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Abstract: In this article, we study numerical simulation of one-dimensional linear

Schrödinger wave equation with non-uniform space mesh. The non-uniform mesh will generate the

spurious reflection at the interface in numerical simulation, by using locate time stepping method

and proper interface condition, we can effectively reduce the spurious reflections at the interface.

The interface condition can significantly improve the efficiency and precision in numerical simula-

tion.
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1 Introduction

In this paper, we investigate interface condition for linear Schrödinger equation with
non-uniform grid. Schrödinger equation is the fundamental equation of quantum mechanics,
it describes the transformation of system’s quantum state. Schrödinger equation is a wave
function which describe a probability amplitude, the amplitude square corresponds to the
measured probability distribution of electrons. The Cauchy problem of Schrödinger equation
is

i~
∂Ψ
∂t

= − ~2

(2m)
∂2Ψ
∂x2

+ V (x)Ψ,x ∈ Rn, t > 0, (1.1)

Ψ0(x) = φ(x),x ∈ Rn,

where ~ is Planck constant, m is quality of the particle, Ψ(x, t) is the wave function, V (x)
is potential energy.

Equation (1.1) has many important applications, such as in semiconductors [1].
The finite difference method and finite element method can be employed for solving

Schrödinger equation. In this article, we use finite difference method. The numerical methods
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for Schrödinger equation simulation have numerous studies. Feit et al. studied the spectral
method for Schrödinger equation [2]. Taha et al. made several comparison of numerical
methods for nonlinear Schrödinger equation [3]. Bao et al. studied time-splitting spectral
approximations for the linear Schrödinger equation [4].

To numerically solve the equation, we need to discrete the space and time domain. But
Schrödinger wave equation in a local region maybe is singular or nearly singular, in this
case it has great advantage to use non-uniform mesh. Because the limitation of numerical
CFL condition, the maximum time step is limited by the minimum space step. If we use
non-uniform mesh to solve the equation, this limitation will waste computational resources.
To accurate the computation and speed up the algorithm, we use the local time step method,
i.e. use two different time steps corresponding the fine space mesh and the coarse mesh. The
problem is that how to deal with the interface between the fine mesh and coarse mesh which
generated by the local time step method. In this article, for simplicity and better illustrating
our basic idea, we just consider the non-unform mesh with two space step scales.

Our idea is enlightened by a multi-scale coupling method [5], base on the localization
property of depended region of Schrödinger wave equation. We treat the fine mesh part and
coarse mesh part respectively, the coarse mesh part is easy to calculate. The interface arise
in the fine mesh part, so our main technique means focus on the fine mesh part. Because
the linearity of the Schrödinger equation, we split the fine mesh part equation into two
equations, the initial value of one equation is the constant value of nearest coarse mesh
point. The analysis solution can be derived from D’Alembert’s principle. The initial value
of other equation is the original equation minus the constant, at the short time scale, we
can consider the equation is no source outside, then we treat this equation with artificial
boundary condition.

The rest of this paper is organized as follows. In Section 2 we briefly recall several
artificial boundary conditions for Schrödinger equation. The interface condition for local
time step and non-uniform mesh is given in Section 3. In Section 4, several numerical
examples are given to present the efficiency of the interface condition we proposed.

2 The Artificial Boundary Conditions of Schrödinger Equation

The artificial boundary conditions of Schrödinger equation have fruitful results which
were collected in the review article wrote by Antoine [6] et al.

We concern the one-dimensional linear Schrödinger equation with zero potential function

i
∂Ψ
∂t

=
∂2Ψ
∂x2

, x ∈ R, t > 0, (2.1)

Ψ0(x) = φ(x), x ∈ R.

There are two basic kinds of artificial boundary conditions, transparent boundary condi-
tions and perfect matched layer. But transparent boundary conditions are non-local in time
and space, it need to do some local approximation, next we will introduce some absorbing
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boundary conditions for the linear Schrödinger equation which are local both in space and
time.

Szeftel [7] developed the strategy of pseudo-differential calculus for the linear Schrödinger
equation and constructed a family of absorbing boundary conditions for the linear Schrödinger
equation on curved boundaries which are local both in space and time as below:

∂xΨ|x=xN
= iβΨN−1 + i

m∑
k=1

ak(ΨN−1 − dkϕk), (2.2)

i∂tϕk + dkϕk = Ψ(xN , t), k = 1, · · · ,m,

where xN is the value of x in boundary and β, a1 · · · ak, d1 · · · dk are the reflection coefficients.
Next, we introduce the PMLs for Schrödinger equation, also consider the time-dependent

Schrödinger equation in one dimension:

i ∗ ∂Ψ
∂t

= −∂2Ψ
∂x2

, (x, t) ∈ [0, xb]×R+.

