptic PDEs are derived in terms of spectral functions p;(z,y, k), where the
spectral functions p,(x,y, k) depend on the boundary values ¢(z,0),g(cos6,sind) and its
derivatives g,(x,0), ¢, (cos@,sinf). For some specific boundary value problems, using the
global relation and symmetric properties, all spectral functions p;(z,y, k) can be determined
through the solution to a Fredholm integral equation of the first kind. The results here can
be further applied to discuss numerical solutions or asymptotic analysis.

The method here can also be used to solve boundary value problems for linear elliptic
PDESs on sector domains or disk ones.
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