We want to construct a PMLs with layer width d at x = xb in the x direction, then the new
computation domain is [0, xb + d]. Next, expand Ψ in a Fourier series donate by ψj . Then
Laplace transform the equation in time, then after some technical means, we can obtain
decaying waves, we solve (2.3) instead of Schrödinger equation:

i
∂Ψ
∂t

= − 1
1 + eiγσ(x)

∂

∂x

1
1 + eiγσ(x)

∂Ψ
∂x

, (x, t) ∈ [0, xb + d]×R+, (2.3)

where

σ(x) =

{
0, x ∈ [0, xb],
constant, x ∈ [xb, xb + d].

We can see that in the interval x ∈ [0, xb], equation (2.3) is same as Schrödinger equation.
In the interval [xb, xb +d], equation (2.3) have the exponential decay property. So the PMLs
have this good property.

3 Interface Condition for Schrödinger Equation with Non-Uniform Grid

The numerical simulation of the Schrödinger equation need discrete the space and time
domain. In most researches, they use uniform mesh in space discretion, and use proper
time step to match the space mesh. It has a problem that how to choose the proper time
step when using non-uniform space mesh to discrete space domain, just for the numerical
method of ordinary wave equation, the non-uniform mesh will cause many problems, such
as spurious reflection during simulation [8, 9].

To avoid the spurious reflection, we use local time step for the non-uniform mesh,
this will generate an interface between fine grid and coarse grid. So we need introduce a
proper interface condition for the numerical scheme. For ordinary wave equation, nonlinear
conservation laws are approximated with an explicit time difference method [10], Tan et
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al. [11] use the moving mesh methods with local time stepping for solving time dependent
PDEs. The interface condition we proposed is utilizing the property of wave equation’s local
dependance and the artificial boundary condition of wave equation. We use 1 dimensional
Schrödinger equation as example to present the interface condition:

i
∂Ψ
∂t

=
∂2Ψ
∂x2

, (x, t) ∈ [a, b]×R+, (3.1)

Ψ0(x) = φ(x), x ∈ [a, b].

The space domain we concerned is x ∈ [a, b], and we set the interface between the fine
grid and coarse grid is x = xi, then the coarse mesh is [a, xi], the fine mesh is [xi, b]. Assume
that we have gotten the numerical solution of the problem at t = tn, we need to numerically
solve the equation at t = tn+1.

Here, for simplicity, we consider the right side as fine mesh and coarse mesh on left side.
We use a larger time step in coarse mesh, M tc

n = tn+1 − tn, and smaller time step in fine
mesh, M tf

n =M tc
n/(m + 1), x = xi is between fine mesh and coarse mesh, see Figure 1.

tn
 un

k
un

i

tn+1 un+1
k

un+1
i

interface←

tn

tn+τ
0

tn+τ
l

tn+α
m

un+τ
l

i

Figure 1 The interface generate by local time step

We deal with the coarse mesh and fine mesh respectively. First, for the coarse mesh,
we solve the problem with the matched time step, then use the finite difference method to
solve equation (3.2)

i ∗ ∂Ψ
∂t

= −∂2Ψ
∂x2

, x ∈ [a, xi], (3.2)

Ψ0(x) = Ψ(x, tn), x ∈ [a, xi].

And in fine mesh domain, we decompose the equation into two equations. The initial
condition of first equation (3.3) is the original equation minus the constant value at interface
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point xi,

i ∗ ∂Ψ
∂t

= −∂2Ψ
∂x2

, x ∈ [xi, b], (3.3)

Ψ0(x) = Ψ(x, tn)−Ψ(xi, tn), x ∈ [xi, b].

The initial condition of second equation (3.4) is constant value at interface point xi.

i ∗ ∂Ψ
∂t

= −∂2Ψ
∂x2

, x ∈ [xi, b], (3.4)

Ψ0(x) = Ψ(xi, tn), x ∈ [xi, b].

For equation (3.3), because of the local dependence of wave equation, the equation
can be treated as a no source equation, so we can use the artificial boundary condition as
boundary condition. Equation (3.4) have the constant initial value, it is easy to get its
solution. At last, in consequence of the linearity of Schrödinger equation, we add up two
equation solutions to get the solution on the fine mesh.

In our scheme, the complexity of scheme is not changed too much. Then we can adopt
many artificial boundary conditions to our interface condition.

4 Numerical Examples

In this section, we will give several numerical examples to illustrate the efficiency of
the interface condition. The numerical example settings are as follow, the space domain is
x ∈ [−9, 5], the interface is at x = −2, The interval [−9,−2] is discrete as coarse mesh, the
fine mesh is in the interval [−2, 5]. We give two different initial conditions corresponding to
the wave propagate from the coarse grid to fine grid and fine grid to coarse grid.

Ψ1(x, 0) =
exp(−iπ/4)√−i

exp(
ix2 − 6x

−i
),

Ψ2(x, 0) = exp(
−i(x + 5)2 − 5(x + 5)

i
).

Accordingly, the real solutions are

Ψ1(x, t) =
exp(−iπ/4)√

4t− i
exp(

ix2 − 6x− 36t

4t− i
),

Ψ2(x, t) =

√
i

−4t + i
exp(

−i(x + 5)2 − 5(x + 5) + 25t

−4t + i
).

In numerical simulation, we use the artificial boundary condition as the boundary con-
dition at boundary point x = −9, x = 5. The coarse mesh size is hc=0.04 and fine mesh size
is hf=0.02. First, we will give the exact solutions in Figures 2 and 3.

Then we will give an example to present the spurious reflection caused by the non-
uniform space mesh.
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(d) t = 0.9

Figure 2 The exact solution of Schrödinger equation with initial condition Ψ1
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(d) t = 0.9

Figure 3 The exact solution of Schrödinger equation with initial condition Ψ2

Example 4.1 In this example, we use the non-uniform space mesh to discrete the
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space domain. We set time step corresponding to the minimal space mesh step hf .
The numerical result of Example 4.1 are present in Figures 4 and 5 . The L2 error show

in Figure 6 . There is a huge spurious reflection after the wave propagated the interface
between the fine and coarse mesh. The spurious reflection is harmful to the convergence and
stability of the numerical simulation. We can use our interface condition to decrease this
spurious reflection.
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(c) t = 0.9

Figure 4 The numerical solution of Example 4.1 with initial condition Ψ1
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(c) t = 0.9

Figure 5 The numerical solution of Example 4.1 with initial condition Ψ2
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(a) The error norm with Ψ1
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Figure 6 The error norm of Example 4.1

The next example we will use local time step and interface condition, the example shows
the interface condition significantly decrease the spurious reflection when the wave propagate
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cross the interface, and the error of numerical solution is much smaller than uniform time
step.

Example 4.2 In this example, we use Szeftel boundary condition as the interface con-
dition. We set the local time step corresponding to fine mesh and coarse mesh respectively.

The results of Example 4.2 present in Figures 7 and 8, and the error norm is in Fig-
ure 9, we can see from the figures, the interface condition decrease the spurious reflection
significantly.
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(c) t = 0.9

Figure 7 The numerical solution of Example 4.2 with initial condition Ψ1
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(c) t = 0.9

Figure 8 The numerical solution of Example 4.2 with initial condition Ψ2
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(a) The error norm with Ψ1
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Figure 9 The error norm of Example 4.2

The interface condition can also use other kind of artificial boundary condition, such as
PMLs. We use the PMLs as the boundary condition and interface condition.
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Example 4.3 In this example, we use PMLs boundary condition as the interface con-
dition. We set the local time step corresponding to fine mesh and coarse mesh respectively.

The numerical simulation of Example 4.3 is showing in Figures 10 and 11. The interface
condition also can decrease the reflection when the wave propagate cross the interface.
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(c) t = 0.9

Figure 10 The numerical solution of Example 4.3 with initial condition Ψ1
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(c) t = 0.9

Figure 11 The numerical solution of Example 4.3 with initial condition Ψ2
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(a) The error norm with Ψ1
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Figure 12 The error norm of Example 4.3

5 Conclusion and Discussions

We have proposed a new interface condition for local time step simulation of linear
Schrödinger’s equations. Our method effectively reduce the reflections in interface, and
it gives a good numerical accuracy with a low numerical cost. We can use all kinds of
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boundary conditions to match this method and the accuracy is decided by the ability of
absorbing reflection of boundary conditions. In two dimensional case, we could still reduce
the reflection on interface by similar method. It is possible to extend the interface condition
to the non-linear Schrödinger’s equations.
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薛定谔方程在非一致网格下数值模拟的界面条件

黄乐天, 孙致远

(武汉大学数学与统计学院,湖北武汉 430072)

摘要: 本文研究了一维线性薛定谔方程在非一致网格下数值模拟的问题. 在数值模拟中, 非一致网格

在界面处会产生虚假反射, 利用局部时间步长和界面条件的方法, 成功的减小了虚假反射. 改进和提高了薛

定谔方程数值模拟的效率和精度.
关键词: 薛定谔方程数值模拟; 界面条件; 局部时间步长
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